1
|
Rippon M, Rogers AA, Westgate S, Ousey K. Effectiveness of a polyhexamethylene biguanide-containing wound cleansing solution using experimental biofilm models. J Wound Care 2023; 32:359-367. [PMID: 37300862 DOI: 10.12968/jowc.2023.32.6.359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Antiseptics are widely used in wound management to prevent or treat wound infections, and have been shown to have antibiofilm efficacy. The objective of this study was to assess the effectiveness of a polyhexamethylene biguanide (PHMB)-containing wound cleansing and irrigation solution on model biofilm of pathogens known to cause wound infections compared with a number of other antimicrobial wound cleansing and irrigation solutions. METHOD Staphylococcus aureus and Pseudomonas aeruginosa single-species biofilms were cultured using microtitre plate and Centers for Disease Control and Prevention (CDC) biofilm reactor methods. Following a 24-hour incubation period, the biofilms were rinsed to remove planktonic microorganisms and then challenged with wound cleansing and irrigation solutions. Following incubation of the biofilms with a variety of concentrations of the test solutions (50%, 75% or 100%) for 20, 30, 40, 50 or 60 minutes, remaining viable organisms from the treated biofilms were quantified. RESULTS The six antimicrobial wound cleansing and irrigation solutions used were all effective in eradicating Staphylococcus aureus biofilm bacteria in both test models. However, the results were more variable for the more tolerant Pseudomonas aeruginosa biofilm. Only one of the six solutions (sea salt and oxychlorite/NaOCl-containing solution) was able to eradicate Pseudomonas aeruginosa biofilm using the microtitre plate assay. Of the six solutions, three (a solution containing PHMB and poloxamer 188 surfactant, a solution containing hypochlorous acid (HOCl) and a solution containing NaOCl/HOCl) showed increasing levels of eradication of Pseudomonas aeruginosa biofilm microorganisms with increasing concentration and exposure time. Using the CDC biofilm reactor model, all six cleansing and irrigation solutions, except for the solution containing HOCl, were able to eradicate Pseudomonas aeruginosa biofilms such that no viable microorganisms were recovered. CONCLUSION This study demonstrated that a PHMB-containing wound cleansing and irrigation solution was as effective as other antimicrobial wound irrigation solutions for antibiofilm efficacy. Together with the low toxicity, good safety profile and absence of any reported acquisition of bacterial resistance to PHMB, the antibiofilm effectiveness data support the alignment of this cleansing and irrigation solution with antimicrobial stewardship (AMS) strategies.
Collapse
Affiliation(s)
- Mark Rippon
- Visiting Clinical Research Associate, Huddersfield University, Huddersfield, UK
- Medical Marketing Consultant, Daneriver Consultancy Ltd, Holmes Chapel, Cheshire, UK
| | - Alan A Rogers
- Independent Wound Care Consultant, Flintshire, North Wales, UK
| | | | - Karen Ousey
- Professor of Skin Integrity, Director for the Institute of Skin Integrity and Infection Prevention, University of Huddersfield Department of Nursing and Midwifery, Huddersfield, UK
- Adjunct Professor, School of Nursing, Faculty of Health at the Queensland University of Technology, Australia
- Visiting Professor, RCSI, Dublin, Ireland
- Chair IWII
- President Elect ISTAP
| |
Collapse
|
2
|
Rippon MG, Rogers AA, Ousey K. Polyhexamethylene biguanide and its antimicrobial role in wound healing: a narrative review. J Wound Care 2023; 32:5-20. [PMID: 36630111 DOI: 10.12968/jowc.2023.32.1.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A wound offers an ideal environment for the growth and proliferation of a variety of microorganisms which, in some cases, may lead to localised or even systemic infections that can be catastrophic for the patient; the development of biofilms exacerbates these infections. Over the past few decades, there has been a progressive development of antimicrobial resistance (AMR) in microorganisms across the board in healthcare sectors. Such resistant microorganisms have arisen primarily due to the misuse and overuse of antimicrobial treatments, and the subsequent ability of microorganisms to rapidly change and mutate as a defence mechanism against treatment (e.g., antibiotics). These resistant microorganisms are now at such a level that they are of grave concern to the World Health Organization (WHO), and are one of the leading causes of illness and mortality in the 21st century. Treatment of such infections becomes imperative but presents a significant challenge for the clinician in that treatment must be effective but not add to the development of new microbes with AMR. The strategy of antimicrobial stewardship (AMS) has stemmed from the need to counteract these resistant microorganisms and requires that current antimicrobial treatments be used wisely to prevent amplification of AMR. It also requires new, improved or alternative methods of treatment that will not worsen the situation. Thus, any antimicrobial treatment should be effective while not causing further development of resistance. Some antiseptics fall into this category and, in particular, polyhexamethylene hydrochloride biguanide (PHMB) has certain characteristics that make it an ideal solution to this problem of AMR, specifically within wound care applications. PHMB is a broad-spectrum antimicrobial that kills bacteria, fungi, parasites and certain viruses with a high therapeutic index, and is widely used in clinics, homes and industry. It has been used for many years and has not been shown to cause development of resistance; it is safe (non-cytotoxic), not causing damage to newly growing wound tissue. Importantly there is substantial evidence for its effective use in wound care applications, providing a sound basis for evidence-based practice. This review presents the evidence for the use of PHMB treatments in wound care and its alignment with AMS for the prevention and treatment of wound infection.
