1
|
Wang C, Feng Q, Shi S, Qin Y, Lu H, Zhang P, Liu J, Chen B. The Rational Engineered Bacteria Based Biohybrid Living System for Tumor Therapy. Adv Healthc Mater 2024; 13:e2401538. [PMID: 39051784 DOI: 10.1002/adhm.202401538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Living therapy based on bacterial cells has gained increasing attention for their applications in tumor treatments. Bacterial cells can naturally target to tumor sites and active the innate immunological responses. The intrinsic advantages of bacteria attribute to the development of biohybrid living carriers for targeting delivery toward hypoxic environments. The rationally engineered bacterial cells integrate various functions to enhance the tumor therapy and reduce toxic side effects. In this review, the antitumor effects of bacteria and their application are discussed as living therapeutic agents across multiple antitumor platforms. The various kinds of bacteria used for cancer therapy are first introduced and demonstrated the mechanism of antitumor effects as well as the immunological effects. Additionally, this study focused on the genetically modified bacteria for the production of antitumor agents as living delivery system to treat cancer. The combination of living bacterial cells with functional nanomaterials is then discussed in the cancer treatments. In brief, the rational design of living therapy based on bacterial cells highlighted a rapid development in tumor therapy and pointed out the potentials in clinical applications.
Collapse
Affiliation(s)
- Chen Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Qiliner Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Si Shi
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Yuxuan Qin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Hongli Lu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
2
|
Wei T, Li Y, Li B, Xie Q, Huang Y, Wu Z, Chen H, Meng Y, Liang L, Wang M, Geng J, Lei M, Shang J, Guo S, Yang Z, Jia H, Ren F, Zhao T. Plasmid co-expressing siRNA-PD-1 and Endostatin carried by attenuated Salmonella enhanced the anti-melanoma effect via inhibiting the expression of PD-1 and VEGF on tumor-bearing mice. Int Immunopharmacol 2024; 127:111362. [PMID: 38103411 DOI: 10.1016/j.intimp.2023.111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Melanoma, the most perilous form of skin cancer, is known for its inherent resistance to chemotherapy. Even with advances in tumor immunotherapy, the survival of patients with advanced or recurrent melanomas remains poor. Over time, melanoma tumor cells may produce excessive angiogenic factors, necessitating the use of combinations of angiogenesis inhibitors, including broad-spectrum options, to combat melanoma. Among these inhibitors, Endostatin is one of the most broad-spectrum and least toxic angiogenesis inhibitors. We found Endostatin significantly increased the infiltration of CD8+ T cells and reduced the infiltration of M2 tumor-associated macrophages (TAMs) in the melanoma tumor microenvironment (TME). Interestingly, we also observed high expression levels of programmed death 1 (PD-1), an essential immune checkpoint molecule associated with tumor immune evasion, within the melanoma tumor microenvironment despite the use of Endostatin. To address this issue, we investigated the effects of a plasmid expressing Endostatin and PD-1 siRNA, wherein Endostatin was overexpressed while RNA interference (RNAi) targeted PD-1. These therapeutic agents were delivered using attenuated Salmonella in melanoma-bearing mice. Our results demonstrate that pEndostatin-siRNA-PD-1 therapy exhibits optimal therapeutic efficacy against melanoma. We found that pEndostatin-siRNA-PD-1 therapy promotes the infiltration of CD8+ T cells and the expression of granzyme B in melanoma tumors. Importantly, combined inhibition of angiogenesis and PD-1 significantly suppresses melanoma tumor progression compared with the inhibition of angiogenesis or PD-1 alone. Based on these findings, our study suggests that combining PD-1 inhibition with angiogenesis inhibitors holds promise as a clinical strategy for the treatment of melanoma.
Collapse
Affiliation(s)
- Tian Wei
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Yang Li
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Henan Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, Zhengzhou Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, PR China
| | - Baozhu Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Qian Xie
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Yujing Huang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Zunge Wu
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Haoqi Chen
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Ying Meng
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Lirui Liang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Ming Wang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Jiaxin Geng
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Mengyu Lei
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Jingli Shang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Sheng Guo
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Zishan Yang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Huijie Jia
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Feng Ren
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, PR China.
| | - Tiesuo Zhao
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China.
