1
|
Wu W, Zhu L, Dou Z, Hou Q, Wang S, Yuan Z, Li B. Ghrelin in Focus: Dissecting Its Critical Roles in Gastrointestinal Pathologies and Therapies. Curr Issues Mol Biol 2024; 46:948-964. [PMID: 38275675 PMCID: PMC10813987 DOI: 10.3390/cimb46010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
This review elucidates the critical role of ghrelin, a peptide hormone mainly synthesized in the stomach in various gastrointestinal (GI) diseases. Ghrelin participates in diverse biological functions ranging from appetite regulation to impacting autophagy and apoptosis. In sepsis, it reduces intestinal barrier damage by inhibiting inflammatory responses, enhancing GI blood flow, and modulating cellular processes like autophagy and apoptosis. Notably, in inflammatory bowel disease (IBD), serum ghrelin levels serve as markers for distinguishing between active and remission phases, underscoring its potential in IBD treatment. In gastric cancer, ghrelin acts as an early risk marker, and due to its significant role in increasing the proliferation and migration of gastric cancer cells, the ghrelin-GHS-R axis is poised to become a target for gastric cancer treatment. The role of ghrelin in colorectal cancer (CRC) remains controversial; however, ghrelin analogs have demonstrated substantial benefits in treating cachexia associated with CRC, highlighting the therapeutic potential of ghrelin. Nonetheless, the complex interplay between ghrelin's protective and potential tumorigenic effects necessitates a cautious approach to its therapeutic application. In post-GI surgery scenarios, ghrelin and its analogs could be instrumental in enhancing recovery and reducing complications. This article accentuates ghrelin's multifunctionality, shedding light on its influence on disease mechanisms, including inflammatory responses and cancer progression, and examines its therapeutic potential in GI surgeries and disorders, advocating for continued research in this evolving field.
Collapse
Affiliation(s)
- Wei Wu
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Lei Zhu
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China; (L.Z.); (Z.D.)
| | - Zhimin Dou
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China; (L.Z.); (Z.D.)
| | - Qiliang Hou
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Sen Wang
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Ziqian Yuan
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Bin Li
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China; (L.Z.); (Z.D.)
| |
Collapse
|
2
|
Zhu L, Dou Z, Wu W, Hou Q, Wang S, Yuan Z, Li B, Liu J. Ghrelin/GHSR Axis Induced M2 Macrophage and Alleviated Intestinal Barrier Dysfunction in a Sepsis Rat Model by Inactivating E2F1/NF- κB Signaling. Can J Gastroenterol Hepatol 2023; 2023:1629777. [PMID: 38187112 PMCID: PMC10769719 DOI: 10.1155/2023/1629777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Sepsis is an inflammatory reaction disorder state that is induced by infection. The activation and regulation of the immune system play an essential role in the development of sepsis. Our previous studies have shown that ghrelin ameliorates intestinal dysfunction in sepsis. Very little is known about the mechanism of ghrelin and its receptor (GHSR) on the intestinal barrier and the immune function of macrophage regulation. Our research is to investigate the regulatory effect and molecular mechanism of the ghrelin/GHSR axis on intestinal dysfunction and macrophage polarization in septic rats. A rat model of sepsis was established by cecal ligation and puncture (CLP) operation. Then, the sepsis rats were treated with a ghrelin receptor agonist (TZP-101) or ghrelin inhibitor (obestatin). The results suggested that TZP-101 further enhanced ghrelin and GHSR expressions in the colon and spleen of septic rats and obestatin showed the opposite results. Ghrelin/GHSR axis ameliorated colonic structural destruction and intestinal epithelial tight junction injury in septic rats. In addition, the ghrelin/GHSR axis promoted M2-type polarization of macrophages, which was characterized by the decreases of IL-1β, IL-6, and TNF-α, as well as the increase of IL-10. Mechanistically, the ghrelin/GHSR axis promoted E2F2 expression and suppressed the activation of the NF-κB signaling pathway in septic rats. Collectively, targeting ghrelin/GHSR during sepsis may represent a novel therapeutic approach for the treatment of intestinal barrier injury.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Zhimin Dou
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wei Wu
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qiliang Hou
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Sen Wang
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ziqian Yuan
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Bin Li
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jian Liu
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Zhang X, Zeng Z, Liu Y, Liu D. Emerging Relevance of Ghrelin in Programmed Cell Death and Its Application in Diseases. Int J Mol Sci 2023; 24:17254. [PMID: 38139082 PMCID: PMC10743592 DOI: 10.3390/ijms242417254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Ghrelin, comprising 28 amino acids, was initially discovered as a hormone that promotes growth hormones. The original focus was on the effects of ghrelin on controlling hunger and satiation. As the research further develops, the research scope of ghrelin has expanded to a wide range of systems and diseases. Nevertheless, the specific mechanisms remain incompletely understood. In recent years, substantial studies have demonstrated that ghrelin has anti-inflammatory, antioxidant, antiapoptotic, and other effects, which could affect the signaling pathways of various kinds of programmed cell death (PCD) in treating diseases. However, the regulatory mechanisms underlying the function of ghrelin in different kinds of PCD have not been thoroughly illuminated. This review describes the relationship between ghrelin and four kinds of PCD (apoptosis, necroptosis, autophagy, and pyroptosis) and then introduces the clinical applications based on the different features of ghrelin.