Collapse
Affiliation(s)
- Mark G Rippon
- Huddersfield University, Huddersfield, UK.,Dane River Consultancy Ltd, Cheshire, UK
| | | | - Karen Ousey
- University of Huddersfield Department of Nursing and Midwifery, Huddersfield, UK.,School of Nursing, Faculty of Health at the Queensland University of Technology, Australia.,RCSI, Dublin, Eire
| |
Collapse
|
3
|
Niro A, Pignatelli F, Fallico M, Sborgia A, Passidomo F, Gigliola S, Nacucchi A, Sborgia G, Boscia G, Alessio G, Boscia F, Addabbo G, Reibaldi M, Avitabile T. Polyhexamethylene biguanide hydrochloride (PHMB)-properties and application of an antiseptic agent. A narrative review. Eur J Ophthalmol 2022; 33:11206721221124684. [PMID: 36083163 DOI: 10.1177/11206721221124684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The prevention and management of ocular surface infections is still one of the great challenges for ophthalmologists. The spread of antimicrobial resistance makes it necessary to use antiseptic substances with a broad antimicrobial spectrum. Polyhexamethylene biguanide hydrochloride (Polyhexanide, PHMB) is a broad-spectrum antiseptic with excellent tolerance and a low-risk profile. Its physicochemical action on the phospholipid membrane and DNA replication or repair mechanism, prevents or impedes the development of resistant bacterial strains. PHMB revealed its effective against numerous organisms like viruses, Gram-negative and Gram-positive bacteria, and fungi. Polyhexanide is commonly used as preservative in commercially available disinfecting solutions for contact lens care and in ophthalmic formulations at different concentrations ranging from 1 µg/ml to 50 µg/ml. The administration of 0.02% (200 µg/ml) PHMB is often the first-line therapy of Acanthamoeba keratitis. However, to date, only one close-out randomized controlled study tested the efficacy of 0.02% PHMB in Acanthamoeba keratitis and a phase III study is still ongoing. This paper reviews the antiseptic agent PHMB, focusing on biochemical mechanisms, safety profile and applications in ophthalmology.
Collapse
Affiliation(s)
- Alfredo Niro
- Eye Clinic, Hospital "SS. Annunziata", ASL Taranto, Taranto, Italy
| | | | - Matteo Fallico
- Department of Ophthalmology, University of Catania, Catania, Italy
| | | | - Fedele Passidomo
- Eye Clinic, Hospital "SS. Annunziata", ASL Taranto, Taranto, Italy
| | - Samuele Gigliola
- Eye Clinic, Hospital "SS. Annunziata", ASL Taranto, Taranto, Italy
| | | | - Giancarlo Sborgia
- Eye Clinic, Department of Medical Science, Neuroscience and Sense Organs, 9295University of Bari, Bari, Italy
| | - Giacomo Boscia
- Eye Clinic Section, Department of Surgical Sciences, 9314University of Turin, Turin, Italy
| | - Giovanni Alessio
- Eye Clinic, Department of Medical Science, Neuroscience and Sense Organs, 9295University of Bari, Bari, Italy
| | - Francesco Boscia
- Eye Clinic, Department of Medical Science, Neuroscience and Sense Organs, 9295University of Bari, Bari, Italy
| | - Giuseppe Addabbo
- Eye Clinic, Hospital "SS. Annunziata", ASL Taranto, Taranto, Italy
| | - Michele Reibaldi
- Eye Clinic Section, Department of Surgical Sciences, 9314University of Turin, Turin, Italy
| | | |
Collapse
|
4
|
Kathuria D, Raul AD, Wanjari P, Bharatam PV. Biguanides: Species with versatile therapeutic applications. Eur J Med Chem 2021; 219:113378. [PMID: 33857729 DOI: 10.1016/j.ejmech.2021.113378] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
Biguanides are compounds in which two guanidine moieties are fused to form a highly conjugated system. Biguanides are highly basic and hence they are available as salts mostly hydrochloride salts, these cationic species have been found to exhibit many therapeutic properties. This review covers the research and development carried out on biguanides and accounts the various therapeutic applications of drugs containing biguanide group-such as antimalarial, antidiabetic, antiviral, anticancer, antibacterial, antifungal, anti-tubercular, antifilarial, anti-HIV, as well as other biological activities. The aim of this review is to compile all the medicinal chemistry applications of this class of compounds so as to pave way for the accelerated efforts in finding the drug action mechanisms associated with this class of compounds. Importance has been given to the organic chemistry of these biguanide derivatives also.
