1
|
Sheng Y, Qiao C, Zhang Z, Shi X, Yang L, Xi R, Yu J, Liu W, Zhang G, Wang F. Calcium Channel Blocker Lacidipine Promotes Antitumor Immunity by Reprogramming Tryptophan Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409310. [PMID: 39585774 DOI: 10.1002/advs.202409310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Dysfunction of calcium channels is involved in the development and progression of some cancers. However, it remains unclear the role of calcium channel inhibitors in tumor immunomodulation. Here, calcium channel blocker lacidipine is identified to potently inhibit the enzymatic activity and expression of indoleamine 2,3-dioxygenase 1 (IDO1), a rate-limiting enzyme in tryptophan metabolism. Lacidipine activates effector T cells and incapacitates regulatory T cells (Tregs) to augment the anti-tumor effect of chemotherapeutic agents in breast cancer by converting immunologically "cold" into "hot" tumors. Mechanistically, lacidipine targets calcium channels (CaV1.2/1.3) to inhibit Pyk2-JAK1-calmodulin complex-mediated IDO1 transcription suppression, which suppresses the kynurenine pathway and maintains the total nicotinamide adenine dinucleotide (NAD) pool by regulating NAD biosynthesis. These results reveal a new function of calcium channels in IDO1-mediated tryptophan metabolism in tumor immunity and warrant further development of lacidipine for the metabolic immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Chong Qiao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhonghui Zhang
- School Of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 511400, China
| | - Xiaoke Shi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linhan Yang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiying Xi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jialing Yu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing, 100084, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
2
|
Cao S, Wang S, Luo H, Guo J, Xuan L, Sun L. The effect of macrophage-cardiomyocyte interactions on cardiovascular diseases and development of potential drugs. Mol Biol Rep 2024; 51:1056. [PMID: 39417949 DOI: 10.1007/s11033-024-09944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
The interaction between macrophages and cardiomyocytes plays an important role not only in maintaining cardiac homeostasis, but also in the development of many cardiovascular diseases (CVDs), such as myocardial infarction (MI) and heart failure (HF). In addition to supporting cardiomyocytes, macrophages and cardiomyocytes have a close and complex relationship. By studying their cross-talk, we can better understand novel mechanisms and target pathogenic mechanisms, and improve the treatment of CVDs. We review macrophage-cardiomyocyte communication through connexin 43 (Cx43)-containing gap junctions (GJs) directly, secreted protein factors indirectly, and discuss the implications of these interactions in cardiac homeostasis and the development of various CVDs, including MI, HF, arrhythmia, cardiac fibrosis and myocarditis. In this section, we review various drugs that work by modulating cytokines or other proteins to reduce inflammation in CVDs. The clinical findings from targeting inflammation in CVDs are also discussed. Additionally, we examine the challenges and opportunities for improving our understanding of macrophage-cardiomyocyte coupling as it relates to pathophysiological disease processes, extending our research scope, and helping identify new molecular targets and improve the effectiveness of existing therapies.
Collapse
Affiliation(s)
- Shoupeng Cao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Shengjie Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Huishan Luo
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Jianjun Guo
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Lina Xuan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China.
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medicial University, Harbin, 157 Baojian Road, Nangang District, 150081, heilongjiang, China.
| | - Lihua Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China.
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medicial University, Harbin, 157 Baojian Road, Nangang District, 150081, heilongjiang, China.
| |
Collapse
|
3
|
Ovchinnikov A, Potekhina A, Arefieva T, Filatova A, Ageev F, Belyavskiy E. Use of Statins in Heart Failure with Preserved Ejection Fraction: Current Evidence and Perspectives. Int J Mol Sci 2024; 25:4958. [PMID: 38732177 PMCID: PMC11084261 DOI: 10.3390/ijms25094958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Systemic inflammation and coronary microvascular endothelial dysfunction are essential pathophysiological factors in heart failure (HF) with preserved ejection fraction (HFpEF) that support the use of statins. The pleiotropic properties of statins, such as anti-inflammatory, antihypertrophic, antifibrotic, and antioxidant effects, are generally accepted and may be beneficial in HF, especially in HFpEF. Numerous observational clinical trials have consistently shown a beneficial prognostic effect of statins in patients with HFpEF, while the results of two larger trials in patients with HFrEF have been controversial. Such differences may be related to a more pronounced impact of the pleiotropic properties of statins on the pathophysiology of HFpEF and pro-inflammatory comorbidities (arterial hypertension, diabetes mellitus, obesity, chronic kidney disease) that are more common in HFpEF. This review discusses the potential mechanisms of statin action that may be beneficial for patients with HFpEF, as well as clinical trials that have evaluated the statin effects on left ventricular diastolic function and clinical outcomes in patients with HFpEF.
Collapse
Affiliation(s)
- Artem Ovchinnikov
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
- Department of Clinical Functional Diagnostics, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, 127473 Moscow, Russia
| | - Alexandra Potekhina
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
| | - Tatiana Arefieva
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
- Faculty of Basic Medicine, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia
| | - Anastasiia Filatova
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
| | - Fail Ageev
- Out-Patient Department, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
| | - Evgeny Belyavskiy
- Medizinisches Versorgungszentrum des Deutsches Herzzentrum der Charite, Augustenburger Platz 1, 13353 Berlin, Germany;
| |
Collapse
|
4
|
Facchin BM, Lubschinski TL, Moon YJK, de Oliveira PGF, Beck BK, da Silva Buss Z, Pollo LAE, Biavatti MW, Sandjo LP, Dalmarco EM. Evaluation of the anti-inflammatory effect of 1,4-dihydropyridine derivatives. Fundam Clin Pharmacol 2024; 38:168-182. [PMID: 37558213 DOI: 10.1111/fcp.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
INTRODUCTION Inflammation is a physiological event that protects the organism against different factors that lead to loss of tissue homeostasis. Dihydropyridine (DHP) derivatives are heterocyclic compounds known for their different biological activities, including anti-inflammatory activities. OBJECTIVE To evaluate the anti-inflammatory activity of 1,4-dihydropyridine (1,4-DHP) derivatives using anti-inflammatory models in vitro, in RAW264.7 cells induced by lipopolysaccharide (LPS) and in vivo using the acute lung injury (ALI) model in mice. RESULTS Fifteen compounds derived from 1,4-DHP were tested in RAW264.7 cells for their cytotoxic effect and cell viability. Thereafter, only the six compounds that showed the highest cell viability were tested for the production or inhibition of the pro-inflammatory cytokine interleukin 6 (IL-6). The best compound (compound 4) was tested for its anti-inflammatory effects in vitro and in vivo, showing inhibition of nitric oxide (NO), pro-inflammatory cytokines, increased phagocytic activity, and an increase in IL-10 in vitro. In in vivo tests, compound 4 also reduces the levels of NO, myeloperoxidase (MPO) activity, leukocyte migration, and exudation, as well as reducing the levels of tumor necrosis factor-alpha (TNF-α) and IL-6 and preventing the loss in the lung architecture. CONCLUSION This compound showed important anti-inflammatory activity, with a significant ability to reduce the production of pro-inflammatory mediators and increase the phagocytic activity of macrophages and anti-inflammatory mediator secretion (IL-10). These findings led us to hypothesize that this compound can repolarize the macrophage response to an anti-inflammatory profile (M2). Moreover, it was also able to maintain its anti-inflammatory activity in vivo experiments.