| |
Collapse
|
3
|
Becerra-Báez EI, Meza-Toledo SE, Muñoz-López P, Flores-Martínez LF, Fraga-Pérez K, Magaño-Bocanegra KJ, Juárez-Hernández U, Mateos-Chávez AA, Luria-Pérez R. Recombinant Attenuated Salmonella enterica as a Delivery System of Heterologous Molecules in Cancer Therapy. Cancers (Basel) 2022; 14:cancers14174224. [PMID: 36077761 PMCID: PMC9454573 DOI: 10.3390/cancers14174224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer is among the main causes of death of millions of individuals worldwide. Although survival has improved with conventional treatments, the appearance of resistant cancer cells leads to patient relapses. It is, therefore, necessary to find new antitumor therapies that can completely eradicate transformed cells. Bacteria-based tumor therapy represents a promising alternative treatment, particularly the use of live-attenuated Salmonella enterica, with its potential use as a delivery system of antitumor heterologous molecules such as tumor-associated antigens, cytotoxic molecules, immunomodulatory molecules, pro-apoptotic proteins, nucleic acids, and nanoparticles. In this review, we present the state of the art of current preclinical and clinical research on the use of Salmonella enterica as a potential therapeutic ally in the war against cancer. Abstract Over a century ago, bacterial extracts were found to be useful in cancer therapy, but this treatment modality was obviated for decades. Currently, in spite of the development and advances in chemotherapies and radiotherapy, failure of these conventional treatments still represents a major issue in the complete eradication of tumor cells and has led to renewed approaches with bacteria-based tumor therapy as an alternative treatment. In this context, live-attenuated bacteria, particularly Salmonella enterica, have demonstrated tumor selectivity, intrinsic oncolytic activity, and the ability to induce innate or specific antitumor immune responses. Moreover, Salmonella enterica also has strong potential as a delivery system of tumor-associated antigens, cytotoxic molecules, immunomodulatory molecules, pro-apoptotic proteins, and nucleic acids into eukaryotic cells, in a process known as bactofection and antitumor nanoparticles. In this review, we present the state of the art of current preclinical and clinical research on the use of Salmonella enterica as a potential therapeutic ally in the war against cancer.
Collapse
Affiliation(s)
- Elayne Irene Becerra-Báez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Sergio Enrique Meza-Toledo
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Paola Muñoz-López
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Luis Fernando Flores-Martínez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Karla Fraga-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Kevin Jorge Magaño-Bocanegra
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico
| | - Uriel Juárez-Hernández
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico
| | - Armando Alfredo Mateos-Chávez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Rosendo Luria-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Correspondence: ; Tel.: +52-55-52289917 (ext. 4401)
| |
Collapse
|
4
|
Barati M, Mirzavi F, Atabaki M, Bibak B, Mohammadi M, Jaafari MR. A review of PD-1/PD-L1 siRNA delivery systems in immune T cells and cancer cells. Int Immunopharmacol 2022; 111:109022. [PMID: 35987146 DOI: 10.1016/j.intimp.2022.109022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Programmed cell death 1 (PD-1) is a member of the CD28/CTLA-4 family of inhibitory immunological checkpoint receptors that's also widely produced by exhausted T lymphocytes in an immunosuppressive tumor microenvironment. PD-1 binds to programmed death ligand (PD-L1) and suppresses anti-cancer activity of T lymphocytes. We examined the current literature on how siRNA delivery systems can be used to target PD-1 and PD-L1, as well as the anti-cancer mechanisms and challenges associated with siRNA molecules. We look at studies that use program death 1 siRNA or program death 1 ligand siRNA to treat cancer. Several databases have been used for this purpose, including NCBI, Scopus, and Google Scholar. KEY FINDINGS This study looked at several methods for delivering siRNA to immune cells and cancer cells. According to these findings, suppressing PD-1 in T cells increases T lymphocyte activity. PD-L1 suppression in DCs improves antigen presentation and co-stimulatory signals on their surface, resulting in T cell activation. Chemotherapy resistance and cancer cell suppression of T cells are reduced when PD-L1/2 is suppressed in cancer cells. CONCLUSION The findings of this study indicated that several strategies for siRNA transfection to immune and cancer cells have been evaluated in recent decades, some of which effectively transfect siRNA to target cells, and defined PD-1 siRNA as a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Mehdi Barati
- Department of Pathobiology and Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Atabaki
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Bahram Bibak
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Lin Q, Rong L, Jia X, Li R, Yu B, Hu J, Luo X, Badea SR, Xu C, Fu G, Lai K, Lee MC, Zhang B, Gong H, Zhou N, Chen XL, Lin SH, Fu G, Huang JD. IFN-γ-dependent NK cell activation is essential to metastasis suppression by engineered Salmonella. Nat Commun 2021; 12:2537. [PMID: 33953170 PMCID: PMC8099885 DOI: 10.1038/s41467-021-22755-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Metastasis accounts for 90% of cancer-related deaths and, currently, there are no effective clinical therapies to block the metastatic cascade. A need to develop novel therapies specifically targeting fundamental metastasis processes remains urgent. Here, we demonstrate that Salmonella YB1, an engineered oxygen-sensitive strain, potently inhibits metastasis of a broad range of cancers. This process requires both IFN-γ and NK cells, as the absence of IFN-γ greatly reduces, whilst depletion of NK cells in vivo completely abolishes, the anti-metastatic ability of Salmonella. Mechanistically, we find that IFN-γ is mainly produced by NK cells during early Salmonella infection, and in turn, IFN-γ promotes the accumulation, activation, and cytotoxicity of NK cells, which kill the metastatic cancer cells thus achieving an anti-metastatic effect. Our findings highlight the significance of a self-regulatory feedback loop of NK cells in inhibiting metastasis, pointing a possible approach to develop anti-metastatic therapies by harnessing the power of NK cells.