Collapse
Affiliation(s)
- Deepika Kathuria
- University Center for Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Akshay D Raul
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Pravin Wanjari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India.
| |
Collapse
|
5
|
Allen AG, Chung CH, Atkins A, Dampier W, Khalili K, Nonnemacher MR, Wigdahl B. Gene Editing of HIV-1 Co-receptors to Prevent and/or Cure Virus Infection. Front Microbiol 2018; 9:2940. [PMID: 30619107 PMCID: PMC6304358 DOI: 10.3389/fmicb.2018.02940] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
Antiretroviral therapy has prolonged the lives of people living with human immunodeficiency virus type 1 (HIV-1), transforming the disease into one that can be controlled with lifelong therapy. The search for an HIV-1 vaccine has plagued researchers for more than three decades with little to no success from clinical trials. Due to these failures, scientists have turned to alternative methods to develop next generation therapeutics that could allow patients to live with HIV-1 without the need for daily medication. One method that has been proposed has involved the use of a number of powerful gene editing tools; Zinc Finger Nucleases (ZFN), Transcription Activator–like effector nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 to edit the co-receptors (CCR5 or CXCR4) required for HIV-1 to infect susceptible target cells efficiently. Initial safety studies in patients have shown that editing the CCR5 locus is safe. More in depth in vitro studies have shown that editing the CCR5 locus was able to inhibit infection from CCR5-utilizing virus, but CXCR4-utilizing virus was still able to infect cells. Additional research efforts were then aimed at editing the CXCR4 locus, but this came with other safety concerns. However, in vitro studies have since confirmed that CXCR4 can be edited without killing cells and can confer resistance to CXCR4-utilizing HIV-1. Utilizing these powerful new gene editing technologies in concert could confer cellular resistance to HIV-1. While the CD4, CCR5, CXCR4 axis for cell-free infection has been the most studied, there are a plethora of reports suggesting that the cell-to-cell transmission of HIV-1 is significantly more efficient. These reports also indicated that while broadly neutralizing antibodies are well suited with respect to blocking cell-free infection, cell-to-cell transmission remains refractile to this approach. In addition to stopping cell-free infection, gene editing of the HIV-1 co-receptors could block cell-to-cell transmission. This review aims to summarize what has been shown with regard to editing the co-receptors needed for HIV-1 entry and how they could impact the future of HIV-1 therapeutic and prevention strategies.