Collapse
Affiliation(s)
- Xue Zhang
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Zihan Zeng
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Yaning Liu
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Dan Liu
- School of Pharmacy, Nanchang University, Nanchang 330006, China
| |
Collapse
|
4
|
Cai Z, He J, Jiang J, Zhao Z, Shu Y. Systematic investigation of the material basis, multiple mechanisms and quality control of Simiao Yong'an decoction combined with antibiotic in the treatment of sepsis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154910. [PMID: 37267690 DOI: 10.1016/j.phymed.2023.154910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Sepsis is one of the major threats to human health with high mortality. Simiao Yong'an decoction (SMYAD) has the efficacy of anti-inflammation, improving coagulation and microcirculation, which is applicable for the clinical assistance treatment of sepsis. Yet, its material basis and relevant mechanisms are still vague. PURPOSE Explore the quality markers (Q-markers), biomarkers and potential mechanisms of SMYAD combined with imipenem/cilastatin sodium for anti-sepsis. METHODS Linear-Trap-LC/MSn was employed to profile the compounds in the extract and medicated serum of SMYAD. Then, the components and targets obtained from databases were applied to network pharmacology. Q-markers' range was narrowed via the affinity of three times docking and determined as per its screening criteria. Also, the content of them was detected by HPLC. Next, cecal ligation and puncture (CLP) model was reproduced to observe the effect of SMYAD united antibiotic by survival rate, histopathology score, ELISA, western blot and qPCR. Finally, metabolomics based upon GC-MS was exerted to discover the differential endogenous metabolites, metabolic pathway and joint pathway of SMYAD combined with antibiotic for sepsis. RESULTS The 25 serum migrant ingredients derived from 113 chemical compounds of SMYAD were identified for the first time, and 6 components were determined as the Q-markers of SMYAD. The enrichment analysis indicated that the potential mechanism was mainly associated with the IL-17 signaling pathway, complement-coagulation cascades signaling pathway and VEGF signaling pathway. Then, SMYAD united antibiotic declined the mortality of septic rats, restored cytokine levels, ameliorated histopathological lesions and decreased the mRNA and protein expression of target proteins in a dose-dependent way. Furthermore, 8 differential metabolites were regarded as latent biomarkers related to the antiseptic effect of SMYAD united antibiotic, which were mainly involved in the Citrate cycle (TCA cycle) metabolic pathway. CONCLUSIONS Different skeletons of compounds, including iridoids, phenylpropanoids, organic acids, triterpenes and others, were the main compositions of SMYAD. Among them, 6 components were determined as the Q-markers, which provided a basis for the construction of quality standards for this ancient classic formula. The combination therapy of SMYAD and antibiotic obviously ameliorated inflammatory reaction, coagulation dysfunction and microcirculation abnormalities for sepsis by inhibiting IL-17 signaling pathway, complement-coagulation cascades signaling pathway and VEGF signaling pathway.
Collapse
Affiliation(s)
- Zhihui Cai
- School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jinjin He
- School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jun Jiang
- School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Zihan Zhao
- School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ye Shu
- School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
5
|
Cao YY, Qiao Y, Wang ZH, Chen Q, Qi YP, Lu ZM, Wang Z, Lu WH. The Polo-Like Kinase 1-Mammalian Target of Rapamycin Axis Regulates Autophagy to Prevent Intestinal Barrier Dysfunction During Sepsis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:296-312. [PMID: 36509119 DOI: 10.1016/j.ajpath.2022.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
The intestines play a crucial role in the development of sepsis. The balance between autophagy and apoptosis in intestinal epithelial cells is dynamic and determines intestinal permeability. The present study focused on the potential role of autophagy in sepsis-induced intestinal barrier dysfunction and explored the mechanisms in vivo and in vitro. Excessive apoptosis in intestinal epithelia and a disrupted intestinal barrier were observed in septic mice. Promoting autophagy with rapamycin reduced intestinal epithelial apoptosis and restored intestinal barrier function, presenting as decreased serum diamine oxidase (DAO) and fluorescein isothiocyanate-dextran 40 (FD40) levels and increased expression of zonula occludens-1 (ZO-1) and Occludin. Polo-like kinase 1 (PLK1) knockdown in mice ameliorated intestinal epithelial apoptosis and the intestinal barrier during sepsis, whereas these effects were reduced with chloroquine and enhanced with rapamycin. PLK1 also promoted cell autophagy and improved lipopolysaccharide-induced apoptosis and high permeability in vitro. Moreover, PLK1 physically interacted with mammalian target of rapamycin (mTOR) and participated in reciprocal regulatory crosstalk in intestinal epithelial cells during sepsis. This study provides novel insight into the role of autophagy in sepsis-induced intestinal barrier dysfunction and indicates that the PLK1-mTOR axis may be a promising therapeutic target for sepsis.