Collapse
Affiliation(s)
- Bruno Matheus Facchin
- Department of Clinical Analysis, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Yeo Jim Kinoshita Moon
- Department of Clinical Analysis, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Bianca Klafke Beck
- Department of Clinical Analysis, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ziliani da Silva Buss
- Department of Clinical Analysis, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Maique Weber Biavatti
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Louis Pergaud Sandjo
- Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | |
Collapse
|
5
|
Liu H, Liu J, Liu C, Niu X, Liu J. Transplantation of endothelial progenitor cells improves myocardial hypertrophy in spontaneously hypertensive rats through HO-1/CREB3/AKT axis. Arch Biochem Biophys 2023; 746:109739. [PMID: 37678424 DOI: 10.1016/j.abb.2023.109739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Hypertensive myocardial hypertrophy produces a hostile microenvironment characterized by cardiomyocyte hypertrophy, inflammation and oxidative stress, which also leads to endothelial progenitor cells (EPCs) dysfunction, preventing EPC migration, adhesion and angiogenesis. Heme oxygenase-1 (HO-1) is an intracellular protein that plays an important role in angiogenesis and cell survival. The upregulation of cAMP response element-binding protein 3 (CREB3) is closely related to the formation of endothelial cells. The purpose of this study was to evaluate the role of HO-1 and CREB3 in EPCs and their effects on hypertensive myocardial hypertrophy. EPCs were transfected with HO-1 adenoviral overexpression vector (Ad-HO-1) or together with CREB3 siRNA (si-CREB3), or transfected with CREB3 adenoviral overexpression vector (Ad-CREB3) or together with HO-1 siRNA, and then treated with 100 nM Ang Ⅱ for 12 h. Overexpressing HO-1 or CREB3 promoted adhesion to extracellular matrix, cell migration, and angiogenesis, inhibited the secretion of inflammatory factors TNF-α and IL-6, and reduced ROS level, ICAM-1 and MCP-1 mRNA expression levels in EPCs treated with Ang Ⅱ. Online prediction and Co-IP assay showed that HO-1 interacts with CREB3, and they promote expression of each other. EPC-conditioned medium supplemented with CREB3 recombinant protein decreased the levels of ANP and BNP mRNA in H9C2 cells treated with Ang Ⅱ and alleviated oxidative stress. Ad-CREB3 transfected EPCs promoted the phosphorylation of AKT in vivo and in vitro, thereby improving myocardial swelling and dysfunction in SHR rats. Taken together, transplantation of CREB3 overexpressing EPCs alleviates myocardial hypertrophy in spontaneously hypertensive rats by promoting HO-1 protein expression and AKT phosphorylation.
Collapse
Affiliation(s)
- Hui Liu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jing Liu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Cong Liu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Xiaolin Niu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Jun Liu
- Military Personnel Medical Care Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
6
|
Pramusita A, Kitaura H, Ohori F, Noguchi T, Marahleh A, Nara Y, Kinjo R, Ma J, Kanou K, Tanaka Y, Mizoguchi I. Salt-Sensitive Hypertension Induces Osteoclastogenesis and Bone Resorption via Upregulation of Angiotensin II Type 1 Receptor Expression in Osteoblasts. Front Cell Dev Biol 2022; 10:816764. [PMID: 35445013 PMCID: PMC9013777 DOI: 10.3389/fcell.2022.816764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Hypertension is a chronic-low grade inflammatory disease, which is known to be associated with increased bone loss. Excessive activity of the local renin–angiotensin system (RAS) in bone leads to increased bone resorption. As inflammatory cytokines may activate RAS components, we hypothesized that the elevated proinflammatory cytokine levels in hypertension activate bone RAS and thus lead to increased bone resorption. To investigate whether salt-sensitive hypertension (SSHTN) induces osteoclastogenesis and bone resorption, we generated a model of SSHTN in C57BL/6J mice by post-Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) high-salt challenge. SSHTN led to the reduction of distal femur trabecular number and bone volume fraction, while trabecular separation of femoral bone showed a significant increase, with no change in cortical thickness. Histomorphometric examination showed a significant reduction in trabecular bone volume fraction with an increased number of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive cells and increased osteoclast surface fraction in the trabecular distal femur of hypertensive mice. Furthermore, analysis of gene expression in bone tissue revealed that TRAP and RANKL/OPG mRNA were highly expressed in hypertensive mice. TNF-α and angiotensin II type 1 receptor (AGTR1) mRNA and protein expression were also upregulated in SSHTN mice. These observations suggested that TNF-α may have an effect on AGTR1 expression leading to osteoclast activation. However, TNF-α stimulation did not promote AGTR1 mRNA expression in osteoclast precursors in culture, while TNF-α increased AGTR1 mRNA expression in osteoblast culture by activation of downstream p38. Angiotensin II was also shown to increase TNF-α-induced RANKL/OPG mRNA expression in primary osteoblast culture and osteoclastogenesis in a TNF-α-primed osteoblast and osteoclast precursor co-culture system. In addition, local injection of lipopolysaccharide into the supracalvariae of SSHTN mice markedly promoted osteoclast and bone resorption. In conclusion, mice with SSHTN show increased osteoclastogenesis and bone resorption due mainly to increased TNF-α and partly to the upregulation of AGTR1 in osteoblasts.