Collapse
Affiliation(s)
- Qiubin Lin
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), Hangzhou, China
| | - Li Rong
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Xian Jia
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Medicine, Xiamen University, Xiamen, China
| | - Renhao Li
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Bin Yu
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Jingchu Hu
- grid.9227.e0000000119573309Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiao Luo
- grid.9227.e0000000119573309Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - S. R. Badea
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Chen Xu
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Guofeng Fu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Medicine, Xiamen University, Xiamen, China
| | - Kejiong Lai
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Medicine, Xiamen University, Xiamen, China
| | - Ming-chun Lee
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Baozhong Zhang
- grid.9227.e0000000119573309Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huarui Gong
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Nan Zhou
- grid.9227.e0000000119573309Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiao Lei Chen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Medicine, Xiamen University, Xiamen, China ,grid.12955.3a0000 0001 2264 7233Cancer Research Center of Xiamen University, Xiamen, China
| | - Shu-hai Lin
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Medicine, Xiamen University, Xiamen, China
| | - Guo Fu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Medicine, Xiamen University, Xiamen, China ,grid.12955.3a0000 0001 2264 7233Cancer Research Center of Xiamen University, Xiamen, China
| | - Jian-Dong Huang
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), Hangzhou, China ,grid.9227.e0000000119573309Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
6
|
Malla WA, Arora R, Khan RIN, Mahajan S, Tiwari AK. Apoptin as a Tumor-Specific Therapeutic Agent: Current Perspective on Mechanism of Action and Delivery Systems. Front Cell Dev Biol 2020; 8:524. [PMID: 32671070 PMCID: PMC7330108 DOI: 10.3389/fcell.2020.00524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide in humans and animals. Conventional treatment regimens often fail to produce the desired outcome due to disturbances in cell physiology that arise during the process of transformation. Additionally, development of treatment regimens with no or minimum side-effects is one of the thrust areas of modern cancer research. Oncolytic viral gene therapy employs certain viral genes which on ectopic expression find and selectively destroy malignant cells, thereby achieving tumor cell death without harming the normal cells in the neighborhood. Apoptin, encoded by Chicken Infectious Anemia Virus' VP3 gene, is a proline-rich protein capable of inducing apoptosis in cancer cells in a selective manner. In normal cells, the filamentous Apoptin becomes aggregated toward the cell margins, but is eventually degraded by proteasomes without harming the cells. In malignant cells, after activation by phosphorylation by a cancer cell-specific kinase whose identity is disputed, Apoptin accumulates in the nucleus, undergoes aggregation to form multimers, and prevents the dividing cancer cells from repairing their DNA lesions, thereby forcing them to undergo apoptosis. In this review, we discuss the present knowledge about the structure of Apoptin protein, elaborate on its mechanism of action, and summarize various strategies that have been used to deliver it as an anticancer drug in various cancer models.