Collapse
Affiliation(s)
- Ying-Ya Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China
| | - Yang Qiao
- Department of Anesthesiology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Zhong-Han Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China
| | - Qun Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China
| | - Yu-Peng Qi
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China
| | - Zi-Meng Lu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Zhen Wang
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Wei-Hua Lu
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China.
| |
Collapse
|
6
|
Zhu X, Wu J, Zheng SW, Liu G, Zou YC. Ghrelin Inhibits ACL Derived Fibroblasts Pyroptosis and Promotes Migration Through Regulating NF-κB p65/NLRP3 Signaling. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Yue J, Tan Y, Huan R, Guo J, Yang S, Deng M, Xiong Y, Han G, Liu L, Liu J, Cheng Y, Zha Y, Zhang J. Mast cell activation mediates blood-brain barrier impairment and cognitive dysfunction in septic mice in a histamine-dependent pathway. Front Immunol 2023; 14:1090288. [PMID: 36817492 PMCID: PMC9929573 DOI: 10.3389/fimmu.2023.1090288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Sepsis-associated encephalopathy (SAE) is a diffuse cerebral dysfunction resulting from a systemic inflammatory response to infection; however, its pathophysiology remains unclear. Sepsis-induced neuroinflammation and blood-brain barrier (BBB) disruption are crucial factors in brain function disturbance in SAE. Mast cells (MCs) activation plays an important role in several neuroinflammation models; however, its role in SAE has not been comprehensively investigated. Methods We first established a SAE model by cecal ligation puncture (CLP) surgery and checked the activation of MCs. MCs activation was checked using immumohistochemical staining and Toluidine Blue staining. We administrated cromolyn (10mg/ml), a MC stabilizer, to rescue the septic mice. Brain cytokines levels were measured using biochemical assays. BBB disruption was assessed by measuring levels of key tight-junction (TJ) proteins. Cognitive function of mice was analyzed by Y maze and open field test. Transwell cultures of brain microvascular endothelial cells (BMVECs) co-cultured with MCs were used to assess the interaction of BMVECs and MCs. Results Results showed that MCs were overactivated in the hippocampus of CLP-induced SAE mice. Cromolyn intracerebroventricular (i.c.v) injection substantially inhibited the MCs activation and neuroinflammation responses, ameliorated BBB impairment, improved the survival rate and alleviated cognitive dysfunction in septic mice. In vitro experiments, we revealed that MCs activation increased the sensitivity of BMVECs against to lipopolysaccharide (LPS) challenge. Furthermore, we found that the histamine/histamine 1 receptor (H1R) mediated the interaction between MCs and BMVECs, and amplifies the LPS-induced inflammatory responses in BMVECs by modulating the TLR2/4-MAPK signaling pathway. Conclusions MCs activation could mediate BBB impairment and cognitive dysfunction in septic mice in a histamine-dependent pathway.
Collapse
Affiliation(s)
- Jianhe Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Renzheng Huan
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Guo
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Sha Yang
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Mei Deng
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yunbiao Xiong
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lin Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
8
|
The Effect of Ghrelin on Apoptosis, Necroptosis and Autophagy Programmed Cell Death Pathways in the Hippocampal Neurons of Amyloid-β 1–42-Induced Rat Model of Alzheimer’s Disease. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Jiang M, Wan S, Dai X, Ye Y, Hua W, Ma G, Pang X, Wang H, Shi B. Protective effect of ghrelin on intestinal I/R injury in rats. Open Med (Wars) 2022; 17:1308-1317. [PMID: 35937002 PMCID: PMC9307145 DOI: 10.1515/med-2022-0520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
This study aimed to investigate whether ghrelin affected the autophagy and inflammatory response of intestinal intraepithelial lymphocytes (IELs) by regulating the NOD2/Beclin-1 pathway in an intestinal ischemia–reperfusion (I/R) injury model. Twenty hours after implementing the intestinal I/R injury rat model, the small intestine and both lungs were collected for histological analysis. The morphological changes in the intestinal mucosa epithelium and lung tissues were evaluated using hematoxylin-eosin staining. The activity of autophagic vacuoles and organ injury were evaluated using electron microscopy. The cytokine levels (IL-10 and TNF-α) in IEL cells and lung tissue were determined using enzyme-linked immunosorbent assay. RT-qPCR and western blot assays were conducted to check the NOD2, Beclin-1, and ATG16 levels. Ghrelin relieved the I/R-induced destruction of the intestinal mucosa epithelium and lung tissues. Moreover, ghrelin enhanced autophagy in the intestinal epithelium and lungs of I/R rats. In addition, the levels of autophagy-associated proteins (Beclin-1, ATG16, and NOD2) were higher in the ghrelin treatment group than in rats with I/R. Ghrelin reduced significantly the IL-10 and TNF-α levels. However, these changes were reversed by the NOD2 antagonist. In conclusion, ghrelin may relieve I/R-induced acute intestinal mucosal damage, autophagy disorder, and inflammatory response in IELs by regulating the NOD2/Beclin-1 pathway.