Collapse
Affiliation(s)
- Adya Pramusita
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hideki Kitaura
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Japan
- *Correspondence: Hideki Kitaura,
| | - Fumitoshi Ohori
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Takahiro Noguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aseel Marahleh
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yasuhiko Nara
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Ria Kinjo
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Jinghan Ma
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kayoko Kanou
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yukinori Tanaka
- Division of Dento-Oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
7
|
Bryniarski P, Nazimek K, Marcinkiewicz J. Immunomodulatory properties of antihypertensive drugs and digitalis glycosides. Expert Rev Cardiovasc Ther 2022; 20:111-121. [PMID: 35130796 DOI: 10.1080/14779072.2022.2039627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The role of chronic inflammatory process in the pathogenesis or exacerbation of hypertension has been already acknowledged. AREAS COVERED Therefore, one can speculate that hypotensive drugs may exert some of their therapeutic effects due to immunomodulatory properties. So far, this assumption has been tested in different studies, and the resulting knowledge is summarized in the current review article that is dedicated to different groups of antihypertensives, namely calcium channel blockers, beta blockers, as well as other less commonly used medications, such as hydralazine, agonists of alfa-2 receptor, diazoxide, doxazosin, aliskiren, and sodium nitroprusside. Articles were found in the Pubmed database by entering the name of a specific drug (or group of drugs) together with the words: immunology, cellular response, humoral response, inflammation, interleukin. The 2000-2021 range was used to search for all drugs except propranolol (1980-2021) and calcium blockers (1990-2021). EXPERT OPINION Observed decrease in serum/plasma concentration of proinflammatory cytokines, and CRP along with lower expression of adhesion molecules on immune cells strongly suggest that these drugs possess immunomodulatory properties, which seems to be crucial in the medical practice, especially in the therapy of hypertensive patients with other accompanying inflammatory-based diseases, such as type II diabetes, developed metabolic syndrome, allergies or autoimmunity.
Collapse
Affiliation(s)
- Paweł Bryniarski
- Department of Immunology, Jagiellonian University in Kraków Medical College Ringgold standard institution, Krakow, Poland
| | - Katarzyna Nazimek
- Department of Immunology, Jagiellonian University in Kraków Medical College Ringgold standard institution, Krakow, Poland
| | - Janusz Marcinkiewicz
- Department of Immunology, Jagiellonian University in Kraków Medical College Ringgold standard institution, Krakow, Poland
| |
Collapse
|
8
|
Peng J, Chang Y, Wang Z, Liu J, Wang S, Zhang Y, Shao S, Liu D, Zhang Y, Shi J, Liu H, Yan G, Cao Z, Gao S. Amlodipine removal via peroxymonosulfate activated by carbon nanotubes/cobalt oxide (CNTs/Co 3O 4) in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11091-11100. [PMID: 34532799 DOI: 10.1007/s11356-021-16399-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Amlodipine (AML) is an effective drug that has been widely used for hypertension and angina. However, AML is frequently detected in aqueous environments, posing potential risks to human and ecological health. In this study, the degradation of AML via peroxymonosulfate (PMS) activated by CNTs/Co3O4 was investigated. CNTs/Co3O4 was prepared via a facile method, and multiple characterizations suggested that Co3O4 were uniformly dispersed on the surface of MWCNTs-COOH. Experimental results indicated that complete removal of 10 μM AML was achieved within 30 min by using 2 mg/L CNTs/Co3O4 and 4 μM PMS at 25 °C in PBS buffered solution (pH 7.0). The observed pseudo-first-order rate constant was calculated to be 0.1369 min-1. Interestingly, the presence of 100 mM Cl- resulted in a slight enhancement of AML removal rate from 0.0528 to 0.0642 min-1. The addition of 100 mM HCO3-, 5 mg/L Pony Lake fulvic acid (PLFA), or Suwannee River humic acid (SRHA) retarded AML degradation by 15.5, 0.7, and 1.6 times, respectively. As per the quenching experiments, SO4⦁- rather than ⦁OH were verified to be the dominant reactive oxygen species (ROS). Additionally, ten major intermediates were identified using TOF-LC-MS and three associated reaction pathways including ether bond broken, H-abstraction, and hydroxylation were proposed. We outlook these findings to advance the feasibility of organic contaminants removal via CNTs/Co3O4 + PMS systems that have extremely low-level PMS.
Collapse
Affiliation(s)
- Jianbiao Peng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China.
| | - Yu Chang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Zhexi Wang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Jin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Shiyin Wang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Ya Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, 210042, People's Republic of China.
| | - Shuai Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Dexin Liu
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yakun Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Jialu Shi
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Haijin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Guangxuan Yan
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Zhiguo Cao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
9
|
Li L, Fang P, Chen J, Zhang C, Tao H. Protective effect of sinomenine on isoproterenol-induced cardiac hypertrophy in mice. J Appl Biomed 2021; 19:142-148. [PMID: 34907757 DOI: 10.32725/jab.2021.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/12/2021] [Indexed: 11/05/2022] Open
Abstract
To study the effect of sinomenine (Sin) on isoproterenol (Iso, β-agonist)-induced cardiac hypertrophy (CH), we set up four mouse groups: control, Iso model, Iso+metoprolol (Met, β blocker) 60 mg/kg and Iso+Sin 120 mg/kg. CH was induced by Iso (s.c. for 28 days) in mice, and Sin or Met were orally administered by gavage for 28 days in total. Left ventricular diastolic anterior wall thickness (LVAWd), left ventricular diastolic posterior wall thickness (LVPWd), left ventricular ejection fraction (LVEF), and short axis shortening (FS) were measured by echocardiography. Malondialdehyde (MDA) and total superoxide dismutase (T-SOD) were measured by commercial kits. Lactate dehydrogenase (LDH), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) were measured by ELISA kits. Histological changes were observed using hematoxylin-eosin (HE) and Masson staining. Protein level of nuclear transcription factor-kappa B (NF-κB) was detected by immunohistochemistry. Compared with the control group, LVAWd, Left ventricular weight index (LVWI) and myocardial fibrosis of the Iso model group significantly increased, as well as NF-κB, LDH, MDA, TNF-α, and IL-1β levels. However, the activity of T-SOD decreased. Compared with the Iso model group, LVWI of Iso model+Sin or Iso model+Met group was improved, LVAWd, LVPWd and myocardial fibrosis decreased, and NF-κB, LDH, MDA, TNF-α and IL-1β levels decreased. T-SOD activity also increased. This study reveals that Sin inhibits the activation of NF-κB, lowers the levels of TNF-α and IL-1β, has anti-oxidative stress effect and inhibits myocardial inflammation in mouse heart, thereby demonstrating its efficacy in preventing Iso induced CH.
