1
|
NDRG1 in Cancer: A Suppressor, Promoter, or Both? Cancers (Basel) 2022; 14:cancers14235739. [PMID: 36497221 PMCID: PMC9737586 DOI: 10.3390/cancers14235739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
N-myc downregulated gene-1 (NDRG1) has been variably reported as a metastasis suppressor, a biomarker of poor outcome, and a facilitator of disease progression in a range of different cancers. NDRG1 is poorly understood in cancer due to its context-dependent and pleiotropic functions. Within breast cancer, NDRG1 is reported to be either a facilitator of, or an inhibitor of tumour progression and metastasis. The wide array of roles played by NDRG1 are dependent on post-translational modifications and subcellular localization, as well as the cellular context, for example, cancer type. We present an update on NDRG1, and its association with hallmarks of cancer such as hypoxia, its interaction with oncogenic proteins such as p53 as well its role in oncogenic and metastasis pathways in breast and other cancers. We further comment on its functional implications as a metastasis suppressor and promoter, its clinical relevance, and discuss its therapeutic targetability in different cancers.
Collapse
|
2
|
You GR, Chang JT, Li HF, Cheng AJ. Multifaceted and Intricate Oncogenic Mechanisms of NDRG1 in Head and Neck Cancer Depend on Its C-Terminal 3R-Motif. Cells 2022; 11:cells11091581. [PMID: 35563887 PMCID: PMC9104279 DOI: 10.3390/cells11091581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
N-Myc downstream-regulated 1 (NDRG1) has inconsistent oncogenic functions in various cancers. We surveyed and characterized the role of NDRG1 in head and neck cancer (HNC). Cellular methods included spheroid cell formation, clonogenic survival, cell viability, and Matrigel invasion assays. Molecular techniques included transcriptomic profiling, RT-qPCR, immunoblotting, in vitro phosphorylation, immunofluorescent staining, and confocal microscopy. Prognostic significance was assessed by Kaplan–Meier analysis. NDRG1 participated in diverse oncogenic functions in HNC cells, mainly stress response and cell motility. Notably, NDRG1 contributed to spheroid cell growth, radio-chemoresistance, and upregulation of stemness-related markers (CD44 and Twist1). NDRG1 facilitated cell migration and invasion, and was associated with modulation of the extracellular matrix molecules (fibronectin, vimentin). Characterizing the 3R-motif in NDRG1 revealed its mechanism in the differential regulation of the phenotypes. The 3R-motif displayed minimal effect on cancer stemness but was crucial for cell motility. Phosphorylating the motif by GSK3b at serine residues led to its nuclear translocation to promote motility. Clinical analyses supported the oncogenic function of NDRG1, which was overexpressed in HNC and associated with poor prognosis. The data elucidate the multifaceted and intricate mechanisms of NDRG1 in HNC. NDRG1 may be a prognostic indicator or therapeutic target for refractory HNC.