Collapse
Affiliation(s)
- Meng Jiang
- Department of Emergency Intensive Care Unit, Yangpu Hospital, Tongji University , Shanghai 200090 , China
| | - Shengxia Wan
- Department of Neurology, The Fourth Affiliated Hospital of Jiangsu University , Zhenjiang 212000 , China
| | - Xiaoyong Dai
- Department of Emergency Intensive Care Unit, Yangpu Hospital, Tongji University , Shanghai 200090 , China
| | - Youwen Ye
- Department of Emergency Intensive Care Unit, Yangpu Hospital, Tongji University , Shanghai 200090 , China
| | - Wei Hua
- Department of Emergency Intensive Care Unit, Yangpu Hospital, Tongji University , Shanghai 200090 , China
| | - Guoguang Ma
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University , Shanghai 200032 , China
| | - Xiufeng Pang
- Department of Emergency Intensive Care Unit, Yangpu Hospital, Tongji University , Shanghai 200090 , China
| | - Huanhuan Wang
- Department of Emergency Intensive Care Unit, Yangpu Hospital, Tongji University , Shanghai 200090 , China
| | - Bin Shi
- Department of Emergency Intensive Care Unit, Yangpu Hospital, Tongji University , Shanghai 200090 , China
| |
Collapse
|
10
|
Dou X, Yan D, Liu S, Gao L, Shan A. Thymol Alleviates LPS-Induced Liver Inflammation and Apoptosis by Inhibiting NLRP3 Inflammasome Activation and the AMPK-mTOR-Autophagy Pathway. Nutrients 2022; 14:nu14142809. [PMID: 35889766 PMCID: PMC9319298 DOI: 10.3390/nu14142809] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/17/2023] Open
Abstract
Thymol is a natural antibacterial agent found in the essential oil extracted from thyme, which has been proven to be beneficial in food and medicine. Meanwhile, the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome and autophagy have been reported to play key roles in the progression of liver injury. However, the effects of thymol on the NLRP3 inflammasome and autophagy in protecting the liver remain unclear. The present study used a mouse model with liver injury induced by lipopolysaccharides (LPS) to investigate the regulatory mechanisms of thymol. We found that thymol alleviated LPS-induced liver structural damage, as judged by reduced inflammatory cell infiltration and improved structure. In addition, elevated levels of the liver damage indicators (alanine transaminase (ALT), aspartate transaminase (AST), and total bilirubin (TBIL)) dropped after thymol administration. The mRNA and protein expression of inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-22), apoptosis-related genes (caspase3 and caspase9), and the activity of apoptosis-related genes (caspase3 and caspase9) were increased in LPS-treated livers, whereas the changes were alleviated after thymol administration. Thymol inhibited LPS-induced increment in lactate dehydrogenase (LDH) activity in primary hepatocytes of the mouse. In addition, thymol protected mice from liver injury by inhibiting NLRP3 inflammasome activation induced by LPS. Mechanistically, the present study indicates that thymol has liver protective activity resulting from the modulation of the AMP-activated protein kinase—mammalian target of rapamycin (AMPK–mTOR) to regulate the autophagy pathway, hence curbing inflammation.
Collapse
|
11
|
Wang M, Guo S, Zhang Y, Zhang Y, Zhang H. Remifentanil attenuates sepsis-induced intestinal injury by inducing autophagy. Bioengineered 2021; 12:9575-9584. [PMID: 34709123 PMCID: PMC8809909 DOI: 10.1080/21655979.2021.1997562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Remifentanil (RFT), extensively used for general anesthesia, is a synthetic ultra-short-acting opioid used as an anti-inflammatory oxidant to alleviate a plethora of diseases. This study was designed to determine whether RFT would provide protective effects on sepsis-induced intestinal injury.The determination of cell viability and inflammation of LPS-treated IEC-6 cells influenced by RFT was conducted by Cell counting Kit-8 (CCK-8), RT-qPCR, and western blot, while the detection of LDH, diamine oxidase (DAO), and intestinal-type fatty acid binding proteins (I-FABP) was conducted for determining the intestinal cytotoxicity in these cells. The apoptosis of these cells was detected by TUNEL, with autophagy-related protein expression measured by western blot to confirm whether autophagy was activated. Finally, the aforementioned assays were conducted again after 3-Methyladenine (3-MA), an autophagy inhibitor, was used on these cells to investigate whether RFT exerted its effects on LPS-treated IEC-6 cells via modulation of autophagy.RFT alleviates LPS-induced IEC-6 cell inflammation, cytotoxicity and apoptosis, and autophagy-related proteins were expressed at higher levels when RFT was used on these cells. Nevertheless, further treatment of 3-MA weakened the restorative impacts of RFT on the inflammation, cytotoxicity and apoptosis of these cells.To conclude, this paper is the first to present evidence that RFT attenuates sepsis-induced intestinal injury by inducing autophagy, which will provide instructions for the future investigations into the use of RFT in treatment of intestinal injury.
Collapse
Affiliation(s)
- Mingli Wang
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Shiqi Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Yu Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Yao Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Hong Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| |
Collapse
|
12
|
Wasyluk W, Wasyluk M, Zwolak A. Sepsis as a Pan-Endocrine Illness-Endocrine Disorders in Septic Patients. J Clin Med 2021; 10:jcm10102075. [PMID: 34066289 PMCID: PMC8152097 DOI: 10.3390/jcm10102075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
Sepsis is defined as "life-threatening organ dysfunction caused by a dysregulated host response to infection". One of the elements of dysregulated host response is an endocrine system disorder. Changes in its functioning in the course of sepsis affect almost all hormonal axes. In sepsis, a function disturbance of the hypothalamic-pituitary-adrenal axis has been described, in the range of which the most important seems to be hypercortisolemia in the acute phase. Imbalance in the hypothalamic-pituitary-thyroid axis is also described. The most typical manifestation is a triiodothyronine concentration decrease and reverse triiodothyronine concentration increase. In the somatotropic axis, a change in the secretion pattern of growth hormone and peripheral resistance to this hormone has been described. In the hypothalamic-pituitary-gonadal axis, the reduction in testosterone concentration in men and the stress-induced "hypothalamic amenorrhea" in women have been described. Catecholamine and β-adrenergic stimulation disorders have also been reported. Disorders in the endocrine system are part of the "dysregulated host response to infection". They may also affect other components of this dysregulated response, such as metabolism. Hormonal changes occurring in the course of sepsis require further research, not only in order to explore their potential significance in therapy, but also due to their promising prognostic value.
