1
|
Biopolymeric Prodrug Systems as Potential Antineoplastic Therapy. Pharmaceutics 2022; 14:pharmaceutics14091773. [PMID: 36145522 PMCID: PMC9505808 DOI: 10.3390/pharmaceutics14091773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, cancer represents a major public health issue, a substantial economic issue, and a burden for society. Limited by numerous disadvantages, conventional chemotherapy is being replaced by new strategies targeting tumor cells. In this context, therapies based on biopolymer prodrug systems represent a promising alternative for improving the pharmacokinetic and pharmacologic properties of drugs and reducing their toxicity. The polymer-directed enzyme prodrug therapy is based on tumor cell targeting and release of the drug using polymer–drug and polymer–enzyme conjugates. In addition, current trends are oriented towards natural sources. They are biocompatible, biodegradable, and represent a valuable and renewable source. Therefore, numerous antitumor molecules have been conjugated with natural polymers. The present manuscript highlights the latest research focused on polymer–drug conjugates containing natural polymers such as chitosan, hyaluronic acid, dextran, pullulan, silk fibroin, heparin, and polysaccharides from Auricularia auricula.
Collapse
|
2
|
Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214282] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Madamsetty VS, Tavakol S, Moghassemi S, Dadashzadeh A, Schneible JD, Fatemi I, Shirvani A, Zarrabi A, Azedi F, Dehshahri A, Aghaei Afshar A, Aghaabbasi K, Pardakhty A, Mohammadinejad R, Kesharwani P. Chitosan: A versatile bio-platform for breast cancer theranostics. J Control Release 2021; 341:733-752. [PMID: 34906606 DOI: 10.1016/j.jconrel.2021.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer is considered one of the utmost neoplastic diseases globally, with a high death rate of patients. Over the last decades, many approaches have been studied to early diagnose and treat it, such as chemotherapy, hormone therapy, immunotherapy, and MRI and biomarker tests; do not show the optimal efficacy. These existing approaches are accompanied by severe side effects, thus recognizing these challenges, a great effort has been done to find out the new remedies for breast cancer. Main finding: Nanotechnology opened a new horizon to the treatment of breast cancer. Many nanoparticulate platforms for the diagnosis of involved biomarkers and delivering antineoplastic drugs are under either clinical trials or just approved by the Food and Drug Administration (FDA). It is well known that natural phytochemicals are successfully useful to treat breast cancer because these natural compounds are safer, available, cheaper, and have less toxic effects. Chitosan is a biocompatible and biodegradable polymer. Further, it has outstanding features, like chemical functional groups that can easily modify our interest with an exceptional choice of promising applications. Abundant studies were directed to assess the chitosan derivative-based nanoformulation's abilities in delivering varieties of drugs. However, the role of chitosan in diagnostics and theranostics not be obligated. The present servey will discuss the application of chitosan as an anticancer drug carrier such as tamoxifen, doxorubicin, paclitaxel, docetaxel, etc. and also, its role as a theranostics (i.e. photo-responsive and thermo-responsive) moieties. The therapeutic and theranostic potential of chitosan in cancer is promising and it seems that to have a good potential to get to the clinic.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - John D Schneible
- NC State University, Department of Chemical and Biomolecular Engineering, 911 Partners Way, Raleigh 27695, USA
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolsamad Shirvani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Ansari AA, Thakur VK, Chen G. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213821] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Xu H, Zou X, Xia P, Huang H, Liu F, Ramesh T. Osteoblast cell viability over ultra-long tricalcium phosphate nanocrystal-based methacrylate chitosan composite for bone regeneration. Biomed Mater 2021; 16. [PMID: 33618343 DOI: 10.1088/1748-605x/abe8ac] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
Bio-ceramic morphology plays a crucial role in bone repair and regeneration. It is extensively utilized in bone scaffold synthesis due to its better biological system activity and biocompatibility. Here, the ultra-long tricalcium phosphate (UTCP) was synthesized with the assistance of the ultrasonication method. The UTCP is modified as a scaffold by the reinforcement of methacrylate chitosan (MAC) polymer. The functionality of UTCP, UTCP combined MAC, methotrexate (MTX) loaded composites was characterized through FTIR (Fourier transform infrared spectroscopy). The crystalline natures are investigated by the XRD (X-ray diffraction), and results shows the ultra-long tricalcium phosphate crystalline phase is not altered after the reinforcement of MAC polymer and loading of MTX drugs. The morphological analyses were observed through electron microscopic analysis, and rod, polymer-coated rod structures were observed. The UTCP/MAC composite mechanical stress was increased from 1813 Pa of UTCP to 4272 Pa. The MTX loading and release was achieved 79.0 % within 3 h and 76.15 % at 20 h respectively. The UTCP/MAC and UTCP/MAC/MTX's viability investigated osteoblast like the cells (MG-63), and the MTX loaded UTCP/MAC composite exhibits good viability behaviors up to 96.0 % in 14 days. The results confirm the higher compatibility of the composite and profitable cell growth. It may be suitable for bone implantation preparation and it helps in faster regeneration of bone tissue after the in-vivo and clinical evaluation.
Collapse
Affiliation(s)
- Hongyao Xu
- Nanjing Medical University, Department of Sports Medicine and Joint Surgery, Nanjing, Jiangsu, 210029, CHINA
| | - Xiangjie Zou
- Nanjing Medical University, Department of Sports Medicine and Joint Surgery, Nanjing, Jiangsu, 210029, CHINA
| | - Pengcheng Xia
- Nanjing Medical University, Department of Sports Medicine and Joint Surgery, Nanjing, Jiangsu, 210029, CHINA
| | - He Huang
- Nanjing Medical University, Department of Sports Medicine and Joint Surgery, Nanjing, Jiangsu, 210029, CHINA
| | - Feng Liu
- Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Department of Orthopaedics, Nanjing, Jiangsu, 210029, CHINA
| | - Thiyagarajan Ramesh
- Basic Medical Science, Prince Sattam bin Abdulaziz University College of Medicine, Al-Kharj-11942, Kingdom of Saudi Arabia., Al-Kharj, Al-Kharj, 11942, SAUDI ARABIA
| |
Collapse
|
6
|
Chauhan K, Sengar P, Juarez-Moreno K, Hirata GA, Vazquez-Duhalt R. Camouflaged, activatable and therapeutic tandem bionanoreactors for breast cancer theranosis. J Colloid Interface Sci 2020; 580:365-376. [PMID: 32688126 DOI: 10.1016/j.jcis.2020.07.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022]
Abstract
The one-pot cascade reaction of naturally occurring enzymes is exciting for highly selective complex reaction and biodegradable approaches. Tamoxifen is the main drug against breast cancer for decades and induces an anticancerous effect upon metabolic activation by cytochrome P450 (CYP450). Herein, bi-enzymatic nanoreactors (NRs) are developed as a multimodality platform for smart action against breast tumors. CYPBM3 of Bacillus magaterium (CYP) is co-confined with glucose oxidase (GOx) where GOx produces H2O2 in the presence of glucose that elicits the CYP-mediated transformation of tamoxifen. The scintillating and mesoporous LaF3:Tb as nanocarrier showed advantages like a wide range of pore size and positive surface charge for efficient loading of enzyme couple, while the smallest pores were available for substrate/product diffusion. The obtained NRs were camouflaged with human serum albumin (HSA) to overcome premature enzyme leaching and provide active stealth properties. The nanocomposite was characterized for physicochemical properties and glucose-mediated sequential catalysis. The in vitro studies demonstrated the cell internalization of NRs in both ER+ and triple-negative breast cancer cell lines and showed significant cytotoxicity. The developed NRs not only improve the outcomes of endocrine therapy in ER+ cells but also synergistically act with oxidation therapy for enhanced therapeutic effect. Importantly, inhibition of triple-negative cells was also achieved. Thus, the development of the new multimodal nanomedicine of the present work should afford new tools towards the theranosis of breast cancer with minimized adverse effects.
Collapse
Affiliation(s)
- Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja CA 22860, Mexico.
| | - Prakhar Sengar
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja CA 22860, Mexico
| | - Karla Juarez-Moreno
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja CA 22860, Mexico
| | - Gustavo A Hirata
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja CA 22860, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja CA 22860, Mexico.
| |
Collapse
|
7
|
Chinnathambi S, Karthikeyan S, Hanagata N, Shirahata N. Molecular interaction of silicon quantum dot micelles with plasma proteins: hemoglobin and thrombin. RSC Adv 2019; 9:14928-14936. [PMID: 35516332 PMCID: PMC9064248 DOI: 10.1039/c9ra02829c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 12/03/2022] Open
Abstract
Protein conformational changes are associated with potential cytotoxicity upon interaction with small molecules or nanomaterials. Protein misfolding leads to protein-mediated diseases; thus, it is important to study the conformational changes in proteins using nanoparticles as drug carriers. In this study, the conformational changes in hemoglobin and thrombin were observed using fluorescence spectroscopy, circular dichroism spectroscopy and molecular modelling studies after interaction with non-toxic, water-soluble near-infrared silicon quantum dot micelles. The molecular docking results indicated that the binding affinities of hemoglobin and thrombin with Si QD micelles are good. In addition, molecular dynamics simulations were performed to obtain more detailed information. Overall graphical representation of 1-decene, F-127, and crystal structures of hemoglobin and thrombin.![]()
Collapse
Affiliation(s)
- Shanmugavel Chinnathambi
- International Center for Young Scientists, National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Subramani Karthikeyan
- Department of Organic Chemistry, Peoples' Friendship University of Russia (RUDN University) MikluhoMaklaya St., 6 Moscow 117198 Russia
| | - Nobutaka Hanagata
- International Center for Materials Nanoarchitectonics (WPI-MANA), NIMS 1-1 Namiki Tsukuba 305-0044 Japan
| | - Naoto Shirahata
- Nanotechnology Innovation Station, NIMS 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| |
Collapse
|
8
|
Deoxycholate-TPGS mixed nanomicelles for encapsulation of methotrexate with enhanced in vitro cytotoxicity on breast cancer cell lines. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Chinnathambi S, Hanagata N. Photostability of quantum dot micelles under ultraviolet irradiation. LUMINESCENCE 2019; 34:472-479. [PMID: 30809921 DOI: 10.1002/bio.3618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
Abstract
Phospholipid quantum dot micelles are useful for bio-applications because of their amphiphilicity and exceptional biocompatibilities. We investigated the uptake of phospholipid [polyethylene glycol (PEG), biotin, and folic acid terminated] modified CdSe/ZnS quantum dot micelles by cancer cells and its photostability under ultrviolet light in the C spectrum (UV-C) (254 nm) or UV-A (365 nm) light irradiation. The stability of micelles to the exposure of UV-C and UV-A light was assessed. Biotin-modified quantum dot micelles give photoluminescence enhancement under UV-C light irradiation. Folate modified micelle under UV-C and UV-A results show considerable photoluminescence enhancement. Photoluminescence lifetime measurements showed 7.04, 8.11 and 11.42 ns for PEG, folate, and biotin terminated phospholipid micelles, respectively. Folate and biotin-modified quantum dot micelles showed excellent uptake by HeLa cells under fluorescence confocal microscopy. Phospholipid CdSe/ZnS quantum dot micelles can be potentially used for diagnosis and treatment of cancer in the future.
Collapse
Affiliation(s)
- Shanmugavel Chinnathambi
- International Center for Young Scientists, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Nobutaka Hanagata
- International Center for Young Scientists, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.,Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Hassanein EH, Shalkami AGS, Khalaf MM, Mohamed WR, Hemeida RA. The impact of Keap1/Nrf2, P38MAPK/NF-κB and Bax/Bcl2/caspase-3 signaling pathways in the protective effects of berberine against methotrexate-induced nephrotoxicity. Biomed Pharmacother 2019; 109:47-56. [DOI: 10.1016/j.biopha.2018.10.088] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 01/12/2023] Open
|
11
|
Ait Bachir Z, Huang Y, He M, Huang L, Hou X, Chen R, Gao F. Effects of PEG surface density and chain length on the pharmacokinetics and biodistribution of methotrexate-loaded chitosan nanoparticles. Int J Nanomedicine 2018; 13:5657-5671. [PMID: 30288039 PMCID: PMC6161721 DOI: 10.2147/ijn.s167443] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background One of the most important aspects of drug delivery is extended nanoparticle (NP) residence time in vivo. Herein, we report a series of methotrexate (MTX)-loaded chito-san (CS) NPs coated with differently sized methoxy polyethylene glycol (mPEG) at different mPEG surface densities. Materials and methods MTX was incorporated into NPs (112.8–171.2 nm in diameter) prepared from the resulting mPEG-g-CS. The NPs had a zeta potential of +7.4–35.0 mV and MTX loading efficiency of 17.1%–18.4%. MTX/mPEG-g-CS NPs showed an initial burst release of MTX followed by a sustained-release profile in PBS at pH 7.4. Results The in vitro cellular uptake study showed that MTX accumulation in J774A.1 macrophage cells decreased with increasing the mPEG surface density or the mPEG molecular weight. The pharmacokinetic study on Sprague Dawley rats revealed an increase in AUC0–72 h (area under the plasma drug concentration–time curve over a period of 72 hours) with increasing the mPEG surface density or the mPEG molecular weight and a linear correlation between the mPEG surface density and AUC0–72 h. Conclusion The biodistribution study on Institute of Cancer Research (ICR) mice revealed that MTX/mPEG-g-CS NPs significantly enhanced blood circulation time in the body and decreased accumulation in liver, spleen, and lung. These results suggest the potential of the mPEG-g-CS NPs as a promising candidate for drug delivery.
Collapse
Affiliation(s)
- Zaina Ait Bachir
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China,
| | - YuKun Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China,
| | - MuYe He
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China,
| | - Lei Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China,
| | - XinYu Hou
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China,
| | - RongJun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK,
| | - Feng Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China, .,Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China, .,China Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, People's Republic of China,
| |
Collapse
|
12
|
Zhao Y, Guo Y, Li R, Wang T, Han M, Zhu C, Wang X. Methotrexate Nanoparticles Prepared with Codendrimer from Polyamidoamine (PAMAM) and Oligoethylene Glycols (OEG) Dendrons: Antitumor Efficacy in Vitro and in Vivo. Sci Rep 2016; 6:28983. [PMID: 27388443 PMCID: PMC4937365 DOI: 10.1038/srep28983] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022] Open
Abstract
The novel methotrexate-loaded nanoparticles (MTX/PGD NPs) prepared with amphiphilic codendrimer PGD from polyamidoamine and oligothylene glycol dendrons were obtained via antisolvent precipitation method augmented by ultrasonication. Based on the excellent hydrophility of PGD, the drug-loaded nanoparticles could be investigated easily with the high drug-loading content (~85.2%, w/w). The MTX/PGD NPs possessed spherical morphology, nanoscaled particle size (approximately 182.4 nm), and narrow particle size distribution. Release of MTX from MTX/PGD NPs showed a sustained release manner and completed within 48 h. Hemolytic evaluation indicated MTX/PGD NPs presented good blood compatibility, and the cytotoxicity of nanoparticles against breast cancer cells in vitro, biodistribution in tumor tissue, and antitumor efficacy in vivo were enhanced significantly compared to MTX injection. According to the higher drug-loading content, enhanced antitumor efficacy, and appropriate particle size, MTX/PGD NPs as the drug delivery systems could have potential application for cancer chemotherapy in clinic.
Collapse
Affiliation(s)
- Yanna Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Ran Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
| | - Ting Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Chunyan Zhu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
13
|
Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int J Biol Macromol 2016; 86:630-45. [DOI: 10.1016/j.ijbiomac.2016.02.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 01/30/2023]
|
14
|
Sobot D, Mura S, Couvreur P. How can nanomedicines overcome cellular-based anticancer drug resistance? J Mater Chem B 2016; 4:5078-5100. [DOI: 10.1039/c6tb00900j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the mechanisms of anticancer drug resistance according to its cellular level of action and outlines the nanomedicine-based strategies adopted to overcome it.
Collapse
Affiliation(s)
- Dunja Sobot
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Simona Mura
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Patrick Couvreur
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| |
Collapse
|