Collapse
Affiliation(s)
- Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Joseph T. Chang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33302, Taiwan;
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiao-Fan Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Correspondence: ; Tel.: +886-3-211-8800
| |
Collapse
|
3
|
You GR, Chang JT, Li YL, Chen YJ, Huang YC, Fan KH, Chen YC, Kang CJ, Cheng AJ. Molecular Interplays Between Cell Invasion and Radioresistance That Lead to Poor Prognosis in Head-Neck Cancer. Front Oncol 2021; 11:681717. [PMID: 34307149 PMCID: PMC8299304 DOI: 10.3389/fonc.2021.681717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Background Cancer metastasis and recurrence after radiotherapy are the significant causes of poor prognosis in head-neck cancer (HNC). Clinically, it is commonly found that patients with either condition may accompany the outcome of the other. We hypothesized that HNC cells might exhibit a cross-phenotypic attribute between cell invasion and radioresistance. To discover effective biomarkers for the intervention of aggressive cancer at one time, the potential molecules that interplay between these two phenotypes were investigated. Materials and Methods Three isogenic HNC cell sublines with high invasion or radioresistance properties were established. Transcriptomic and bioinformatic methods were used to globally assess the phenotypic-specific genes, functional pathways, and co-regulatory hub molecules. The associations of gene expressions with patient survival were analyzed by Kaplan-Meier plotter, a web-based tool, using the HNSCC dataset (n=500). The molecular and cellular techniques, including RT-qPCR, flow cytometry, cell invasion assay, and clonogenic survival assay, were applied. Results The phenotypic crosstalk between cell invasion and radioresistance was validated, as shown by the existence of mutual properties in each HNC subline. A total of 695 genes was identified in associations with these two phenotypes, including 349 upregulated and 346 downregulated in HNC cells. The focal adhesion mechanism showed the most significant pathway to co-regulate these functions. In the analysis of 20 up-regulatory genes, a general portrait of correlative expression was found between these phenotypic cells (r=0.513, p=0.021), and nine molecules exhibited significant associations with poor prognosis in HNC patients (HR>1, p<0.050). Three hub genes were identified (ITGA6, TGFB1, and NDRG1) that represented a signature of interplayed molecules contributing to cell invasion, radioresistance and leading to poor prognosis. The ITGA6 was demonstrated as a prominent biomarker. The expression of ITGA6 correlated with the levels of several extracellular and apoptotic/anti-apoptotic molecules. Functionally, silencing ITGA6 suppressed cell migration, invasion, and attenuated radioresistance in HNC cells. Conclusions A panel of interplay molecules was identified that contribute to cell invasion and radioresistance, leading to poor prognosis. These panel molecules, such as ITGA6, may serve as predictive markers of radioresistance, prognostic markers of metastasis, and molecular therapeutic targets for refractory HNC.
Collapse
Affiliation(s)
- Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Joseph T Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Liang Li
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Huang
- Department of Oral Maxillofacial Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Kang-Hsing Fan
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,Department of Radiation Oncology, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan.,Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Chao Chen
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Keelung, Keelung, Taiwan
| | - Chung-Jan Kang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Otorhinolaryngology, Chang Gung Memorial Hospital-LinKou, Taoyuan, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Dong L, Dong J, Xiang M, Lei P, Li Z, Zhang F, Sun X, Niu D, Bai L, Lan K. NDRG1 facilitates lytic replication of Kaposi's sarcoma-associated herpesvirus by maintaining the stability of the KSHV helicase. PLoS Pathog 2021; 17:e1009645. [PMID: 34077484 PMCID: PMC8202935 DOI: 10.1371/journal.ppat.1009645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/14/2021] [Accepted: 05/14/2021] [Indexed: 01/10/2023] Open
Abstract
The presumed DNA helicase encoded by ORF44 of Kaposi's sarcoma-associated herpesvirus (KSHV) plays a crucial role in unwinding viral double-stranded DNA and initiating DNA replication during lytic reactivation. However, the regulatory mechanism of KSHV ORF44 has not been fully elucidated. In a previous study, we identified that N-Myc downstream regulated gene 1 (NDRG1), a host scaffold protein, facilitates viral genome replication by interacting with proliferating cell nuclear antigen (PCNA) and the latent viral protein latency-associated nuclear antigen (LANA) during viral latency. In the present study, we further demonstrated that NDRG1 can interact with KSHV ORF44 during viral lytic replication. We also found that the mRNA and protein levels of NDRG1 were significantly increased by KSHV ORF50-encoded replication and transcription activator (RTA). Remarkably, knockdown of NDRG1 greatly decreased the protein level of ORF44 and impaired viral lytic replication. Interestingly, NDRG1 enhanced the stability of ORF44 and inhibited its ubiquitin-proteasome-mediated degradation by reducing the polyubiquitination of the lysine residues at positions 79 and 368 in ORF44. In summary, NDRG1 is a novel binding partner of ORF44 and facilitates viral lytic replication by maintaining the stability of ORF44. This study provides new insight into the mechanisms underlying KSHV lytic replication.
