1
|
Pérez-Lozano ML, Cesaro A, Mazor M, Esteve E, Berteina-Raboin S, Best TM, Lespessailles E, Toumi H. Emerging Natural-Product-Based Treatments for the Management of Osteoarthritis. Antioxidants (Basel) 2021; 10:265. [PMID: 33572126 PMCID: PMC7914872 DOI: 10.3390/antiox10020265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is a complex degenerative disease in which joint homeostasis is disrupted, leading to synovial inflammation, cartilage degradation, subchondral bone remodeling, and resulting in pain and joint disability. Yet, the development of new treatment strategies to restore the equilibrium of the osteoarthritic joint remains a challenge. Numerous studies have revealed that dietary components and/or natural products have anti-inflammatory, antioxidant, anti-bone-resorption, and anabolic potential and have received much attention toward the development of new therapeutic strategies for OA treatment. In the present review, we provide an overview of current and emerging natural-product-based research treatments for OA management by drawing attention to experimental, pre-clinical, and clinical models. Herein, we review current and emerging natural-product-based research treatments for OA management.
Collapse
Affiliation(s)
- Maria-Luisa Pérez-Lozano
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
| | - Annabelle Cesaro
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
| | - Marija Mazor
- Center for Proteomics, Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000 Rijeka, Croatia;
| | - Eric Esteve
- Service de Dermatologie, Centre Hospitalier Régional d′Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France;
| | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique ICOA, Université d’Orléans-Pôle de Chimie, UMR CNRS 7311, Rue de Chartres-BP 6759, CEDEX 2, 45067 Orléans, France;
| | - Thomas M. Best
- Department of Orthopedics, Division of Sports Medicine, Health Sports Medicine Institute, University of Miami, Coral Gables, FL 33146, USA;
| | - Eric Lespessailles
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
- Centre Hospitalier Régional d’Orléans, Institut Département de Rhumatologie, 45067 Orléans, France
| | - Hechmi Toumi
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
- Centre Hospitalier Régional d’Orléans, Institut Département de Rhumatologie, 45067 Orléans, France
| |
Collapse
|
2
|
Hao M, Lv M, Xu H. Andrographolide: Synthetic Methods and Biological Activities. Mini Rev Med Chem 2020; 20:1633-1652. [DOI: 10.2174/1389557520666200429100326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/14/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
Andrographolide, a labdane diterpenoid, is extracted and isolated from the plants of
Andrographis paniculata. Andrographolide and its derivatives exhibited a wide range of biological
properties, including anticancer activity, antibacterial activity, hepatoprotective activity, antiinflammatory
activity, antiviral activity, antimalarial activity, antidiabetic activity, insecticidal activity,
etc. As a continuation, this review aims at giving an overview of the recent advances (from 2015 to
2018) of andrographolide and its derivatives with regard to bioactivities, mechanisms of action, structural
modifications, and structure-activity relationships.
Collapse
Affiliation(s)
- Meng Hao
- College of Plant Protection/Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Min Lv
- College of Plant Protection/Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hui Xu
- College of Plant Protection/Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
3
|
Tantikanlayaporn D, Wichit P, Suksen K, Suksamrarn A, Piyachaturawat P. Andrographolide modulates OPG/RANKL axis to promote osteoblastic differentiation in MC3T3-E1 cells and protects bone loss during estrogen deficiency in rats. Biomed Pharmacother 2020; 131:110763. [DOI: 10.1016/j.biopha.2020.110763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022] Open
|
4
|
Shi Y, Shu H, Wang X, Zhao H, Lu C, Lu A, He X. Potential Advantages of Bioactive Compounds Extracted From Traditional Chinese Medicine to Inhibit Bone Destructions in Rheumatoid Arthritis. Front Pharmacol 2020; 11:561962. [PMID: 33117162 PMCID: PMC7577042 DOI: 10.3389/fphar.2020.561962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Bone destruction is an important pathological feature of rheumatoid arthritis (RA), which finally leads to the serious decline of life quality in RA patients. Bone metabolism imbalance is the principal factor of bone destruction in RA, which is manifested by excessive osteoclast-mediated bone resorption and inadequate osteoblast-mediated bone formation. Although current drugs alleviate the process of bone destruction to a certain extent, there are still many deficiencies. Recent studies have shown that traditional Chinese medicine (TCM) could effectively suppress bone destruction of RA. Some bioactive compounds from TCM have shown good effect on inhibiting osteoclast differentiation and promoting osteoblast proliferation. This article reviews the research progress of bioactive compounds exacted from TCM in inhibiting bone destruction of RA, so as to provide references for further clinical and scientific research.