Collapse
Affiliation(s)
- Alexander G Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Andrew Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,School of Biomedical Engineering and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Center for Translational AIDS Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Bouattour Y, Chennell P, Wasiak M, Jouannet M, Sautou V. Stability of an ophthalmic formulation of polyhexamethylene biguanide in gamma-sterilized and ethylene oxide sterilized low density polyethylene multidose eyedroppers. PeerJ 2018; 6:e4549. [PMID: 29682408 PMCID: PMC5910790 DOI: 10.7717/peerj.4549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/08/2018] [Indexed: 11/20/2022] Open
Abstract
Background Polyhexamethylene biguanide (PHMB) eye drops are a frequently used medication to treat Acanthamoeba keratitis. In the absence of marketed PHMB eye drops, pharmacy-compounding units are needed to prepare this much needed treatment, but the lack of validated PHMB stability data severely limits their conservation by imposing short expiration dates after preparation. In this study we aim to assess the physicochemical and microbiological stability of a 0.2 mg/mL PHMB eye drop formulation stored in two kinds of polyethylene bottles at two different temperatures. Methods A liquid chromatography coupled with diode array detector stability-indicating method was validated to quantify PHMB, using a cyanopropyl bonded phase (Agilent Zorbax Eclipse XDB-CN column 4.6 × 75 mm with particle size of 3.5 μm) and isocratic elution consisting of acetonitrile/deionized water (3/97 v/v) at a flow rate of 1.3 mL/min. PHMB eye drops stability was assessed for 90 days of storage at 5 and 25 °C in ethylene oxide sterilized low density polyethylene (EOS-LDPE) and gamma sterilized low density polyethylene (GS-LDPE) bottles. The following analyses were performed: visual inspection, PHMB quantification and breakdown products (BPs) screening, osmolality and pH measurements, and sterility assessment. PHMB quantification and BP screening was also performed on the drops emitted from the multidose eyedroppers to simulate in-use condition. Results The analytical method developed meets all the qualitative and quantitative criteria for validation with an acceptable accuracy and good linearity, and is stability indicating. During 90 days of storage, no significant decrease of PHMB concentration was found compared to initial concentration in all stored PHMB eye drops. However, BP were found at day 30 and at day 90 of monitoring in both kind of bottles, stored at 5 and 25 °C, respectively. Although no significant variation of osmolality was found and sterility was maintained during 90 days of monitoring, a significant decrease of pH in GS-LDPE PHMB eye drops was noticed reaching 4 and 4.6 at 25 °C and 5 °C respectively, compared to initial pH of 6.16. Discussion Although no significant decrease in PHMB concentration was found during 90 days of monitoring in all conditions, the appearance of BPs and their unknown toxicities let us believe that 0.2 mg/mL PHMB solution should be conserved for no longer than 60 days in EOS-LDPE bottles at 25 °C.
Collapse
Affiliation(s)
| | - Philip Chennell
- Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont-Ferrand, ICCF, Clermont-Ferrand, France
| | - Mathieu Wasiak
- CHU Clermont-Ferrand, Pôle Pharmacie, Clermont-Ferrand, France
| | | | - Valérie Sautou
- Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont-Ferrand, ICCF, Clermont-Ferrand, France
| |
Collapse
|
7
|
|
8
|
Ahani E, Montazer M, Toliyat T, Mahmoudi Rad M, Harifi T. Preparation of nano cationic liposome as carrier membrane for polyhexamethylene biguanide chloride through various methods utilizing higher antibacterial activities with low cell toxicity. J Microencapsul 2017; 34:121-131. [PMID: 28609225 DOI: 10.1080/02652048.2017.1296500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study suggested successful encapsulation of polyhexamethylene biguanide chloride (PHMB) into nano cationic liposome as a biocompatible antibacterial agent with less cytotoxicity and higher activities. Phosphatidylcholine, cholesterol and stearylamine were used to prepare nano cationic liposome using thin film hydration method along with sonication or homogeniser. Sonication was more effective in PHMB loaded nano cationic liposome preparation with smaller size (34 nm). FTIR, 1H NMR and XRD analyses were used to confirm the encapsulation of PHMB into nano cationic liposome. PHMB inclusion in nano cationic liposome was beneficial for increased antibacterial activity against Staphylococcus aureus and Escherichia coli. PHMB-loaded cationic liposome enables to deliver high concentrations of the antibacterial agent into the infectious cell. The cytotoxicity of PHMB entrapped in positively charged liposome was prominently reduced showing no significant visible detrimental effect on normal primary human skin fibroblast cell lines morphology confirming the effective role of cationic liposome encapsulation. Comparing with PHMB alone, encapsulation of PHMB in nano cationic liposome resulted in significant increase in cell viability from 2.4 to 63%.
Collapse
Affiliation(s)
- Elnaz Ahani
- a Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Majid Montazer
- b Department of Textile Engineering, Functional Fibrous Structures & Environmental Enhancement (FFSEE) , Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology , Tehran , Iran
| | - Tayebeh Toliyat
- c Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Mahnaz Mahmoudi Rad
- d Skin Research Centre, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Tina Harifi
- e Department of Textile Engineering, Functional Fibrous Structures & Environmental Enhancement (FFSEE) , Amirkabir University of Technology , Tehran , Iran
| |
Collapse
|
9
|
Ahani E, Montazer M, Toliyat T, Mahmoudi Rad M. A novel biocompatible antibacterial product: Nanoliposomes loaded with poly(hexamethylene biguanide chloride). J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516675367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, nanoliposome-loaded poly(hexamethylene biguanide) is introduced as a novel biocompatible antibacterial product with higher activity than microliposomes. Soy lecithin as a clean product was used to prepare various nanoliposomes through sonication, high-pressure homogenizer, and normal homogenizer and also microliposomes through two methods of lipid film hydration and incubation methods. The nanoliposomes were formed under sonication with the size of 50 nm. The prepared liposomes were then loaded with poly(hexamethylene biguanide chloride) and the inclusion percentage was measured. The release profile of liposomes in buffer showed a release of 92% for poly(hexamethylene biguanide) during 24 h. The loaded liposomes were characterized with particle size analyzer, nuclear magnetic resonance, X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The antibacterial properties of different micro and nanoliposomes were investigated against a Gram-negative ( Escherichia coli) and a Gram-positive ( Staphylococcus aureus) bacteria. The poly(hexamethylene biguanide)–loaded nanoliposomes indicated higher antibacterial activities than microliposomes. Nanoliposomes have the potential to entrap lower poly(hexamethylene biguanide) dosages while retaining optimum therapeutic efficacy in the target site having lower cytotoxicity with lower side effects. The cytotoxicity of poly(hexamethylene biguanide) entrapped in liposomes was studied in human dermal fibroblasts and compared with free poly(hexamethylene biguanide) and blank liposomes. The maximum cytotoxicity was observed for free poly(hexamethylene biguanide) that is substantially decreased through loading within liposomes structure. Overall, the encapsulation of poly(hexamethylene biguanide) in liposomes improved the biocompatibility and safety of the product introducing a useful biocompatible antibacterial polymer for treatments of infectious diseases.
Collapse
Affiliation(s)
- Elnaz Ahani
- Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Majid Montazer
- Department of Textile Engineering, Center of Excellence in Textile, Amirkabir University of Technology, Tehran, Iran
| | - Tayebeh Toliyat
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Mahmoudi Rad
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Fjeld H, Lingaas E. Polyheksanid – sikkerhet og effekt som antiseptikum. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2016; 136:707-11. [DOI: 10.4045/tidsskr.14.1041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
11
|
Study of epigenetic properties of Poly(HexaMethylene Biguanide) hydrochloride (PHMB). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:8069-92. [PMID: 25111876 PMCID: PMC4143850 DOI: 10.3390/ijerph110808069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 07/01/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
Poly(HexaMethylene Biguanide) hydrochloride (PHMB) CAS No. [32289-58-0] is a particularly effective member of the biguanides antiseptic chemical group, and has been in use since the early fifties in numerous applications. It has been proposed that PHMB be classified as a category 3 carcinogen although PHMB is not genotoxic. It has been hypothesized that PHMB may have epigenetic properties effects, including non-genotoxic modifications of DNA bases, DNA methylation and mitogenic cytokine production. These properties have been assessed in vitro using 3 cell types: Caco-2 cells (from a human colon adenocarcinoma) with a non-functional p53 gene. (∆p53: mut p53), N2-A (Neuro-2A cells, mouse neural cells), the brain being a possible target organ in rodents and HepG2 cells (human hepatocellular carcinoma) with functional p53 gene. From the concentration 1 μg/mL up to 20 μg/mL of PHMB, no effect was observed, either growth stimulation or inhibition. Viability testing using neutral red led to an IC 50 of 20–25 μg/mL after treatment with PHMB for 3 h, whereas the MTT test led to IC50 values of 80 μg/mL, 160 μg/mL and 160 μg/mL respectively for HepG2 cells, Neuro-2A cells and Caco-2 cells. PHMB does not induce significant oxidative stress (production of MDA or lipoperoxidation, nor does it induce hydroxylation of DNA (8-OH-dG) and/or its hypermethylation (m5dC), the latter being strongly implicated in DNA replication and regulation and cell division. PHMB does not induce significant production of mitogenic cytokines such as TNF-α (tumor necrosis factor), interleukins (IL-1 alpha), and the transcription factor nuclear factor kappa B (NF-κB) which can cause either apoptosis or stimulate the growth of transformed cells or tumors. Instead, from concentrations of 20 to 100 μg/mL, PHMB kills cells of all types in less than 3 h. The expression of genes involved in the mechanisms of cell death induced by PHMB, including p53, the pro apoptotic gene bax and others, the anti-apoptotic bcl-2 and caspase-3 has been evaluated by RT-PCR. Finally, the status of GAP-junctions (GJIC) in the presence of PHMB has been determined and appeared to not be significantly affected. Taken together the data show that in vitro PHMB does not exhibit clear and remarkable epigenetic properties except a slight increase of some cytokines and transcription factor at higher concentrations at which cell lysis occurs rapidly.