Collapse
Affiliation(s)
- Le Li
- Zhejiang University of Technology, School of Pharmacy, Hangzhou, 310014, PR China
| | - Pu Fang
- Janssen Pharmaceuticals, Spring House, PA 19477, USA
| | - Jiekun Chen
- Zhejiang University of Technology, School of Pharmacy, Hangzhou, 310014, PR China
| | - Cailing Zhang
- Hangzhou Zhijiang College, Hangzhou, 310023, PR China
| | - Houquan Tao
- Lab center of Zhejiang Province People's Hospital, Hangzhou, 310014, PR China
| |
Collapse
|
10
|
Niazy N, Mrozek L, Barth M, Immohr MB, Kalampokas N, Saeed D, Aubin H, Sugimura Y, Westenfeld R, Boeken U, Lichtenberg A, Akhyari P. Altered mRNA Expression of Interleukin-1 Receptors in Myocardial Tissue of Patients with Left Ventricular Assist Device Support. J Clin Med 2021; 10:jcm10214856. [PMID: 34768376 PMCID: PMC8584390 DOI: 10.3390/jcm10214856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Serum levels of cytokines interleukin 1 beta ( IL-1β) and interleukin 33 (IL-33) are highly abnormal in heart failure and remain elevated after mechanical circulatory support (MCS). However, local cytokine signaling induction remains elusive. Left (LV) and right ventricular (RV) myocardial tissue specimens of end-stage heart failure (HF) patients without (n = 24) and with MCS (n = 39; 594 ± 57 days) were analyzed for cytokine mRNA expression level of IL-1B, interleukin 1 receptor 1/2 (IL-1R1/2), interleukin 1 receptor-like 1 (IL-1RL1), IL-33 and interleukin-1 receptor accessory protein (IL-1RaP). MCS patients showed significantly elevated IL-1B expression levels (LV: 2.0 fold, p = 0.0058; RV: 3.3 fold, p < 0.0001). Moreover, IL-1R1, IL-1RaP and IL-33 expression levels strongly correlated with each other. IL-1RL1 and IL-1R2 expression levels were significantly higher in RV myocardial tissue (RV/LV ratio IL-1R2 HF: 4.400 ± 1.359; MCS: 4.657 ± 0.655; IL-1RL1 HF: 3.697 ± 0.876; MCS: 4.529 ± 0.5839). In addition, IL1-RaP and IL-33 RV expression levels were significantly elevated in MCS. Furthermore, IL-33 expression correlates with C-reactive protein (CRP) plasma levels in HF, but not in MCS patients. Increased expression of IL-1B and altered correlation patterns of IL-1 receptors indicate enhanced IL-1β signaling in MCS patients. Correlation of IL-1 receptor expression with IL-33 may hint towards a link between both pathways. Moreover, diverging expression in LV and RV suggests specific regulation of local cytokine signaling.
Collapse
Affiliation(s)
- Naima Niazy
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| | - Linus Mrozek
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| | - Mareike Barth
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| | - Moritz Benjamin Immohr
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| | - Nikolaos Kalampokas
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| | - Diyar Saeed
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
- Department of Cardiac Surgery, Leipzig Heart Center, 04289 Leipzig, Germany
| | - Hug Aubin
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| | - Yukiharu Sugimura
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| | - Ralf Westenfeld
- Department of Cardiology, Pneumology and Angiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Udo Boeken
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
- Correspondence: ; Tel.: +49-(0)211-81-17925
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (N.N.); (L.M.); (M.B.); (M.B.I.); (N.K.); (D.S.); (H.A.); (Y.S.); (U.B.); (P.A.)
| |
Collapse
|
11
|
Yu J, Zhao H, Qi X, Wei L, Li Z, Li C, Zhang X, Wu H. Dapagliflozin Mediates Plin5/PPARα Signaling Axis to Attenuate Cardiac Hypertrophy. Front Pharmacol 2021; 12:730623. [PMID: 34630108 PMCID: PMC8495133 DOI: 10.3389/fphar.2021.730623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The purpose of this study was to investigate the effect of dapagliflozin (DAPA), a sodium-glucose cotransporter 2 inhibitor, on relieving cardiac hypertrophy and its potential molecular mechanism. Methods: Cardiac hypertrophy induced by abdominal aortic constriction (AAC) in mice, dapagliflozin were administered in the drinking water at a dose of 25 mg/kg/d for 12 weeks was observed. Echocardiography was used to detect the changes of cardiac function, including LVEF, LVFS, LVEDd, LVEDs, HR and LV mass. Histological morphological changes were evaluated by Masson trichrome staining and wheat germ agglutinin (WGA) staining. The enrichment of differential genes and signal pathways after treatment was analyzed by gene microarray cardiomyocyte hypertrophy was induced by AngII (2 μM) and the protective effect of dapagliflozin (1 μM) was observed in vitro. The morphological changes of myocardial cells were detected by cTnI immunofluorescence staining. ELISA and qRT-PCR assays were performed to detect the expressions levels of cardiac hypertrophy related molecules. Results: After 12 weeks of treatment, DAPA significantly ameliorated cardiac function and inhibited cardiac hypertrophy in AAC-induced mice. In vitro, DAPA significantly inhibited abnormal hypertrophy in AngII-induced cardiacmyocytes. Both in vivo and in vitro experiments have confirmed that DAPA could mediate the Plin5/PPARα signaling axis to play a protective role in inhibiting cardiac hypertrophy. Conclusion: Dapagliflozin activated the Plin5/PPARα signaling axis and exerts a protective effect against cardiac hypertrophy.