Collapse
Affiliation(s)
- Yingjie Shi
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyang Shu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyu Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hanxiao Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Chinese Medicine, Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Ye M, Zhang C, Zhu L, Jia W, Shen Q. Yak (Bos grunniens) bones collagen-derived peptides stimulate osteoblastic proliferation and differentiation via the activation of Wnt/β-catenin signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2600-2609. [PMID: 31975417 DOI: 10.1002/jsfa.10286] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND As the world's population is transitioning gradually to an ageing stage, the incidence of osteoporosis is increasing annually. Yak bone is one of the major components of Tibetan medicine and it has mainly been associated with an improvement in bone health, for example against osteoporosis. However, the functional bioactive ingredients and the underlying mechanisms are still unclear. RESULTS Sequential purification of yak-bone hydrolysates was achieved by ultrafiltration, size exclusion chromatography, and semi-preparative reverse-phase high-performance liquid chromatography. After this, 35 novel peptides were identified by mass spectrometry analysis, of which peptide GPAGPPGPIGNV (GP-12) displayed the highest osteoblast proliferation-promoting activity, with an increase of 42.7% in cell growth. An in vitro stability study demonstrated that GP-12 was digested into smaller peptides (GP-9, GV-9, AV-10 and GP-11) after simulated gastrointestinal digestion and absorption (Caco-2 cell monolayers) experiments. However, some of them still can be absorbed intact through the (Caco-2 cell monolayers by a paracellular route (Papp: 5.36 ± 0.34 cm s-1 ). Flow cytometry results indicated that GP-12 enhanced osteoblastic proliferation by inducing the alteration of the cell-cycle progression both from the G0/G1 to the S phase and from the S to the G2/M phase. Quantitative real-time polymerase chain reaction (PCR) and western blot results revealed that GP-12 induced osteoblastic proliferation and differentiation in a dose-response manner through the activation of a Wnt/β-catenin signaling pathway. CONCLUSION These findings highlighted that such peptides hold the promise of discovering candidates for functional and health-promoting foods, which could be potentially used for the treatment of osteoporosis. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengliang Ye
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyu Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Tea and Food Science & Technology, Anhui agricultural university, Hefei, China
| | - Wei Jia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingshan Shen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Jiang X, Chen W, Shen F, Xiao W, Guo H, Su H, Xiu J, Sun W. Pinoresinol promotes MC3T3‑E1 cell proliferation and differentiation via the cyclic AMP/protein kinase A signaling pathway. Mol Med Rep 2019; 20:2143-2150. [PMID: 31322181 PMCID: PMC6691241 DOI: 10.3892/mmr.2019.10468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/29/2019] [Indexed: 01/15/2023] Open
Abstract
Estradiol (E2) is a first‑line drug for osteoporosis (OP) treatment via promotion of osteoblastic proliferation and differentiation. However, a long‑term use of E2 would produce side effects thus, it is imperative to discover safer and more effective drugs. Pinoresinol (PINO) has a similar chemical structure to E2. The present study aimed to investigate whether PINO could promote osteoblastic proliferation and differentiation and the potential mechanisms. After treatment with 0.1 µg/l PINO for 2 days, MC3T3‑E1 cell migration was assessed by wound healing assay. Estrogen (E2) treatment served as a positive control. RT‑qPCR and western blotting were used for mRNA and protein expression analyses. Alkaline phosphatase (ALP) activity assay and Alizarin red staining were performed to investigate the calcification and mineralization, and the cyclic AMP (cAMP) level was detected by enzyme‑linked immunosorbent assay (ELISA). H89, an inhibitor of protein kinase A (PKA), was introduced to verify the role of cAMP/PKA in the effect of PINO on MC3T3‑E1 cells. Cell viability was the highest under 48 h of 0.1 µg/l PINO treatment. After treatment with PINO, a significant increase was observed in the migration rate and the expression of collagen type I (Col‑I), ALP, osteopontin (OPN), runt‑related transcription factor 2 (Runx2) and bone morphogenetic protein‑2 (BMP‑2) (P<0.01). The ALP activity and Alizarin red size in PINO and E2 groups were notably increased. The increased cAMP, PKA and phosphorylated cAMP response element‑binding protein (CREB) levels were also observed in the PINO group. Furthermore, H89 co‑treatment abolished the positive effects of PINO on cell viability and migration. PINO had similar effects to E2 on the osteoblastic proliferation and differentiation, and these positive effects may be attributed to the regulation of the cAMP/PKA signaling pathway.