Collapse
Affiliation(s)
- Lianghui Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiazhen Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Min Xiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ping Lei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zixian Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyi Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (LB); (KL)
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (LB); (KL)
| |
Collapse
|
5
|
He L, Chang H, Qi Y, Zhang B, Shao Q. ceRNA Networks: The Backbone Role in Neoadjuvant Chemoradiotherapy Resistance/Sensitivity of Locally Advanced Rectal Cancer. Technol Cancer Res Treat 2021; 20:15330338211062313. [PMID: 34908512 PMCID: PMC8689620 DOI: 10.1177/15330338211062313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Approximately 40% of rectal cancers during initial diagnosis are identified as locally advanced rectal cancers (LARCs), for which the standardized treatment scenario is total mesorectal excision following neoadjuvant chemoradiotherapy (nCRT). nCRT can lead to discernible reductions in local relapse rate and distant metastasis rate in LARC patients, in whom previously inoperable tumors may potentially be surgically removed. However, only 4% to 20% cases can attain pathological complete response, and the remaining patients who are unresponsive to nCRT have to suffer from the side effects plus toxicities and may encounter poor survival outcomes due to the late surgical intervention. As such, employing potential biomarkers to differentiate responders from nonresponders before nCRT implementation appears to be the overarching goal. Well-defined competing endogenous RNA (ceRNA) networks include long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA and circRNA-miRNA-mRNA networks. As ceRNAs, lncRNAs, and circRNAs sponge miRNAs to indirectly suppress miRNAs downstream of oncogenic mRNAs or tumor-suppressive mRNAs. The abnormal expression of mRNAs regulates the nCRT-induced DNA damage repair process through pluralistic carcinogenic signaling pathways, thereby bringing about alterations in the nCRT resistance/sensitivity of tumors. Moreover, many molecular mechanisms relevant to cell proliferation, metastasis, or apoptosis of cancers (eg, epithelial-mesenchymal transition and caspase-9-caspase-3 pathway) are influenced by ceRNA networks. Herein, we reviewed a large group of abnormally expressed mRNAs and noncoding RNAs that are associated with nCRT resistance/sensitivity in LARC patients and ultimately pinpointed the backbone role of ceRNA networks in the molecular mechanisms of nCRT resistance/sensitivity.
Collapse
Affiliation(s)
- Lin He
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Hao Chang
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Yuhong Qi
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Bing Zhang
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Qiuju Shao
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
6
|
Liu YT, Liu GQ, Huang JM. FAM225A promotes sorafenib resistance in hepatocarcinoma cells through modulating miR-130a-5p-CCNG1 interaction network. Biosci Rep 2020; 40:BSR20202054. [PMID: 33245102 PMCID: PMC7744609 DOI: 10.1042/bsr20202054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy resistance is still a key hurdle in current hepatocellular carcinoma (HCC) treatment. Therefore, clarifying the molecular mechanisms contributing to this acquired resistance is urgent for the effective treatment of liver cancer. In this research, we observed that lncRNA FAM225A expression is dramatically upregulated not only in hepatocellular carcinoma tissues and cell lines but also in sorafenib-resistant HepG2/SOR cells. Moreover, FAM225A knockdown significantly weakened HepG2/SOR cells resistance to sorafenib treatment by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Similar results were obtained from the tumor xenograft model in mice. Further mechanistic researches revealed that the direct interaction between FAM225A and miR-130a-5p, while miR-130a-5p negatively modulated CCNG1 expression by targeting 3'UTR of CCNG1. MiR-130a-5p inhibition or CCNG1 overexpression could partially offset FAM225A knockdown-induced increased viability of HepG2/SOR cells in response to sorafenib challenge. Collectively, our findings provide evidence that FAM225A/miR-130a-5p/CCNG1 interaction network regulates the resistance of HCC cells to sorafenib treatment and could supply a possible strategy for restoring sorafenib sensitivity in HCC therapy.