Collapse
Affiliation(s)
- Weronika Wasyluk
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
- Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| | - Martyna Wasyluk
- Student’s Scientific Association at Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Agnieszka Zwolak
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
13
|
Mathur N, Mehdi SF, Anipindi M, Aziz M, Khan SA, Kondakindi H, Lowell B, Wang P, Roth J. Ghrelin as an Anti-Sepsis Peptide: Review. Front Immunol 2021; 11:610363. [PMID: 33584688 PMCID: PMC7876230 DOI: 10.3389/fimmu.2020.610363] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Sepsis continues to produce widespread inflammation, illness, and death, prompting intensive research aimed at uncovering causes and therapies. In this article, we focus on ghrelin, an endogenous peptide with promise as a potent anti-inflammatory agent. Ghrelin was discovered, tracked, and isolated from stomach cells based on its ability to stimulate release of growth hormone. It also stimulates appetite and is shown to be anti-inflammatory in a wide range of tissues. The anti-inflammatory effects mediated by ghrelin are a result of both the stimulation of anti-inflammatory processes and an inhibition of pro-inflammatory forces. Anti-inflammatory processes are promoted in a broad range of tissues including the hypothalamus and vagus nerve as well as in a broad range of immune cells. Aged rodents have reduced levels of growth hormone (GH) and diminished immune responses; ghrelin administration boosts GH levels and immune response. The anti-inflammatory functions of ghrelin, well displayed in preclinical animal models of sepsis, are just being charted in patients, with expectations that ghrelin and growth hormone might improve outcomes in patients with sepsis.
Collapse
Affiliation(s)
- Nimisha Mathur
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Syed F. Mehdi
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Manasa Anipindi
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Sawleha A. Khan
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Hema Kondakindi
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Barbara Lowell
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ping Wang
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Jesse Roth
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
14
|
Reich N, Hölscher C. Acylated Ghrelin as a Multi-Targeted Therapy for Alzheimer's and Parkinson's Disease. Front Neurosci 2020; 14:614828. [PMID: 33381011 PMCID: PMC7767977 DOI: 10.3389/fnins.2020.614828] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Much thought has been given to the impact of Amyloid Beta, Tau and Alpha-Synuclein in the development of Alzheimer's disease (AD) and Parkinson's disease (PD), yet the clinical failures of the recent decades indicate that there are further pathological mechanisms at work. Indeed, besides amyloids, AD and PD are characterized by the culminative interplay of oxidative stress, mitochondrial dysfunction and hyperfission, defective autophagy and mitophagy, systemic inflammation, BBB and vascular damage, demyelination, cerebral insulin resistance, the loss of dopamine production in PD, impaired neurogenesis and, of course, widespread axonal, synaptic and neuronal degeneration that leads to cognitive and motor impediments. Interestingly, the acylated form of the hormone ghrelin has shown the potential to ameliorate the latter pathologic changes, although some studies indicate a few complications that need to be considered in the long-term administration of the hormone. As such, this review will illustrate the wide-ranging neuroprotective properties of acylated ghrelin and critically evaluate the hormone's therapeutic benefits for the treatment of AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical & Life Sciences Division, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, A Second Hospital, Shanxi Medical University, Taiyuan, China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
15
|
Pan HH, Zhou XX, Ma YY, Pan WS, Zhao F, Yu MS, Liu JQ. Resveratrol alleviates intestinal mucosal barrier dysfunction in dextran sulfate sodium-induced colitis mice by enhancing autophagy. World J Gastroenterol 2020; 26:4945-4959. [PMID: 32952341 PMCID: PMC7476174 DOI: 10.3748/wjg.v26.i33.4945] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/27/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intestinal mucosal barrier dysfunction plays an important role in the pathogenesis of ulcerative colitis (UC). Recent studies have revealed that impaired autophagy is associated with intestinal mucosal dysfunction in the mucosa of colitis mice. Resveratrol exerts anti-inflammatory functions by regulating autophagy.
AIM To investigate the effect and mechanism of resveratrol on protecting the integrity of the intestinal mucosal barrier and anti-inflammation in dextran sulfate sodium (DSS)-induced ulcerative colitis mice.
METHODS Male C57BL/6 mice were divided into four groups: negative control group, DSS model group, DSS + resveratrol group, and DSS + 5-aminosalicylic acid group. The severity of colitis was assessed by the disease activity index, serum inflammatory cytokines were detected by enzyme-linked immunosorbent assay. Colon tissues were stained with haematoxylin and eosin, and mucosal damage was evaluated by mean histological score. The expression of occludin and ZO-1 in colon tissue was evaluated using immunohistochemical analysis. In addition, the expression of autophagy-related genes was determined using reverse transcription-polymerase chain reaction and Western-blot, and morphology of autophagy was observed by transmission electron microscopy.