Collapse
Affiliation(s)
- Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Richa Arora
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sonalika Mahajan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardisation, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
7
|
Wu Y, Feng Z, Jiang S, Chen J, Zhan Y, Chen J. Secreting-lux/pT-ClyA engineered bacteria suppresses tumor growth via interleukin-1β in two pathways. AMB Express 2019; 9:189. [PMID: 31754923 PMCID: PMC6872689 DOI: 10.1186/s13568-019-0910-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023] Open
Abstract
Engineered Salmonella typhimurium (S.t-ΔpGlux/pT-ClyA) and attenuated Salmonella typhimurium (SL: Salmonella typhimurium with a defect in the synthesis of guanine 5′-diphosphate-3′-diphosphate) exhibit similar tumor targeting capabilities (Kim et al. in Theranostics 5:1328–1342, 2015; Jiang et al. in Mol Ther 18:635–642, 2013), but S.t-ΔpGlux/pT-ClyA exerts superior tumor suppressive effects. The aim of this study was to investigate whether S.t-ΔpGlux/pT-ClyA inhibits colon cancer growth and recurrence by promoting increased IL-1β production. The CT26 tumor mouse model was used, and mice were treated in the following ways: PBS, S.t-ΔpGlux/pT-ClyA(+) + IL-1βAb, SL, S.t-ΔpGlux/pT-ClyA(−), and S.t-ΔpGlux/pT-ClyA(+). Dynamic evaluation of the efficacy of S.t-ΔpGlux/pT-ClyA in the treatment of colon cancer was assessed by MRI. Western blot, immunofluorescence and flow cytometry analysis were used to investigate IL-1β-derived cells and IL-1β expression on tumor cells and immune cells to analyze the regulatory mechanism. IL-1β levels in tumors colonized by S.t-ΔpGlux/pT-ClyA were significantly increased and maintained at high levels compared to control treatments. This increase caused tumors to subside without recurrence. We examined the immune cells mediating S.t-ΔpGlux/pT-ClyA-induced tumor suppression and examined the major cell types producing IL-1β. We found that macrophages and dendritic cells were the primary IL-1β producers. Inhibition of IL-1β in mice treated with S.t-ΔpGlux/pT-ClyA using an IL-1β antibody caused tumor growth to resume. This suggests that IL-1β plays an important role in the treatment of cancer by S.t-ΔpGlux/pT-ClyA. We found that in St-ΔpGlux/pT-ClyA-treated tumors, expression of molecules involved in signaling pathways, such as NLRP3, ASC, Caspase1, TLR4, MyD88, NF-kB and IL-1β, were upregulated, while in ΔppGpp S. typhimurium treated animals, TLR4, MyD88, NF-kB and IL-1β were upregulated with NLRP3, ASC, and Caspase1 being rarely expressed or not expressed at all. Using S.t-ΔpGlux/pT-ClyA may simultaneously activate TLR4 and NLRP3 signaling pathways, which increase IL-1β expression and enhance inhibition of colon cancer growth without tumor recurrence. This study provides a novel platform for treating colon cancer.
Collapse
|
8
|
Zhao T, Feng Y, Guo M, Zhang C, Wu Q, Chen J, Guo S, Liu S, Zhou Q, Wang Z, Fan W, Zhang Y, Jia H, Feng Z. Combination of attenuated
Salmonella
carrying PD‐1 siRNA with nifuroxazide for colon cancer therapy. J Cell Biochem 2019; 121:1973-1985. [DOI: 10.1002/jcb.29432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/10/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Tiesuo Zhao
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy Xinxiang Medical University Xinxiang Henan China
- Department of Immunology Xinxiang Medical University Xinxiang Henan China
| | - Yuchen Feng
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
- Department of Immunology Xinxiang Medical University Xinxiang Henan China
- Department of Interventional Radiology The First Hospital of Handan Handan China
| | - Mengmeng Guo
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
- Department of Pathology Xinxiang Medical University Xinxiang Henan China
| | - Chaohui Zhang
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
| | - Qiang Wu
- Department of Pathology Xinxiang Medical University Xinxiang Henan China
| | - Jian Chen
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
| | - Sheng Guo
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
- Department of Immunology Xinxiang Medical University Xinxiang Henan China
| | - Shenzhen Liu
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
| | - Qingsa Zhou
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
| | - Zizhong Wang
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
| | - Wenyan Fan
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
| | - Yongxi Zhang
- Department of Oncology The Third Affiliated Hospital of Xinxiang Medical University Xinxiang Henan China
| | - Huijie Jia
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy Xinxiang Medical University Xinxiang Henan China
- Department of Pathology Xinxiang Medical University Xinxiang Henan China
| | - Zhiwei Feng
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy Xinxiang Medical University Xinxiang Henan China
- Department of Immunology Xinxiang Medical University Xinxiang Henan China
| |
Collapse
|
9
|
PD-1-siRNA delivered by attenuated Salmonella enhances the antimelanoma effect of pimozide. Cell Death Dis 2019; 10:164. [PMID: 30778049 PMCID: PMC6379487 DOI: 10.1038/s41419-019-1418-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Melanoma is one of the most aggressive skin cancers worldwide. Although there has been much effort toward improving treatment options over the past few years, there remains an urgent need for effective therapy. Immunotherapy combined with chemotherapy has shown great promise in clinical trials. Here, we studied the cooperative effects of the small molecule drug pimozide, which has a therapeutic effect in melanoma, and RNA interference (RNAi) targeting PD-1, an important immune checkpoint molecule involved in tumor immune escape. PD-1 siRNA was delivered by attenuated Salmonella to melanoma-bearing mice in combination with pimozide. Our results demonstrated that the combination therapy had the optimal therapeutic effect on melanoma. The mechanisms underlying the efficacy involved the induction of apoptosis and an enhanced immune response. This study suggests that immunotherapy based on PD-1 inhibition combined with anticancer drugs could be a promising clinical strategy for the treatment of melanoma.
Collapse
|