Collapse
|
12
|
Lewis DR, Kholodovych V, Tomasini MD, Abdelhamid D, Petersen LK, Welsh WJ, Uhrich KE, Moghe PV. In silico design of anti-atherogenic biomaterials. Biomaterials 2013; 34:7950-9. [PMID: 23891521 DOI: 10.1016/j.biomaterials.2013.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/01/2013] [Indexed: 01/10/2023]
Abstract
Atherogenesis, the uncontrolled deposition of modified lipoproteins in inflamed arteries, serves as a focal trigger of cardiovascular disease (CVD). Polymeric biomaterials have been envisioned to counteract atherogenesis based on their ability to repress scavenger mediated uptake of oxidized lipoprotein (oxLDL) in macrophages. Following the conceptualization in our laboratories of a new library of amphiphilic macromolecules (AMs), assembled from sugar backbones, aliphatic chains and poly(ethylene glycol) tails, a more rational approach is necessary to parse the diverse features such as charge, hydrophobicity, sugar composition and stereochemistry. In this study, we advance a computational biomaterials design approach to screen and elucidate anti-atherogenic biomaterials with high efficacy. AMs were quantified in terms of not only 1D (molecular formula) and 2D (molecular connectivity) descriptors, but also new 3D (molecular geometry) descriptors of AMs modeled by coarse-grained molecular dynamics (MD) followed by all-atom MD simulations. Quantitative structure-activity relationship (QSAR) models for anti-atherogenic activity were then constructed by screening a total of 1164 descriptors against the corresponding, experimentally measured potency of AM inhibition of oxLDL uptake in human monocyte-derived macrophages. Five key descriptors were identified to provide a strong linear correlation between the predicted and observed anti-atherogenic activity values, and were then used to correctly forecast the efficacy of three newly designed AMs. Thus, a new ligand-based drug design framework was successfully adapted to computationally screen and design biomaterials with cardiovascular therapeutic properties.
Collapse
Affiliation(s)
- Daniel R Lewis
- Department of Chemical and Biochemical Engineering, Rutgers University, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Jiang Z, Wang B, Che H, Liu B. Structural Characterization and Bacteriostatic and Cytotoxicity to 3T3 Cells Study of Oligobiguanidine (Polyhexamethylene Biguanidine Hydrochloride) and its 3-Glycidoxypropyltrimethoxysilane Derivatives. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2012. [DOI: 10.1080/10601325.2012.722856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Gentile A, Gerli S, Di Renzo GC. A new non-invasive approach based on polyhexamethylene biguanide increases the regression rate of HPV infection. BMC Clin Pathol 2012; 12:17. [PMID: 23009652 PMCID: PMC3520694 DOI: 10.1186/1472-6890-12-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/02/2012] [Indexed: 11/13/2022] Open
Abstract
Background HPV infection is a worldwide problem strictly linked to the development of cervical cancer. Persistence of the infection is one of the main factors responsible for the invasive progression and women diagnosed with intraepithelial squamous lesions are referred for further assessment and surgical treatments which are prone to complications. Despite this, there are several reports on the spontaneous regression of the infection. This study was carried out to evaluate the effectiveness of a long term polyhexamethylene biguanide (PHMB)-based local treatment in improving the viral clearance, reducing the time exposure to the infection and avoiding the complications associated with the invasive treatments currently available. Method 100 women diagnosed with HPV infection were randomly assigned to receive six months of treatment with a PHMB-based gynecological solution (Monogin®, Lo.Li. Pharma, Rome - Italy) or to remain untreated for the same period of time. Results A greater number of patients, who received the treatment were cleared of the infection at the two time points of the study (three and six months) compared to that of the control group. A significant difference in the regression rate (90% Monogin group vs 70% control group) was observed at the end of the study highlighting the time-dependent ability of PHMB to interact with the infection progression. Conclusions The topic treatment with PHMB is a preliminary safe and promising approach for patients with detected HPV infection increasing the chance of clearance and avoiding the use of invasive treatments when not strictly necessary. Trial registration ClinicalTrials.gov Identifier NCT01571141
Collapse
Affiliation(s)
- Antonio Gentile
- Family Planning Clinic Terme Vigliatore, A,S,P, 5 Via Nazionale S, Biagio, 154 98050, Messina, Italy.