Collapse
Affiliation(s)
- Xin Jiang
- Fifth Department of Orthopedic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Wenjing Chen
- Department of Pathology, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| | - Fuguo Shen
- Fifth Department of Orthopedic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Wenlong Xiao
- Fifth Department of Orthopedic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Hongliang Guo
- Fifth Department of Orthopedic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Hang Su
- Fifth Department of Orthopedic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Jiang Xiu
- Fifth Department of Orthopedic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Wencai Sun
- Fifth Department of Orthopedic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| |
Collapse
|
7
|
Chai L, Quan R, Hu J, Huang X, Lü J, Zhang C, Qiu R, Cai B. [ In vitro study of bone morphogenetic protein 2 gelatin/chitosan hydrogel sustained-release system composite hydroxyapatite/zirconium dioxide foam ceramics and induced pluripotent stem cells derived mesenchymal stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:252-258. [PMID: 30739425 PMCID: PMC8337614 DOI: 10.7507/1002-1892.201809060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/10/2019] [Indexed: 11/03/2022]
Abstract
Objective To construct bone morphogenetic protein 2 (BMP-2) gelatin/chitosan hydrogel sustained-release system, co-implant with induced pluripotent stem cells (iPS) derived mesenchymal stem cells (MSCs) to hydroxyapatite (HA)/zirconium dioxide (ZrO 2) bio porous ceramic foam, co-culture in vitro, and to explore the effect of sustained-release system on osteogenic differentiation of iPS-MSCs. Methods BMP-2 gelatin/chitosan hydrogel microspheres were prepared by water-in-oil solution. Drug encapsulation efficiency, drug loading, and in vitro sustained release rate of the microspheres were tested. HA/ZrO 2 bio porous ceramic foam composite iPS-MSCs and BMP-2 gelatin/chitosan hydrogel sustained release system co-culture system was established as experimental group, and cell scaffold complex without BMP-2 composite gelatin/chitosan hydrogel sustained release system as control group. After 3, 7, 10, and 14 days of co-culture in the two groups, ALP secretion of cells was detected; gene expression levels of core binding factor alpha 1 (Cbfa1), collagen type Ⅰ, and Osterix (OSX) were detected by RT-PCR; the expression of collagen type Ⅰ was observed by immunohistochemical staining at 14 days of culture; and cell creep and adhesion were observed by scanning electron microscopy. Results BMP-2 gelatin/chitosan hydrogel sustained-release system had better drug encapsulation efficiency and drug loading, and could prolong the activity time of BMP-2. The secretion of ALP and the relative expression of Cbfa1, collagen type Ⅰ, and OSX genes in the experimental group were significantly higher than those in the control group at different time points in the in vitro co-culture system ( P<0.05). Immunohistochemical staining showed that the amount of fluorescence in the experimental group was significantly more than that in the control group, i.e. the expression level of collagen type Ⅰ was higher than that in the control group. The cells could be more evenly distributed on the materials, and the cell morphology was good. Scanning electron microscopy showed that the sustained-release system could adhere to cells well. Conclusion iPS-MSCs have the ability of osteogenic differentiation, which is significantly enhanced by BMP-2 gelatin/chitosan hydrogel sustained-release system. The combination of iPS-MSCs and sustained-release system can adhere to the materials well, and the cell activity is better.