Collapse
Affiliation(s)
- Jing Yu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China.,Nankai University School of Medicine, Tianjin, China
| | - Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China.,Nankai University School of Medicine, Tianjin, China
| | - Zihao Li
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chunpeng Li
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xiaoying Zhang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Hao Wu
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China.,Nankai University School of Medicine, Tianjin, China
| |
Collapse
|
12
|
Azouz AA, Abdel-Nassir Abdel-Razek E, Abo-Youssef AM. Amlodipine alleviates cisplatin-induced nephrotoxicity in rats through gamma-glutamyl transpeptidase (GGT) enzyme inhibition, associated with regulation of Nrf2/HO-1, MAPK/NF-κB, and Bax/Bcl-2 signaling. Saudi Pharm J 2020; 28:1317-1325. [PMID: 33250641 PMCID: PMC7679434 DOI: 10.1016/j.jsps.2020.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/27/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The therapeutic utility of the effective chemotherapeutic agent cisplatin is hampered by its nephrotoxic effect. We aimed from the current study to examine the possible protective effects of amlodipine through gamma-glutamyl transpeptidase (GGT) enzyme inhibition against cisplatin nephrotoxicity. METHODS Amlodipine (5 mg/kg, po) was administered to rats for 14 successive days. On the 10th day, nephrotoxicity was induced by a single dose of cisplatin (6.5 mg/kg, ip). On the last day, blood samples were collected for estimation of kidney function, while kidney samples were used for determination of GGT activity, oxidative stress, inflammatory, and apoptotic markers, along with histopathological evaluation. RESULTS Amlodipine alleviated renal injury that was manifested by significantly diminished serum creatinine and blood urea nitrogen levels, compared to cisplatin group. Amlodipine inhibited GGT enzyme, which participates in the metabolism of extracellular glutathione (GSH) and platinum-GSH-conjugates to a reactive toxic thiol. Besides, amlodipine diminished mRNA expression of NADPH oxidase in the kidney, while enhanced the anti-oxidant defense by activating Nrf2/HO-1 signaling. Additionally, it showed marked anti-inflammatory response by reducing expressions of p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor-kappa B (NF-κB), with subsequent down-regulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and vascular cell adhesion molecule-1 (VCAM-1). Moreover, amlodipine reduced Bax/Bcl-2 ratio and elevated hepatocyte growth factor (HGF), thus favoring renal cell survival. CONCLUSIONS Effective GGT inhibition by amlodipine associated with enhancement of anti-oxidant defense and suppression of inflammatory signaling and apoptosis support our suggestion that amlodipine could replace toxic GGT inhibitors in protection against cisplatin nephrotoxicity.
Collapse
Key Words
- Amlodipine
- Anti-inflammatory response
- Anti-oxidant defense
- BUN, Blood urea nitrogen
- Bax, Bcl-2-associated X protein
- Bcl-2, B-cell lymphoma 2
- CMC, Carboxymethyl cellulose
- Cisplatin nephrotoxicity
- GGT inhibition
- GGT, gamma-glutamyl transpeptidase
- GSH, Reduced glutathione
- H & E, Hematoxylin and eosin
- HGF, Hepatocyte growth factor
- HO-1, Heme oxygenase-1
- IL-6, Interleukin-6
- Keap1, Kelch-like ECH-associated protein 1
- MAPK, Mitogen-activated protein kinase
- MDA, Malondialdehyde
- NADPH, Nicotinamide adenine dinucleotide phosphate
- NF-κB, Nuclear factor-kappa B
- NO, Nitric oxide
- NOx, Total nitrate/nitrite
- Nrf2, Nuclear factor erythroid 2-related factor 2
- ROS, Reactive oxygen species
- Renal cell survival
- TNF-α, Tumor necrosis factor-alpha
- VCAM-1, vascular cell adhesion molecule-1
Collapse
Affiliation(s)
- Amany A. Azouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | | | - Amira M. Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
13
|
Huang X, Yang J, Song B, Wang N, Ma M, Wang H, Wang S, Hao S, Cheng G. Caduet enhances connexin 43 phosphorylation in left ventricular and thoracic aorta of SH model rats. Exp Ther Med 2020; 20:80. [PMID: 32968437 PMCID: PMC7500004 DOI: 10.3892/etm.2020.9207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Caduet, also known as amlodipine besylate and atorvastatin calcium (AM + AT) tablet, can improve cardiac and vascular remodeling in patients with spontaneous hypertension (SH), but the underlying mechanism remains unknown. The present study aimed to explore whether AM + AT improved hypertensive left ventricular and thoracic aortic remodeling by regulating connexin 43 (Cx43) phosphorylation. A total of 32 male spontaneous hypertension model rats (SHR) were randomly divided into four groups: SHR control group, amlodipine-alone group (SHR-AM), atorvastatin-alone (SHR-AT) and AM + AT group (SHR-AM + AT); 8 Wistar-Kyoto (WKY) rats with normal blood pressure were used as the normal control. Drugs were orally administered for 8 weeks; subsequently, body weight, heart rate (HR), left ventricular mass index (LVMI), blood pressure (BP), plasma lipid levels and morphological changes of myocardial tissue in each group were analyzed. The expression of total (T)-Cx43 and phosphorylated (P)-Cx43 protein in the left ventricular and thoracic aortic tissues was determined using western blotting and immunofluorescence double labeling. The results revealed that AM + AT significantly decreased LVMI and cardiomyocyte cross-sectional area compared with SHR-AM and SHR-AT group. The western blotting results demonstrated that AM + AT could inhibit the expression of T-Cx43 protein, but increased the expression of P-Cx43 in the left ventricular and thoracic aorta. Moreover, immunofluorescence results indicated AM + AT could also decrease the expression T-Cx43, and increase that of P-Cx43 in the left ventricular and thoracic aorta compared with AM and AT alone. Therefore, it was concluded that AM + AT may mitigate left ventricular and thoracic aorta remodeling in SH rats by enhancing Cx43 phosphorylation, and the efficacy of AM + AT was superior to that of AM and AT alone.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immunity Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Junlu Yang
- Department of Cardiology, Baoji Traditional Chinese Medicine Hospital, Baoji, Shaanxi 721000, P.R. China
| | - Baoguo Song
- Department of Cardiac Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Nana Wang
- Shaanxi Provincial Key Laboratory of Infection and Immunity Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Meijuan Ma
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Haifang Wang
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, P.R. China
| | - Sha Wang
- Department of Cardiac Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Shuangping Hao
- Department of Cardiology, Guangshui Traditional Chinese Medicine Hospital of Hubei Province, Guangshui, Hubei 432700, P.R. China
| | - Gong Cheng
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
14
|
Li J, Gao Q, Wang S, Kang Z, Li Z, Lei S, Sun X, Zhao M, Chen X, Jiao G, Hu H, Hao L. Sustained increased CaMKII phosphorylation is involved in the impaired regression of isoproterenol-induced cardiac hypertrophy in rats. J Pharmacol Sci 2020; 144:30-42. [DOI: 10.1016/j.jphs.2020.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022] Open