RESULTS The resveratrol treatment group showed a 1.72-fold decrease in disease activity index scores and 1.42, 3.81, and 1.65-fold decrease in the production of the inflammatory cytokine tumor necrosis factor-α, interleukin-6 and interleukin-1β, respectively, in DSS-induced colitis mice compared with DSS group (P < 0.05). The expressions of the tight junction proteins occludin and ZO-1 in DSS model group were decreased, and were increased in resveratrol-treated colitis group. Resveratrol also increased the levels of LC3B (by 1.39-fold compared with DSS group) and Beclin-1 (by 1.49-fold compared with DSS group) (P < 0.05), as well as the number of autophagosomes, which implies that the resveratrol may alleviate intestinal mucosal barrier dysfunction in DSS-induced UC mice by enhancing autophagy.
CONCLUSION Resveratrol treatment decreased the expression of inflammatory factors, increased the expression of tight junction proteins and alleviated UC intestinal mucosal barrier dysfunction; this effect may be achieved by enhancing autophagy in intestinal epithelial cells.
Collapse
Affiliation(s)
- Hang-Hai Pan
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Xin-Xin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ying-Yu Ma
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Wen-Sheng Pan
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Fei Zhao
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Mo-Sang Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jing-Quan Liu
- Critical Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| |
Collapse
|
16
|
Yuan MJ, Wang T. The new mechanism of Ghrelin/GHSR-1a on autophagy regulation. Peptides 2020; 126:170264. [PMID: 31981593 DOI: 10.1016/j.peptides.2020.170264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/26/2022]
Abstract
Autophagy is associated with several diseases. In recent years, accumulating evidence has suggested that ghrelin pathway exerts a protective effect by regulating autophagy. This review aims to assess the potential role and use of ghrelin as a new treatment for obesity, cardiovascular diseases, nonalcoholic fatty liver disease (NFALD), neurodegenerative diseases, and tissue damage associated with autophagy. Ghrelin reduces the basal expression of autophagy-related genes in obesity-associated type 2 diabetes and ghrelin level changes in obesity, heart failure, and NFALD as well as altered autophagy. Ghrelin and its receptor GHSR-1 activation induce the phosphorylation of ERK1/2 and the induction of PI-3 kinase (PI3 K) and phosphorylation of Akt. In the myocardium and hypothalamic NPY/AgRP neurons, ghrelin increases levels of the intracellular energy sensor AMPK and enhances autophagy, protecting cardiac ischemia and inducing neural stem cells. Nonetheless, ghrelin activates the PI3 K/Akt/Bcl-2 pathway and inhibits the activation of autophagy, such as tissues injured by sepsis or doxorubicin. In conclusion, endogenous ghrelin system could be considered as a new target or treatment for metabolism disorders, cardiac diseases, neurodegenerative diseases, and tissue injuries.
Collapse
Affiliation(s)
- Ming-Jie Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Jiefang Road 238, Wuchang, 430060 Wuhan, China.
| | - Tao Wang
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Zhao Y, Feng X, Li B, Sha J, Wang C, Yang T, Cui H, Fan H. Dexmedetomidine Protects Against Lipopolysaccharide-Induced Acute Kidney Injury by Enhancing Autophagy Through Inhibition of the PI3K/AKT/mTOR Pathway. Front Pharmacol 2020; 11:128. [PMID: 32158395 PMCID: PMC7052304 DOI: 10.3389/fphar.2020.00128] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background Acute kidney injury (AKI) is often secondary to sepsis. Previous studies suggest that damaged mitochondria and the inhibition of autophagy results in AKI during sepsis, but dexmedetomidine (DEX) alleviates lipopolysaccharide (LPS)-induced AKI. However, it is uncertain whether the renoprotection of DEX is related to autophagy or the clearance of damaged mitochondria in sepsis-induced AKI. Methods In this study, AKI was induced in rats by injecting 10 mg/kg of LPS intraperitoneally (i.p.). The rats were also pretreated with DEX (30 μg/kg, i.p.) 30 min before the injection of LPS. The structure and function of kidneys harvested from the rats were evaluated, and the protein levels of autophagy-related proteins, oxidative stress levels, and apoptosis levels were measured. Further, atipamezole (Atip) and 3-Methyladenine (3-MA), which are inhibitors of DEX and autophagy, respectively, were administered before the injection of DEX to examine the protective mechanism of DEX. Results Pretreatment with DEX ameliorated kidney structure and function. DEX decreased the levels of blood urea nitrogen (BUN) and creatinine (Cre), urine kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), reactive oxygen species (ROS), and apoptosis proteins (such as cleaved caspase-9 and cleaved caspase-3). However, DEX upregulated the levels of autophagy and mitophagy proteins, such as Beclin-1, LC3 II and PINK1. These results suggest that DEX ameliorated LPS-induced AKI by reducing oxidative stress and apoptosis and enhancing autophagy. To promote autophagy, DEX inhibited the phosphorylation levels of PI3K, AKT, and mTOR. Furthermore, the administration of Atip and 3-MA inhibitors blocked the renoprotection effects of DEX. Conclusions Here, we demonstrate a novel mechanism in which DEX protects against LPS-induced AKI. DEX enhances autophagy, which results in the removal of damaged mitochondria and reduces oxidative stress and apoptosis in LPS-induced AKI through the α2-AR and inhibition of the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiujing Feng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bei Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jichen Sha
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chaoran Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hailin Cui
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
18
|