| | | | | |
Collapse
|
15
|
Pozzetto B, Delézay O, Brunon-Gagneux A, Hamzeh-Cognasse H, Lucht F, Bourlet T. Current and future microbicide approaches aimed at preventing HIV infection in women. Expert Rev Anti Infect Ther 2012; 10:167-183. [PMID: 22339191 DOI: 10.1586/eri.11.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Women from developing countries, in which the prevalence of HIV infection is very high, are at risk of becoming infected without having the possibility of personally controlling this risk. Therefore, there is an urgent need to develop anti-HIV vaginal microbicide strategies. This review considers the modes of entry of HIV through the mucosa of the female genital tract, the different classes of vaginal microbicide compounds, the mode of delivery of these drugs, the aims and methods of in vitro and animal experiments at the preclinical stage, the results of the Phase III trials conducted in different countries, including the ongoing assays, and the future orientations for the next 5 years with a discussion relative to antiviral resistance, combination strategies and development of new-generation compounds.
Collapse
Affiliation(s)
- Bruno Pozzetto
- Groupe Immunité des Muqueuses et Agents Pathogènes, PRES de Lyon, Université Jean Monnet, IFRESIS et CHU de Saint-Etienne, 42023 Saint-Etienne cedex 02, France.
| | | | | | | | | | | |
Collapse
|
16
|
Infection by CXCR4-Tropic Human Immunodeficiency Virus Type 1 Is Inhibited by the Cationic Cell-Penetrating Peptide Derived from HIV-1 Tat. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:349427. [PMID: 22319541 PMCID: PMC3272803 DOI: 10.1155/2012/349427] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/15/2011] [Accepted: 10/25/2011] [Indexed: 01/29/2023]
Abstract
Cell-penetrating peptides (CPP), which are short peptides that are capable of crossing the plasma membrane of a living cell, are under development as delivery vehicles for therapeutic agents that cannot themselves enter the cell. One well-studied CPP is the 10-amino acid peptide derived from the human immunodeficiency virus type 1 (HIV-1) Tat protein. In experiments to test the hypothesis that multiple cationic amino acids within Tat peptide confer antiviral activity against HIV-1, introduction of Tat peptide resulted in concentration-dependent inhibition of HIV-1 IIIB infection. Using Tat peptide variants containing arginine substitutions for two nonionic residues and two lysine residues, HIV-1 inhibition experiments demonstrated a direct relationship between cationic charge and antiviral potency. These studies of Tat peptide as an antiviral agent raise new questions about the role of Tat in HIV-1 replication and provide a starting point for the development of CPPs as novel HIV-1 inhibitors.
Collapse
|
17
|
Cervicovaginal safety of the formulated, biguanide-based human immunodeficiency virus type 1 (HIV-1) inhibitor NB325 in a murine model. J Biomed Biotechnol 2011; 2011:941061. [PMID: 22131821 PMCID: PMC3202145 DOI: 10.1155/2011/941061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/04/2011] [Accepted: 08/11/2011] [Indexed: 11/30/2022] Open
Abstract
Vaginal microbicides that reduce or eliminate the risk of HIV-1 sexual transmission must do so safely without adversely affecting the integrity of the cervicovaginal epithelium. The present studies were performed to assess the safety of the biguanide-based antiviral compound NB325 in a formulation suitable for topical application. Experiments were performed using a mouse model of cervicovaginal microbicide application, which was previously shown to be predictive of topical agent toxicity revealed in microbicide clinical trials. Mice were exposed vaginally to unformulated NB325 or NB325 formulated in the hydroxyethyl cellulose “universal placebo.” Following exposures to formulated 1% NB325 for 10 min to 24 h, the vaginal and cervical epithelia were generally intact, although some areas of minimal vaginal epithelial damage were noted. Although formulated NB325 appeared generally safe for application in these studies, the low but observable level of toxicity suggests the need for improvements in the compound and/or formulation.
Collapse
|