|
15
|
Toma L, Sanda GM, Raileanu M, Stancu CS, Niculescu LS, Sima AV. Ninjurin-1 upregulated by TNFα receptor 1 stimulates monocyte adhesion to human TNFα-activated endothelial cells; benefic effects of amlodipine. Life Sci 2020; 249:117518. [PMID: 32147432 DOI: 10.1016/j.lfs.2020.117518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 01/05/2023]
Abstract
AIMS The objectives of the present study were to investigate the mechanisms of Ninj-1 regulation in TNFα-activated human endothelial cells (HEC), and to test if Amlodipine (AML) ameliorates the inflammatory stress by decreasing Ninj-1 expression. MAIN METHODS TNFα-activated HEC with/without AML (0.1 μM and 1 μM) were used. TNFα-receptor 1 (TNFR1) was silenced and inhibitors for oxidative stress (N-acetyl cysteine), endoplasmic reticulum stress (salubrinal, 4-phenyl butyric acid), or NF-kB (Bay 11-7085) and p38 MAPK (SB203580) were used. Levels of Ninj-1, TNFR1, monocyte adhesion, endoplasmic reticulum stress (ERS) sensors, NADPH oxidase- and mitochondria-derived oxidative species were evaluated. KEY FINDINGS The novel findings that we report here are: (i) silencing the endothelial TNFR1 leads to decreased Ninj-1 expression and diminished monocyte adhesion; (ii) increased oxidative stress, ERS and NF-kB activation enhance Ninj-1 expression and monocyte adhesion; (iii) up-regulation of endothelial Ninj-1 expression stimulates monocytes adhesion to TNFα - activated HEC; (iv) AML diminishes monocyte adhesion by reducing Ninj-1 expression through mechanisms involving the decrease of NADPH oxidase and mitochondria-dependent oxidative stress, ERS and NF-kB. In addition, AML alleviates apoptosis by reducing the pro-apoptotic CHOP expression and re-establishing the mitochondrial transmembrane potential. SIGNIFICANCE The results of the present study suggest that Ninj-1 and the proteins involved in its regulation can be considered therapeutic targets for the alleviation of inflammation- dependent disorders. In addition, we demonstrate that some of the benefic effects of AML can be achieved through regulation of Ninj-1.
Collapse
Affiliation(s)
- Laura Toma
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Gabriela M Sanda
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Mina Raileanu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Camelia S Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Loredan S Niculescu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Anca V Sima
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.
| |
Collapse
|
16
|
Wang M, Lv Q, Zhao L, Wang Y, Luan Y, Li Z, Fu G, Zhang W. Metoprolol and bisoprolol ameliorate hypertrophy of neonatal rat cardiomyocytes induced by high glucose via the PKC/NF-κB/c-fos signaling pathway. Exp Ther Med 2020; 19:871-882. [PMID: 32010247 PMCID: PMC6966202 DOI: 10.3892/etm.2019.8312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022] Open
Abstract
Hyperglycemia caused by diabetes mellitus could increase the risk of diabetic cardiomyopathy. However, to the best of our knowledge, the underlying mechanism of this process is still not fully explored. Thus, developing ways to prevent hyperglycemia can be beneficial for diabetic patients. The present study was designed to investigate the influence of metoprolol and bisoprolol on the cardiomyocytic hypertrophy of neonatal rat cardiomyocytes. Cardiomyocytes were cultured in two types of media: One with low glucose levels and one with high glucose levels. Cardiomyocytes cultured in high glucose were further treated with the following: A protein kinase C (PKC) inhibitor, an NF-κB inhibitor, metoprolol or bisoprolol. The pulsatile frequency, cellular diameter and surface area of cardiomyocytes were measured. Protein content and [3H]-leucine incorporation were determined, atrial natriuretic peptide (ANP), α-myosin heavy chain (α-MHC) and β-myosin heavy chain (β-MHC) mRNA levels were calculated by reverse transcription-quantitative PCR, while the expression and activation of PKC-α, PKC-β2, NF-κB, tumor necrosis factor-α (TNF-α), and c-fos were detected by western blotting. Metoprolol or bisoprolol were also used in combination with PKC inhibitor or NF-κB inhibitor to determine whether the hypertrophic response would be attenuated to a lower extent compared with metroprolol or bisoprolol alone. Cardiomyocytes cultured in high glucose presented increased pulsatile frequency, cellular diameter, surface area, and protein content and synthesis, higher expression of ANP and β-MHC, and lower α-MHC expression. High glucose levels also upregulated the expression and activation of PKC-α, PKC-β2, NF-κB, TNF-α and c-fos. Metoprolol and bisoprolol partly reversed the above changes, while combined use of metoprolol or bisoprolol with PKC inhibitor or NF-κB inhibitor further ameliorated the hypertrophic response mentioned above to lower levels compared with using metroprolol or bisoprolol alone. In conclusion, metoprolol and bisoprolol could prevent hypertrophy of cardiomyocytes cultured in high glucose by the inhibition of the total and phospho-PKC-α, which could further influence the PKC-α/NF-κB/c-fos signaling pathway.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Liding Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Yao Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Yi Luan
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Zhengwei Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Wenbin Zhang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| |
Collapse
|
17
|
Nikolajević Starčević J, Janić M, Šabovič M. Molecular Mechanisms Responsible for Diastolic Dysfunction in Diabetes Mellitus Patients. Int J Mol Sci 2019; 20:ijms20051197. [PMID: 30857271 PMCID: PMC6429211 DOI: 10.3390/ijms20051197] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
In diabetic patients, cardiomyopathy is an important cause of heart failure, but its pathophysiology has not been completely understood thus far. Myocardial hypertrophy and diastolic dysfunction have been considered the hallmarks of diabetic cardiomyopathy (DCM), while systolic function is affected in the latter stages of the disease. In this article we propose the potential pathophysiological mechanisms responsible for myocardial hypertrophy and increased myocardial stiffness leading to diastolic dysfunction in this specific entity. According to our model, increased myocardial stiffness results from both cellular and extracellular matrix stiffness as well as cell–matrix interactions. Increased intrinsic cardiomyocyte stiffness is probably the most important contributor to myocardial stiffness. It results from the impairment in cardiomyocyte cytoskeleton. Several other mechanisms, specifically affected by diabetes, seem to also be significantly involved in myocardial stiffening, i.e., impairment in the myocardial nitric oxide (NO) pathway, coronary microvascular dysfunction, increased inflammation and oxidative stress, and myocardial sodium glucose cotransporter-2 (SGLT-2)-mediated effects. Better understanding of the complex pathophysiology of DCM suggests the possible value of drugs targeting the listed mechanisms. Antidiabetic drugs, NO-stimulating agents, anti-inflammatory agents, and SGLT-2 inhibitors are emerging as potential treatment options for DCM.
Collapse
Affiliation(s)
- Jovana Nikolajević Starčević
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7; SI-1000 Ljubljana, Slovenia.
| | - Miodrag Janić
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7; SI-1000 Ljubljana, Slovenia.
| | - Mišo Šabovič
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7; SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
18
|
Zhao J, Cheng Q, Liu Y, Yang G, Wang X. Atorvastatin alleviates early hypertensive renal damage in spontaneously hypertensive rats. Biomed Pharmacother 2019; 109:602-609. [DOI: 10.1016/j.biopha.2018.10.165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022] Open
|
19
|
Campillo S, Rancan L, Paredes SD, Higuera M, Izquierdo A, García C, Forman K, Tresguerres JA, Vara E. Effect of treatment with xanthohumol on cardiological alterations secondary to ageing. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
20
|
Suliburska J, Skrypnik K, Szulińska M, Kupsz J, Bogdański P. Effect of hypotensive therapy combined with modified diet or zinc supplementation on biochemical parameters and mineral status in hypertensive patients. J Trace Elem Med Biol 2018; 47:140-148. [PMID: 29544801 DOI: 10.1016/j.jtemb.2018.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Hypotensive therapy leads to a number of trace elements metabolism disturbances. Zinc balance is frequently affected by antihypertensive treatment. AIM To evaluate the effect of a hypotensive treatment, modified diet and zinc supplementation on mineral status and selected biochemical parameters in newly diagnosed hypertensive patients on monotherapy. METHODS In the first stage, arterial hypertension in ninety-eight human subjects was diagnosed. In the second stage, antihypertensive monopharmacotherapy was implemented. In the third stage, patients were randomized into three groups and continued antihypertensive monotherapy: group D received an optimal-mineral-content diet, group S received zinc supplementation, and group C had no changes in diet or zinc supplementation. Iron, zinc, and copper concentrations in serum, erythrocytes, urine, and hair were determined. Lipids, glucose, ceruloplasmin, ferritin, albumin, C-reactive protein (CRP), tumor necrosis factor α (TNF-α), nitric oxide (NO), superoxide dismutase (SOD) and catalase (CAT) were assayed in serum. RESULTS Antihypertensive monotherapy decreased zinc concentration in serum and erythrocytes and increased the level of zinc in urine, decreased CAT and SOD activity, TNF-α concentration in serum, and increased the level of NO in the serum. Zinc supply led to an increase in zinc concentration in serum, erythrocytes, and hair (in group S only). In the groups with higher zinc intake, decreased glucose concentration in the serum was observed. Significant correlation was seen between the zinc and glucose serum concentrations. CONCLUSION Hypotensive drugs disturb zinc status in newly diagnosed hypertensive patients. Antihypertensive monotherapy combined with increased zinc supply in the diet or supplementation favorably modify zinc homeostasis and regulate glucose status without blood pressure affecting in patients with hypertension.
Collapse
Affiliation(s)
- Joanna Suliburska
- Instytut Żywienia Człowieka i Dietetyki, Uniwersytet Przyrodniczy w Poznaniu (Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences), ul. Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Katarzyna Skrypnik
- Instytut Żywienia Człowieka i Dietetyki, Uniwersytet Przyrodniczy w Poznaniu (Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences), ul. Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Monika Szulińska
- Zakład Edukacji i Leczenia Otyłości oraz Zaburzeń Metabolicznych, Uniwersytet Medyczny w Poznaniu (Department of Education and Obesity Treatment and Metabolic Disorders, University of Medical Sciences, Poznan, Poland), ul. Szamarzewskiego 82/84, 60-569 Poznan, Poland.
| | - Justyna Kupsz
- Katedra i Zakład Fizjologii, Uniwersytet Medyczny w Poznaniu (Department of Physiology, University of Medical Sciences, Poznan, Poland), ul. Święcickiego 6, 61-781 Poznan, Poland.
| | - Paweł Bogdański
- Zakład Edukacji i Leczenia Otyłości oraz Zaburzeń Metabolicznych, Uniwersytet Medyczny w Poznaniu (Department of Education and Obesity Treatment and Metabolic Disorders, University of Medical Sciences, Poznan, Poland), ul. Szamarzewskiego 82/84, 60-569 Poznan, Poland.
| |
Collapse
|
21
|
Wu YS, Zhu B, Luo AL, Yang L, Yang C. The Role of Cardiokines in Heart Diseases: Beneficial or Detrimental? BIOMED RESEARCH INTERNATIONAL 2018; 2018:8207058. [PMID: 29744364 PMCID: PMC5878913 DOI: 10.1155/2018/8207058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/19/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality, imposing a major disease burden worldwide. Therefore, there is an urgent need to identify new therapeutic targets. Recently, the concept that the heart acts as a secretory organ has attracted increasing attention. Proteins secreted by the heart are called cardiokines, and they play a critical physiological role in maintaining heart homeostasis or responding to myocardial damage and thereby influence the development of heart diseases. Given the critical role of cardiokines in heart disease, they might represent a promising therapeutic target. This review will focus on several cardiokines and discuss their roles in the pathogenesis of heart diseases and as potential therapeutics.
Collapse
Affiliation(s)
- Ye-Shun Wu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ai-Lin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
22
|
The Anti-Inflammatory Effect of Fructus Kochiae on Allergic Contact Dermatitis Rats via pERK1/2/TLR4/NF- κB Pathway Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1096920. [PMID: 29507585 PMCID: PMC5817368 DOI: 10.1155/2018/1096920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/19/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022]
Abstract
Allergic contact dermatitis (ACD) is a common irritability skin disease, which can be cured by using the Chinese patent medicine. To explore the pharmacological effect of total flavonoids of Fructus Kochiae (FK) on ACD, we used dinitrochlorobenzene- (DNCB-) induced ACD rats. Five groups were used in our experiments. The normal group and the DNCB group were treated with 0.5% CMC-Na; the DNCB + hFK group was treated with a high dose of total flavonoids of FK (200 mg/kg); the DNCB + lFK group was treated with a low dose of FK (100 mg/kg); the DNCB + Pre group was treated with prednisolone acetate (2.5 mg/kg). The results showed that FK treatment had significantly attenuated the inflammation induced by DNCB. The increased concentration of cytokines including IL-6, IL-18, and IFN-γ in ACD rats could be reversed by the FK administration, while IL-10 expressed the opposite result; the expression level of TLR4, pERK1/2, and NF-κB could be downregulated by the treatment with FK in the ACD rat. In a word, the total flavonoids of the FK had an anti-inflammatory effect on the DNCB-induced ACD rat; this regulatory mechanism was highly possible based on the pERK1/2/TLR4-NF-κB pathway activation.
Collapse
|
23
|
Chen G, Jirjees F, Al Bawab A, McElnay JC. Quantification of amlodipine in dried blood spot samples by high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1072:252-258. [PMID: 29195144 DOI: 10.1016/j.jchromb.2017.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/20/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
A sensitive and specific method, utilising high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) was developed for the quantitative determination of amlodipine in dried blood spot (DBS) samples. Chromatographic separation was achieved using a Waters XBridge C18 column with gradient elution of a mixture of water and acetonitrile containing 0.1% formic acid (v/v). Amlodipine was quantified using a Waters Quattro Premier mass spectrometer coupled with an electro-spray ionization (ESI) source in positive ion mode. The MRM transitions of 408.9 m/z→238.1m/z and 408.9→294.0 m/z were used to quantify and qualify amlodipine, respectively. The method was validated across the concentration range of 0.5-30ng/mL by assessing specificity, sensitivity, linearity, precision, accuracy, recovery and matrix effect according to the Food and Drug Administration (FDA) guidelines. This method was also validated clinically within a large pharmacoepidemiological study in which amlodipine blood concentration was determined in patients who had been prescribed this medication.
Collapse
Affiliation(s)
- Gaoyun Chen
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Feras Jirjees
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Abdel Al Bawab
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman, Jordan
| | - James C McElnay
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
24
|
Huang H, Shen Z, Geng Q, Wu Z, Shi P, Miao X. Protective effect of Schisandra chinensis bee pollen extract on liver and kidney injury induced by cisplatin in rats. Biomed Pharmacother 2017; 95:1765-1776. [PMID: 28962082 DOI: 10.1016/j.biopha.2017.09.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023] Open
Abstract
Cisplatin (CP) has been used to cure numerous forms of cancers effectively in clinics, however, it could induce some toxic effects. Bee pollen is a natural compound, produced by honey bees. It is obtained from collected flower pollen and nectar, mixed with bee saliva. Bee pollen produced from Schisandra chinensis plants is described to exert potent antioxidant effects and to be a free radical scavenger. The purpose of this study was to investigate the effects of therapeutic treatment with Schisandra chinensis bee pollen extract (SCBPE) on liver and kidney injury induced by CP. The rats were intragastrically administrated with different doses of SCBPE (400mg/kg/day, 800mg/kg/day, 1200mg/kg/day) and vitamin C (400mg/kg/day, positive control group) for 12days, and the liver and kidney injury models were established by single intraperitoneal injection of CP (8mg/kg) at seventh day. The effect of SCBPE on CP toxicity was evaluated by measuring markers of liver and kidney injury in serum, levels of lipid peroxidation and antioxidants in liver and kidney, observing pathological changes of tissue, and quantified expression of NFκB, IL-1β, IL-6, cytochrome C, caspase3, caspase9, p53 and Bax in liver and kidney. Compared with the model group, the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and the content of blood urea nitrogen (BUN), creatinine (Cr) in serum all decreased in SCBPE high dose group. Meanwhile, the activities of superoxide dismutase (SOD), catalase (CAT) and the content of reduced glutathione (GSH) in liver and kidney increased, and the content of malondialdehyde (MDA) and inducible nitric oxide synthase (iNOS) decreased. In addition, the histopathologic aspects showed that the pathological changes of liver and kidney were found in the model group, and SCBPE group reduced to varying degrees. Moreover, the expression of NFκB, IL-1β, IL-6, cytochrome C, caspase3, caspase9, p53 and Bax in liver and kidney decreased. Therefore, SCBPE could reduce the damage of liver and kidney caused by CP by reducing the level of oxidative stress, and improving the antioxidant, anti-inflammatory and anti-apoptotic capacity of the body.
Collapse
Affiliation(s)
- Haibo Huang
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhuang Shen
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianqian Geng
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhong Wu
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peiying Shi
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoqing Miao
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|