Wang F, Lei X, Zhao Y, Yu Q, Li Q, Zhao H, Pei Z. Protective role of thymoquinone in sepsis-induced liver injury in BALB/c mice. Exp Ther Med 2019; 18:1985-1992. [PMID: 31410159 PMCID: PMC6676142 DOI: 10.3892/etm.2019.7779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Sepsis increases the risk of developing liver injury. Previous studies have demonstrated that thymoquinone (TQ) exhibits hepatoprotective properties in vivo as well as in vitro. The present study aimed to investigate the underlying mechanisms of the protective effects of TQ against liver injury in septic BALB/c mice. Male BALB/c mice (age, 8 weeks) were randomly divided into four groups, namely, the control, TQ (50 mg/kg/day) treatment, cecal ligation and puncture (CLP), and TQ + CLP groups. CLP was performed following gavage of TQ for 2 weeks. At 48 h post-CLP, the histopathological alterations in the liver tissue (LT) and plasma levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were assessed. The present study evaluated microtubule-associated protein light chain 3 (LC3), sequestosome-1 (p62) and beclin 1 protein expression by western blotting and immunostaining, as well as interleukin (IL)-6, IL-1β, IL-10, monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) mRNA expression by RT-qPCR. The results of the present study indicated that administration of TQ to mice reduced the histological alterations caused by CLP in LT. TQ inhibited the plasma levels of ALT, AST and ALP in the CLP group. TQ significantly inhibited the elevation of p62, IL-1β, IL-6, MCP-1 and TNF-α levels as well as increased the LC3, beclin 1 and IL-10 levels in LT. PI3K expression in the TQ + CLP group was significantly decreased compared with that in the CLP group. TQ treatment effectively modulated the expression levels of p62, LC3, beclin 1, PI3K and proinflammatory cytokines, and may be an important agent for the treatment of sepsis-induced liver injury.
Collapse
Affiliation(s)
- Fei Wang
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Xiong Lei
- Graduate School of Dalian Medical University, The First Clinical College, Dalian, Liaoning 116044, P.R. China
| | - Yue Zhao
- Graduate School of Dalian Medical University, The First Clinical College, Dalian, Liaoning 116044, P.R. China
| | - Qinggong Yu
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Qianwei Li
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Hui Zhao
- Department of Vascular Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Zuowei Pei
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
19
|
Dong D, Xie J, Wang J. Neuroprotective Effects of Brain-Gut Peptides: A Potential Therapy for Parkinson's Disease. Neurosci Bull 2019; 35:1085-1096. [PMID: 31286411 DOI: 10.1007/s12264-019-00407-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is typically associated with progressive motor and non-motor dysfunctions. Currently, dopamine replacement therapy is mainly used to relieve the motor symptoms, while its long-term application can lead to various complications and does not cure the disease. Numerous studies have demonstrated that many brain-gut peptides have neuroprotective effects in vivo and in vitro, and may be a promising treatment for PD. In recent years, some progress has been made in studies on the neuroprotective effects of some newly-discovered brain-gut peptides, such as glucagon-like peptide 1, pituitary adenylate cyclase activating polypeptide, nesfatin-1, and ghrelin. However, there is still no systematic review on the neuroprotective effects common to these peptides. Thus, here we review the neuroprotective effects and the associated mechanisms of these four peptides, as well as other brain-gut peptides related to PD, in the hope of providing new ideas for the treatment of PD and related clinical research.
Collapse
Affiliation(s)
- Dong Dong
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China.
| | - Jun Wang
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
20
|
Jia J, Gong X, Zhao Y, Yang Z, Ji K, Luan T, Zang B, Li G. Autophagy Enhancing Contributes to the Organ Protective Effect of Alpha-Lipoic Acid in Septic Rats. Front Immunol 2019; 10:1491. [PMID: 31333648 PMCID: PMC6615199 DOI: 10.3389/fimmu.2019.01491] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/14/2019] [Indexed: 12/29/2022] Open
Abstract
Alpha-lipoic acid (ALA) reportedly has protective effects against sepsis, which is a leading cause of mortality worldwide and is associated with multiple organ dysfunction. The present study aimed to investigate further the possible action mechanisms of ALA. Male Sprague-Dawley rats were subjected to cecal ligation and puncture (CLP) in order to establish a sepsis model. The rats received an oral gavage of 200 mg/kg ALA or saline immediately after surgery. The heart rate (HR), left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP) and maximum rising and lowering rates of left ventricular pressure (±dp/dt) were examined for assessing the cardiac function. Blood urea nitrogen (BUN) and serum creatinine levels were assessed for evaluating renal function. Neutrophil gelatinase-associated lipocalin (NAGL) was examined for reflecting acute renal injury. Histopathological alterations of the small intestine were examined by hematoxylin-eosin staining. The ultrastructure of the small intestine and kidney was observed under electron microscopy. The levels of autophagy- and inflammation-associated proteins were determined via western blot analysis. The binding of nuclear factor-kappa B (NF-κB) to DNA was tested via an electrophoretic mobility shift assay. Cell apoptosis was examined using TUNEL staining. ALA treatment improved the survival rate, restored the loss of body weight and pro-inflammatory cytokines production in the serum of CLP-induced septic rats. ALA improved the cardiac and renal functions, downregulated the expression levels of interleukin-1β, tumor necrosis factor-α, and inducible nitric oxide synthase in the myocardium and small intestine of septic rats. ALA treatment also inactivated the NF-κB signaling pathway in the small intestine. An examination of autophagy showed that ALA increased the LC3II/I ratio, upregulated Atg5, Atg7, and beclin-1 and downregulated p62 protein levels in the myocardium, kidney, and small intestine of septic rats, and further promoted autophagosome accumulation in the kidney and small intestine. In addition, ALA could also reduce cell apoptosis in myocardium, kidney and small intestine tissues. These effects can be completely or party inhibited by 3-MA. Our findings suggest that autophagy enhancing may contribute to the organ protective effect of ALA in septic rats.