Collapse
Affiliation(s)
- Le Chai
- Zhejiang University of Traditional Chinese Medicine, Hangzhou Zhejiang, 310053, P.R.China
| | - Renfu Quan
- Department of Spine Surgery, Jiangnan Hospital of Zhejiang Chinese Medicine College, Hangzhou Zhejiang, 311200,
| | - Jintao Hu
- Zhejiang University of Traditional Chinese Medicine, Hangzhou Zhejiang, 310053, P.R.China
| | - Xiaolong Huang
- Department of Spine Surgery, Jiangnan Hospital of Zhejiang Chinese Medicine College, Hangzhou Zhejiang, 311200, P.R.China
| | - Jianlan Lü
- Zhejiang University of Traditional Chinese Medicine, Hangzhou Zhejiang, 310053, P.R.China
| | - Can Zhang
- Zhejiang University of Traditional Chinese Medicine, Hangzhou Zhejiang, 310053, P.R.China
| | - Rui Qiu
- Department of Spine Surgery, Jiangnan Hospital of Zhejiang Chinese Medicine College, Hangzhou Zhejiang, 311200, P.R.China
| | - Bingbing Cai
- Department of Spine Surgery, Jiangnan Hospital of Zhejiang Chinese Medicine College, Hangzhou Zhejiang, 311200, P.R.China
| |
Collapse
|
8
|
Jia Y, Zhang H, Yang S, Xi Z, Tang T, Yin R, Zhang W. Electrospun PLGA membrane incorporated with andrographolide-loaded mesoporous silica nanoparticles for sustained antibacterial wound dressing. Nanomedicine (Lond) 2018; 13:2881-2899. [DOI: 10.2217/nnm-2018-0099] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: To assess the wound-healing ability of poly(lactic-co-glycolic acid) (PLGA) nanofibrous wound dressing incorporated with andrographolide (Andro)-loaded mesoporous silica nanoparticles (MSNs). Materials & methods: PLGA/Andro-MSNs nanofibrous membrane wound dressings were produced by electrospinning. The effects of MSNs on the hydrophilicity, degradation and mechanical strength of membranes were evaluated. The cumulative release of Andro in vitro was obtained. Cell culture and in vivo tests on infectious models were carried out. Results: The PLGA/Andro-MSNs membrane showed a sustained release of Andro. The incorporation of MSNs into PLGA improved the hydrophilicity of the nanofibrous membranes. Cell culture and in vivo tests showed that PLGA/Andro-MSNs membrane can promote epidermal cell adhesion and reduce inflammation process. Conclusion: PLGA/Andro-MSNs nanofibrous membrane exhibited an efficient wound-healing ability.
Collapse
Affiliation(s)
- Yuhang Jia
- School of Mechanical & Power Engineering, Complex and Intelligent Systems Research Centre, East China University of Science & Technology, Shanghai 200237, China
| | - Hongbo Zhang
- School of Mechanical & Power Engineering, Complex and Intelligent Systems Research Centre, East China University of Science & Technology, Shanghai 200237, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhenhao Xi
- School of Chemical Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ruixue Yin
- School of Mechanical & Power Engineering, Complex and Intelligent Systems Research Centre, East China University of Science & Technology, Shanghai 200237, China
| | - Wenjun Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A2, Canada
| |
Collapse
|
9
|
Chitosan–hyaluronic acid composite sponge scaffold enriched with Andrographolide-loaded lipid nanoparticles for enhanced wound healing. Carbohydr Polym 2017; 173:441-450. [DOI: 10.1016/j.carbpol.2017.05.098] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/25/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022]
|