Collapse
Affiliation(s)
- Yan-Tong Liu
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, Shaanxi, 710021, China
| | - Guo-Qing Liu
- Department of Surgical Oncology, Qinghai Provincial People’s Hospital, Xining, Qinghai, 810006, China
| | - Jing-Min Huang
- Department of Surgical Oncology, Qinghai Provincial People’s Hospital, Xining, Qinghai, 810006, China
| |
Collapse
|
7
|
Long noncoding RNA nuclear-enriched abundant transcript 1 regulates proliferation and apoptosis of neuroblastoma cells treated by cisplatin by targeting miR-326 through Janus kinase/signal transducer and activator of transcription 3 pathway. Neuroreport 2020; 31:1189-1198. [PMID: 33044324 DOI: 10.1097/wnr.0000000000001538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is a common malignancy and frequently affects children, leading to a low survival rate. Long noncoding RNAs (lncRNAs) are reported to be closely related to cancer progression. The purpose of this study was to explore a novel mechanism of lncRNA nuclear-enriched abundant transcript 1 (NEAT1) in neuroblastoma. NEAT1 was upregulated in neuroblastoma cell lines (IMR32 and SK-N-SH). Overexpression of NEAT1 increased proliferation inhibited by cisplatin and decreased apoptosis promoted by cisplatin. MicroRNA-326 (miR-326) was a target of NEAT1 and miR-326 reintroduction abolished the effects of NEAT1 overexpression on cell proliferation and apoptosis. Moreover, NEAT1 overexpression activated Janus kinase/signal transducer and activator of transcription 3 (JAK1/STAT3) signaling pathway through absorbing miR-326. Besides, NEAT1 overexpression promoted tumor growth in vivo through stimulating the expression of p-JAK1 and p-STAT3 but inhibiting miR-326 expression. NEAT1 accelerated proliferation and weakened apoptosis of neuroblastoma cells treated by cisplatin by targeting miR-326 through activating JAK1/STAT3 signaling pathway, suggesting that NEAT1 was a potential biomarker against neuroblastoma.
Collapse
|
8
|
Park KC, Paluncic J, Kovacevic Z, Richardson DR. Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radic Biol Med 2020; 157:154-175. [PMID: 31132412 DOI: 10.1016/j.freeradbiomed.2019.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that is regulated by hypoxia, metal ions including iron, the free radical nitric oxide (NO.), and various stress stimuli. This intriguing molecule exhibits diverse functions in cancer, inhibiting epithelial-mesenchymal transition (EMT), cell migration and angiogenesis by modulation of a plethora of oncogenes via cellular signaling. Thus, pharmacological targeting of NDRG1 signaling in cancer is a promising therapeutic strategy. Of note, novel anti-tumor agents of the di-2-pyridylketone thiosemicarbazone series, which exert the "double punch" mechanism by binding metal ions to form redox-active complexes, have been demonstrated to markedly up-regulate NDRG1 expression in cancer cells. This review describes the mechanisms underlying NDRG1 modulation by the thiosemicarbazones and the diverse effects NDRG1 exerts in cancer. As a major induction mechanism, iron depletion appears critical, with NO. also inducing NDRG1 through its ability to bind iron and generate dinitrosyl-dithiol iron complexes, which are then effluxed from cells. Apart from its potent anti-metastatic role, several studies have reported a pro-oncogenic role of NDRG1 in a number of cancer-types. Hence, it has been suggested that NDRG1 plays pleiotropic roles depending on the cancer-type. The molecular mechanism(s) underlying NDRG1 pleiotropy remain elusive, but are linked to differential regulation of WNT signaling and potentially differential interaction with the tumor suppressor, PTEN. This review discusses NDRG1 induction mechanisms by metal ions and NO. and both the anti- and possible pro-oncogenic functions of NDRG1 in multiple cancer-types and compares the opposite effects this protein exerts on cancer progression.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jasmina Paluncic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
9
|
Kim SC, Shin YK, Kim YA, Jang SG, Ku JL. Identification of genes inducing resistance to ionizing radiation in human rectal cancer cell lines: re-sensitization of radio-resistant rectal cancer cells through down regulating NDRG1. BMC Cancer 2018; 18:594. [PMID: 29801473 PMCID: PMC5970486 DOI: 10.1186/s12885-018-4514-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 05/17/2018] [Indexed: 12/15/2022] Open
Abstract
Background Resistance to preoperative radiotherapy is a major clinical problem in the treatment for locally advanced rectal cancer. The role of NDRG1 in resistance to ionizing radiation in rectal cancer has not been fully elucidated. This study aimed to investigate the effect of the reduced intracellular NDRG1 expression on radio-sensitivity of human rectal cancer cells for exploring novel approaches for treatment of rectal cancer. Methods Three radio-resistant human rectal cancer cell lines (SNU-61R80Gy, SNU-283R80Gy, and SNU-503R80Gy) were established from human rectal cancer cell lines (SNU-61, SNU-283, and SNU-503) using total 80 Gy of fractionated irradiation. Microarray analysis was performed to identify differently expressed genes in newly established radio-resistant human rectal cancer cells compared to parental rectal cancer cells. Results A microarray analysis indicated the RNA expression of five genes (NDRG1, ERRFI1, H19, MPZL3, and UCA1) was highly increased in radio-resistant rectal cancer cell lines. Short hairpin RNA-mediated silencing of NDRG1 sensitized rectal cancer cell lines to clinically relevant doses of radiation by causing more DNA double strand breakages to rectal cancer cells when exposed to radiation. Conclusions Targeting NDRG1 represents a promising strategy to increase response to radiotherapy in human rectal cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4514-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soon-Chan Kim
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Young-Kyoung Shin
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Ye-Ah Kim
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sang-Geun Jang
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Ja-Lok Ku
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
10
|
N-myc downstream-regulated gene 1 promotes oxaliplatin-triggered apoptosis in colorectal cancer cells via enhancing the ubiquitination of Bcl-2. Oncotarget 2018; 8:47709-47724. [PMID: 28537875 PMCID: PMC5564599 DOI: 10.18632/oncotarget.17711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/14/2017] [Indexed: 12/21/2022] Open
Abstract
N-myc downstream-regulated gene1 (NDRG1) has been identified as a potent tumor suppressor gene. The molecular mechanisms of anti-tumor activity of NDRG1 involve its suppressive effects on a variety of tumorigenic signaling pathways. The purpose of this study was to investigate the role of NDRG1 in the apoptosis of colorectal cancer (CRC) cells. We first collected the clinical data of locally advanced rectal cancer (LARC) patients receiving oxaliplatin-based neoadjuvant chemotherapy in our medical center. Correlation analysis revealed that NDRG1 positively associated with the downstaging rates and prognosis of patients. Then, the effects of over-expression and depletion of NDRG1 gene on apoptosis of colorectal cancer were tested in vitro and in vivo. NDRG1 over-expression promoted apoptosis in colorectal cancer cells whereas depletion of NDRG1 resulted in resistance to oxaliplatin treatment. Furthermore, we observed that Bcl-2, a major anti-apoptotic protein, was regulated by NDRG1 at post-transcriptional level. By binding Protein kinase Cα (PKCα), a classical regulating factor of Bcl-2, NDRG1 enhanced the ubiquitination and degradation of Bcl-2, thus promoting apoptosis in CRC cells. In addition, NDRG1 inhibited tumor growth and promoted apoptosis in mouse xenograft model. In conclusion, NDRG1 promotes oxaliplatin-triggered apoptosis in colorectal cancer. Therefore, colorectal cancer patients can be stratified by the expression level of NDRG1. NDRG1-positive patients may benefit from oxaliplatin-containing chemotherapy regimens whereas those with negative NDRG1 expression should avoid the usage of this cytotoxic drug.
Collapse
|
11
|
Wang H, Sun W, Sun M, Fu Z, Zhou C, Wang C, Zuo D, Zhou Z, Wang G, Zhang T, Xu J, Chen J, Wang Z, Yin F, Duan Z, Hornicek FJ, Cai Z, Hua Y. HER4 promotes cell survival and chemoresistance in osteosarcoma via interaction with NDRG1. Biochim Biophys Acta Mol Basis Dis 2018. [PMID: 29524631 DOI: 10.1016/j.bbadis.2018.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. The abilities of chemotherapy resistance are major roadblock in the successful treatment of OS. The clarification of mechanism regarding cell survival during OS chemotherapy are important. Here, we examined HER4 expression by immunohistochemistry in a large series of OS tissues, and found HER4 expression correlated with tumor characteristics and patient survival rates. HER4 knockdown by shRNA inhibited OS cell growth and tumorigenesis, and induced cell senescence and apoptosis in vitro and in vivo. We demonstrated that HER4 expression upregulated in the adverse conditions, such as serum starvation and sphere culture. Moreover, HER4 knockdown cells became more sensitive in stressful conditions such as loss of attachment, cytotoxic agents or nutrition insufficiency. Mechanism studies revealed that HER4 interacted with NDRG1, and NDRG1 overexpression could antagonize HER4 knockdown-mediated cell growth and apoptosis in stressed conditions. There was a positive correlation between HER4 and NDRG1 immunoreactivity in OS patients. Together, our present study shows that HER4 and/or NDRG1 might play a critical role for the cell survival and chemo-resistance of OS, and could be used as potential therapeutic targets in OS.
Collapse
Affiliation(s)
- Hongsheng Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China; Department of Orthopedics, Yangpu Hospital, Tongji University, Shanghai, China
| | - Wei Sun
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Mengxiong Sun
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zeze Fu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Chenghao Zhou
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Chongren Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Dongqing Zuo
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zifei Zhou
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Gangyang Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Tao Zhang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Jian Chen
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Fei Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhenfeng Duan
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery David Geffen School of Medicine at UCLA Los Angeles, USA
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China.
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China.
| |
Collapse
|
12
|
Wang H, Li W, Xu J, Zhang T, Zuo D, Zhou Z, Lin B, Wang G, Wang Z, Sun W, Sun M, Chang S, Cai Z, Hua Y. NDRG1 inhibition sensitizes osteosarcoma cells to combretastatin A-4 through targeting autophagy. Cell Death Dis 2017; 8:e3048. [PMID: 28906492 PMCID: PMC5636982 DOI: 10.1038/cddis.2017.438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 01/23/2023]
Abstract
Combretastatin A-4 (CA-4), a tubulin-depolymerizing agent, shows promising antitumor efficacy and has been under several clinical trials in solid tumors for 10 years. Autophagy has an important pro-survival role in cancer therapy, thus targeting autophagy may improve the efficacy of antitumor agents. N-myc downstream-regulated gene 1 (NDRG1) is a significant stress regulatory gene, which mediates cell survival and chemoresistance. Here we reported that CA-4 could induce cell-protective autophagy, and combination treatment of CA-4 and autophagy inhibitor chloroquine (CQ) exerted synergistic cytotoxic effect on human osteosarcoma (OS) cells. Meanwhile, CA-4 or CQ could increase the expression of NDRG1 independently. We further performed mechanistic study to explore how CA-4 and CQ regulate the expression of NDRG1. Using luciferase reporter assay, we found that CA-4 transcriptionally upregulated NDRG1 expression, whereas CQ triggered colocalization of NDRG1 and lysosome, which subsequently prevented lysosome-dependent degradation of NDRG1. Further, we showed that knockdown of NDRG1 caused the defect of lysosomal function, which accumulated LC3-positive autophagosomes by decreasing their fusion with lysosomes. Moreover, NDRG1 inhibition increased apoptosis in response to combination treatment with CA-4 and CQ. Taken together, our study revealed abrogation of NDRG1 expression sensitizes OS cells to CA-4 by suppression of autophagosome–lysosome fusion. These results provide clues for developing more effective cancer therapeutic strategies by the concomitant treatment with CA-4 and clinical available autophagy inhibitors.
Collapse
Affiliation(s)
- Hongsheng Wang
- Department of Orthopaedics, Yangpu Hospital, Tongji University, Shanghai, China.,Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Wen Li
- Department of Oncology, Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Xu
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Tao Zhang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Dongqing Zuo
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Zifei Zhou
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Binhui Lin
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Wei Sun
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Mengxiong Sun
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Shimin Chang
- Department of Orthopaedics, Yangpu Hospital, Tongji University, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
13
|
Li Y, Zhuo B, Yin Y, Han T, Li S, Li Z, Wang J. Anti-cancer effect of oncolytic adenovirus-armed shRNA targeting MYCN gene on doxorubicin-resistant neuroblastoma cells. Biochem Biophys Res Commun 2017; 491:134-139. [PMID: 28711493 DOI: 10.1016/j.bbrc.2017.07.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022]
Abstract
Chemotherapy is one of the few effective choices for patients with neuroblastoma. However, the development of muti-drug resistance (MDR) to chemotherapy is a major obstacle to the effective treatment of advanced or recurrent neuroblastoma. The muti-drug resistance-associated protein (MRP), which encodes a transmembrane glycoprotein, is a key regulator of MDR. The expression of MRP is a close correlation with MYCN oncogene in neuroblastoma. We have recently shown ZD55-shMYCN (oncolytic virus armed with shRNA against MYCN) can down-regulate MYCN to inhibit tumor cells proliferation and induce apoptosis in neuroblastoma. Here we further report ZD55-shMYCN re-sensitized doxorubicin-resistant cells to doxorubicin (as shown by reduced proliferation, increased apoptosis, and inhibited cell migration), and reduced the in vivo growth rate of neuroblastoma xenografts by down-regulation of MRP expression. Sequential therapy with doxorubicin did not affect the replication of ZD55-shMYCN in doxorubicin-resistant neuroblastoma cells, but decreased the expression of Bcl-2, Bcl-XL, MMP-1. Thus, this synergistic effect of ZD55-shMYCN in combination with doxorubicin provides a novel therapy strategy for doxorubicin-resistant neuroblastoma, and is a promising approach for further clinical development.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou, Jiangsu 215025, China; Department of Pediatric Surgery, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, Jiangsu 221006, China
| | - Baobiao Zhuo
- Department of Pediatric Surgery, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, Jiangsu 221006, China
| | - Yiyu Yin
- Department of Pediatric Surgery, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, Jiangsu 221006, China
| | - Tao Han
- Department of Pediatric Surgery, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, Jiangsu 221006, China
| | - Shixian Li
- Department of Pediatric Surgery, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, Jiangsu 221006, China
| | - Zhengwei Li
- Department of Pediatric Surgery, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, Jiangsu 221006, China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou, Jiangsu 215025, China.
| |
Collapse
|
14
|
Becnel LB, Ochsner SA, Darlington YF, McOwiti A, Kankanamge WH, Dehart M, Naumov A, McKenna NJ. Discovering relationships between nuclear receptor signaling pathways, genes, and tissues in Transcriptomine. Sci Signal 2017; 10:10/476/eaah6275. [DOI: 10.1126/scisignal.aah6275] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|