Collapse
Affiliation(s)
- Jia Jia
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoying Gong
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Zhao
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenyu Yang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kaiqiang Ji
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting Luan
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Zang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guofu Li
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Li B, Lin Q, Guo H, Liu L, Li Y. Ghrelin regulates sepsis‑induced rat acute gastric injury. Mol Med Rep 2019; 19:5424-5432. [PMID: 31059095 PMCID: PMC6522907 DOI: 10.3892/mmr.2019.10208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 03/26/2019] [Indexed: 12/25/2022] Open
Abstract
Ghrelin, a peptide expressed in the gastric mucosa, has an essential role in sustaining the normal function of the digestive system. Sepsis is one of the primary causes of mortality in intensive care units and can lead to multiple organ dysfunction, especially in the gastrointestinal system. The aim of the present study was to explore the effect of ghrelin on gastric blood flow in a rat model of sepsis, as well as the effect of ghrelin on the expression of the apoptotic markers, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X (Bax), in gastric tissues. The sepsis model was established using cecal ligation and puncture (CLP). The expression levels of apoptosis-related factors in gastric epithelial cell were determined by immunohistochemistry, reverse transcription quantitative-PCR and western blotting. Collectively, the present results suggested that ghrelin administration attenuated sepsis symptoms induced by CLP. Blood flow in the stomach greater curvature was significantly higher in the CLP-induced sepsis group rats (284.3±95.7 perfusion units) compared with the sham operation group (317.8±5.2 perfusion units; P<0.05), whereas there was no difference between the CLP group treated with ghrelin (377.8±99.0 perfusion units) and the sham rats. Ghrelin administration also reduced the secretion of pro-inflammatory cytokines compared with the CLP-induced sepsis group rats. In addition, CLP significantly reduced the expression of Bcl-2 and enhanced the expression of the pro-apoptotic proteins, Bax and cleaved caspase-3; whereas, ghrelin application reversed the effects of CLP on these apoptosis-associated proteins. In conclusion, the present study revealed that ghrelin has the ability to increase blood flow in the gastrointestinal tract in a sepsis model and can also regulate the expressions of apoptosis-associated factors in gastric tissues. These results suggest that ghrelin could be a novel treatment for sepsis-induced gastric injury.
Collapse
Affiliation(s)
- Bin Li
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Qingling Lin
- Department of Intensive Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hong Guo
- Department of Intensive Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Liping Liu
- Department of Intensive Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yumin Li
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
22
|
Haussner F, Chakraborty S, Halbgebauer R, Huber-Lang M. Challenge to the Intestinal Mucosa During Sepsis. Front Immunol 2019; 10:891. [PMID: 31114571 PMCID: PMC6502990 DOI: 10.3389/fimmu.2019.00891] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a complex of life-threating organ dysfunction in critically ill patients, with a primary infectious cause or through secondary infection of damaged tissues. The systemic consequences of sepsis have been intensively examined and evidences of local alterations and repercussions in the intestinal mucosal compartment is gradually defining gut-associated changes during sepsis. In the present review, we focus on sepsis-induced dysfunction of the intestinal barrier, consisting of an increased permeability of the epithelial lining, which may facilitate bacterial translocation. We discuss disturbances in intestinal vascular tonus and perfusion and coagulopathies with respect to their proposed underlying molecular mechanisms. The consequences of enzymatic responses by pancreatic proteases, intestinal alkaline phosphatases, and several matrix metalloproteases are also described. We conclude our insight with a discussion on novel therapeutic interventions derived from crucial aspects of the gut mucosal dynamics during sepsis.
Collapse
Affiliation(s)
- Felix Haussner
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Shinjini Chakraborty
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
23
|
Feng Y, Liu B, Zheng X, Chen L, Chen W, Fang Z. The protective role of autophagy in sepsis. Microb Pathog 2019; 131:106-111. [PMID: 30935962 DOI: 10.1016/j.micpath.2019.03.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Sepsis is characterized by life-threatening organ dysfunction caused by a deregulated host response to infection. Autophagy is one of the innate immune defense mechanisms against microbial attack. Previous studies have demonstrated that autophagy is activated initially in sepsis, followed by a subsequent phase of impairment. A number of sepsis-related studies have shown that autophagy plays a protective role in multiple organ injuries partly by clearing pathogens, regulating inflammation and metabolism, inhibiting apoptosis and suppressing immune reactions. In this review, we present a general overview of and recent advances in the role of autophagy in sepsis and consider the therapeutic potential of autophagy activators in treating sepsis.
Collapse
Affiliation(s)
- Ying Feng
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China; Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Boyi Liu
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Xiang Zheng
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Li Chen
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Wei Chen
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Zhicheng Fang
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China.
| |
Collapse
|
24
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
25
|
Wu Y, Wang L, Meng L, Cao GK, Zhao YL, Zhang Y. