1
|
Qi LW, Xie YF, Wang WN, Liu J, Yang KG, Chen K, Luo CH, Fei J, Hu JM. High microvessel and lymphatic vessel density predict poor prognosis in patients with esophageal squamous cell carcinoma. PeerJ 2024; 12:e18080. [PMID: 39351370 PMCID: PMC11441385 DOI: 10.7717/peerj.18080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024] Open
Abstract
Background Microangiogenesis and lymphangiogenesis are essential for tumor growth in the tumor microenvironment, contributing to tumor invasion and metastasis. Limited literature exists on these processes in esophageal squamous cell carcinoma (ESCC). Therefore, the purpose of this study is to explore the impacts of microangiogenesis and lymphangiogenesis on the occurrence, progression, and prognosis assessment of ESCC. Methods Surgical specimens and paraffin-embedded human tissues were procured from ESCC patients, encompassing 100 ESCC tissues and 100 cancer-adjacent normal (CAN) tissues. CD34 and D2-40 were utilized as markers for microvessel endothelial cells and lymphatic vessel endothelial cells, respectively. Microvascular density (MVD) and lymphatic vessel density (LVD) were evaluated through immunohistochemical quantification. Results We found that tumor tissues in ESCC patients had significantly higher MVD and LVD than cancer-adjacent normal (CAN) tissues. High MVD and LVD were associated with lymph node metastasis and advanced tumor clinical stages. Additionally, both high MVD and high LVD were strongly linked to poorer prognosis among cancer patients. Furthermore, a positive correlation was found between high MVD and high LVD (p < 0.05). The presence of these markers individually indicated a worse prognosis, with their combined assessment showcasing enhanced prognostic value. Conclusions Overall, the increased MVD and LVD indicates higher invasion and metastasis of ESCC, closely correlating with unfavorablefor poor prognosis of ESCC patients.
Collapse
Affiliation(s)
- Li Wen Qi
- Pathology, Shihezi University School of Medicine/The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
- Department of Oncology, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Yu Fang Xie
- Pathology, Shihezi University School of Medicine/The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Wei Nan Wang
- Pathology, Shihezi University School of Medicine/The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Jia Liu
- Pathology, Shihezi University School of Medicine/The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Kai Ge Yang
- Pathology, Shihezi University School of Medicine/The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Kai Chen
- Pathology, Shihezi University School of Medicine/The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Cheng Hua Luo
- Pathology, Shihezi University School of Medicine/The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Jing Fei
- Department of Oncology, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Jian Ming Hu
- Pathology, Shihezi University School of Medicine/The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
2
|
Zglejc-Waszak K, Jozwik M, Thoene M, Wojtkiewicz J. Role of Receptor for Advanced Glycation End-Products in Endometrial Cancer: A Review. Cancers (Basel) 2024; 16:3192. [PMID: 39335163 PMCID: PMC11430655 DOI: 10.3390/cancers16183192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy. EC is associated with metabolic disorders that may promote non-enzymatic glycation and activate the receptor for advanced glycation end-products (RAGE) signaling pathways. Thus, we assumed that RAGE and its ligands may contribute to EC. Of particular interest is the interaction between diaphanous-related formin 1 (Diaph1) and RAGE during the progression of human cancers. Diaph1 is engaged in the proper organization of actin cytoskeletal dynamics, which is crucial in cancer invasion, metastasis, angiogenesis, and axonogenesis. However, the detailed molecular role of RAGE in EC remains uncertain. In this review, we discuss epigenetic factors that may play a key role in the RAGE-dependent endometrial pathology. We propose that DNA methylation may regulate the activity of the RAGE pathway in the uterus. The accumulation of negative external factors, such as hyperglycemia, inflammation, and oxidative stress, may interfere with the DNA methylation process. Therefore, further research should take into account the role of epigenetic mechanisms in EC progression.
Collapse
Affiliation(s)
- Kamila Zglejc-Waszak
- Department of Anatomy, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland
| | - Michael Thoene
- Department of Medical Biology, Faculty of Health Sciences, University of Warmia and Mazury in Olsztyn, Żołnierska 14C Str., 10-561 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
3
|
Chen L, Cui Y, Li B, Weng J, Wang W, Zhang S, Huang X, Guo X, Huang Q. Advanced glycation end products induce immature angiogenesis in in vivo and ex vivo mouse models. Am J Physiol Heart Circ Physiol 2020; 318:H519-H533. [PMID: 31922896 DOI: 10.1152/ajpheart.00473.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proliferative diabetic retinopathy (PDR) is a progressive disease predominantly involving pathological angiogenesis and is characterized by the development of immature, fragile, and easily hemorrhagic new vessels. Advanced glycation end products (AGEs) and the receptor for AGEs (RAGE) play important roles in the progression of diabetic retinopathy. Our previous studies demonstrated that AGEs promoted HUVEC angiogenesis by inducing moesin phosphorylation via RhoA/Rho-associated protein kinase (ROCK) pathway. The aim of this study was to further confirm AGE-induced angiogenesis in vivo and the involvement of RAGE, ROCK, and moesin phosphorylation in this process. We performed the study in an AGE-treated mouse model with various angiogenesis assays in multiple in vivo and ex vivo models. The results demonstrated that AGEs promoted significant neovascularization in whole mount retina and mouse aortic ring of adult and postnatal mice and in Matrigel plug as well, which were consistently accompanied by increased moesin phosphorylation. The increase of AGE-evoked neovascularization and moesin phosphorylation were both attenuated by RAGE knockout or ROCK inhibitor Y27632 administration in mice. We also revealed the pathological characteristics of AGE-promoted angiogenesis by demonstrating the decrease of pericyte coverage and the disarranged endothelial alignment in microvessels. In conclusion, this study provides in vivo evidences that AGEs induce immature angiogenesis by binding to RAGE, activating the RhoA/ROCK signal pathway and inducing moesin phosphorylation.NEW & NOTEWORTHY Advanced glycation end product (AGE)-induced formation of neovessels and phosphorylation of moesin in retina and aortic ring required AGE receptors. AGEs increased neovessels and the phosphorylation of moesin in retina and aortic ring via RhoA/ROCK pathway. AGE-induced immature angiogenesis in AGE-treated mouse retina and aortic ring. The AGE-RAGE axis and moesin could be candidate targets for overcoming relative diseases.
Collapse
Affiliation(s)
- Lixian Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yun Cui
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bingyu Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Weng
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiju Wang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuangshuang Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuliang Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaohua Guo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiaobing Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Kim JH, Kim KA, Shin YJ, Kim H, Majid A, Bae ON. Methylglyoxal induced advanced glycation end products (AGE)/receptor for AGE (RAGE)-mediated angiogenic impairment in bone marrow-derived endothelial progenitor cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:266-277. [PMID: 29473788 DOI: 10.1080/15287394.2018.1440185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Endothelial cells (ECs) maintain the structure and function of blood vessels and are readily exposed to exogenous and endogenous toxic substances in the circulatory system. Bone marrow-derived endothelial progenitor cells (EPCs) circulate in the blood and differentiate to EC, which are known to participate in angiogenesis and regeneration of injured vessels. Dysfunction in EPC contributes to cardiovascular complications in patients with diabetes, but the precise molecular mechanisms underlying diabetic EPC abnormalities are not completely understood. The aim of this study was to investigate the mechanisms underlying diabetic EPC dysfunction using methylglyoxal (MG), an endogenous toxic diabetic metabolite. Data demonstrated that MG decreased cell viability and protein expression of vascular endothelial growth factor receptor (VEGFR)-2 associated with functional impairment of tube formation in EPC. The generation of advanced glycation end (AGE) products was increased in EPC following exposure to MG. Blockage of receptor for AGE (RAGE) by FPS-ZM1, a specific antagonist for RAGE, significantly reversed the decrease of VEGFR-2 protein expression and angiogenic dysfunction in MG-incubated EPC. Taken together, data demonstrated that MG induced angiogenic impairment in EPC via alterations in the AGE/RAGE-VEGFR-2 pathway which may be utilized in the development of potential therapeutic and preventive targets for diabetic vascular complications.
Collapse
Affiliation(s)
- Jeong-Hyeon Kim
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Kyeong-A Kim
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Young-Jun Shin
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Haram Kim
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Arshad Majid
- b Sheffield Institute for Translational Neuroscience , University of Sheffield , Sheffield , England
| | - Ok-Nam Bae
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| |
Collapse
|
5
|
Antognelli C, Talesa VN. Glyoxalases in Urological Malignancies. Int J Mol Sci 2018; 19:ijms19020415. [PMID: 29385039 PMCID: PMC5855637 DOI: 10.3390/ijms19020415] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
Urological cancers include a spectrum of malignancies affecting organs of the reproductive and/or urinary systems, such as prostate, kidney, bladder, and testis. Despite improved primary prevention, detection and treatment, urological cancers are still characterized by an increasing incidence and mortality worldwide. While advances have been made towards understanding the molecular bases of these diseases, a complete understanding of the pathological mechanisms remains an unmet research goal that is essential for defining safer pharmacological therapies and prognostic factors, especially for the metastatic stage of these malignancies for which no effective therapies are currently being used. Glyoxalases, consisting of glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2), are enzymes that catalyze the glutathione-dependent metabolism of cytotoxic methylglyoxal (MG), thus protecting against cellular damage and apoptosis. They are generally overexpressed in numerous cancers as a survival strategy by providing a safeguard through enhancement of MG detoxification. Increasing evidence suggests that glyoxalases, especially Glo1, play an important role in the initiation and progression of urological malignancies. In this review, we highlight the critical role of glyoxalases as regulators of tumorigenesis in the prostate through modulation of various critical signaling pathways, and provide an overview of the current knowledge on glyoxalases in bladder, kidney and testis cancers. We also discuss the promise and challenges for Glo1 inhibitors as future anti-prostate cancer (PCa) therapeutics and the potential of glyoxalases as biomarkers for PCa diagnosis.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | | |
Collapse
|
6
|
CD163 as a marker of M2 macrophage, contribute to predicte aggressiveness and prognosis of Kazakh esophageal squamous cell carcinoma. Oncotarget 2017; 8:21526-21538. [PMID: 28423526 PMCID: PMC5400603 DOI: 10.18632/oncotarget.15630] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
M2 macrophages was domesticated by tumor microenvironment to produce some angiogenic molecules and protease, facilitating angiogenesis and matrix breakdown, promoting tumor invasive and metastasis. However, The function of M2 macrophages to progression of esophageal carcinoma, especially Kazakh esophageal carcinoma is still dimness. This study aims to investigate M2 macrophages correlated with matrix metalloproteinase-9 (MMP9) and microvessel density, and the role in the progression of Kazakh esophageal squamous cell carcinoma. CD163 and CD34 as the marker of M2 macrophages and endothelial cells, were used to identify the M2 macrophages density and microvessel density, respectively. Immunohistochemistry staining was evaluated the expression of MMP9. The number of infiltrated CD163-positive M2 macrophages in tumor islets and stroma was significantly higher than in cancer adjacent normal tissues. The increased of M2 macrophages and microvessel density were significantly correlated with more malignant phenotypes including lymph node metastasis and clinical stage progression. Meanwhile, the expression of MMP9 showed much higher level in esophageal squamous cell carcinoma than that in cancer adjacent normal tissues, and high expression of MMP9 in Kazakh esophageal squamous cell carcinoma was significantly associated with age, depth of tumor invasion, lymph node metastasis, and tumor clinical stage. The quantity of M2 macrophages in tumor stroma was positively associated with microvessel density and the expression of MMP9, and as an independent poorly prognostic factor for overall survival time of Kazakh esophageal squamous cell carcinoma. These findings suggest the increased number of M2 macrophages correlated with high expression of MMP9 and high microvessel density may contribute to the tumor aggressiveness and angiogenesis, promoting the progression of Kazakh esophageal squamous cell carcinoma.
Collapse
|
7
|
Wu Y, He J, Guo C, Zhang Y, Yang W, Xin M, Liang X, Yin X, Wang J, Liu Y. Serum biomarker analysis in patients with recurrent spontaneous abortion. Mol Med Rep 2017; 16:2367-2378. [PMID: 28677727 PMCID: PMC5547932 DOI: 10.3892/mmr.2017.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Recurrent spontaneous abortion (RSA) occurs in 1–5% of parturients. The sustained therapy and research for RSA is expensive, which is a serious issue faced by both patients and doctors. The aim of the present study was to detect protein expression profiles in the serum of RSA patients and healthy controls, and to identify potential biomarkers for this disease. A 1,000-protein microarray consisting of a combination of Human L-507 and L-493 was used. The microarray data revealed that eight serum protein expression levels were significantly upregulated and 143 proteins were downregulated in RSA patients compared with the healthy controls. ELISA individually validated 5 of these 151 proteins in a larger cohort of patients and control samples, demonstrating a significant decrease in insulin-like growth factor-binding protein-related protein 1 (IFGBP-rp1)/IGFBP-7, Dickkopf-related protein 3 (Dkk3), receptor for advanced glycation end products (RAGE) and angiopoietin-2 levels in patients with RSA. Sensitivity and specificity analyses were calculated by a receiver operating characteristics curve, and were revealed to be 0.881, 0.823, 0.79 and 0.814, with diagnostic cut-off points of 95.44 ng/ml for IFGBP-rp1, 32.84 ng/ml for Dkk3, 147.27 ng/ml for RAGE and 441.40 ng/ml for angiopoietin-2. The present study indicated that these four proteins were downregulated in RSA samples and may be useful as biomarkers for the prediction and diagnosis of RSA. Subsequent studies in larger-scale cohorts are required to further validate the diagnostic value of these markers.
Collapse
Affiliation(s)
- Ying Wu
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Junqin He
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Chunyu Guo
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Ying Zhang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Wei Yang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Mingwei Xin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Xinyun Liang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Xiaodan Yin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Jingshang Wang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Yanfeng Liu
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| |
Collapse
|
8
|
Zheng L, Li D, Zhou YM, Yang H, Cheng D, Ma XX. Effects of receptor for advanced glycation endproducts on microvessel formation in endometrial cancer. BMC Cancer 2016; 16:93. [PMID: 26873694 PMCID: PMC4751660 DOI: 10.1186/s12885-016-2126-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/03/2016] [Indexed: 11/10/2022] Open
Abstract
Background The receptor for advanced glycation endproducts (RAGE) and microvascular status both play a critical role in cancer progression. However, the crosstalk between RAGE and microvascular formation in endometrial cancer remains largely unknown. Methods RAGE expression and microvessel density were examined in 20 cases of normal endometrial tissue, 37 cases of well-differentiated endometrial cancer tissue, and 35 cases of poorly-differentiated endometrial cancer tissue. Regression analysis was used to examine the relationship between RAGE and microvessel density. The knockdown of RAGE was achieved using a small interfering RNA in HEC-1A endometrial cancer cells. A xenografted tumour model was used to evaluate RAGE-mediated microvascular formation and proliferation of endometrial cancer cells. Results It was shown that (i) RAGE expression gradually increased in normal endometrium, well-differentiated endometrial cancer, and poorly-differentiated endometrial cancer, respectively; (ii) a positive correlation existed between RAGE and microvessel density in human endometrial cancer samples; (iii) RAGE knockdown was effective in decreasing microvessel formation in xenografted tumour models; and (iv) RAGE knockdown can significantly inhibit the proliferation of endometrial cancer cells in vivo. Conclusions These results indicate that RAGE may be a potential trigger in microvascular formation and proliferation in the development of endometrial cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2126-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lu Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China. .,Department of Obstetrics and Gynecology, Central Hospital of Shenyang Medical College, Shenyang, 110024, China.
| | - Da Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Yi-Ming Zhou
- Department of Medicine, Brigham and Women's Hospital, Harvard Institutes of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| | - Hui Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Di Cheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Xiao-Xin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|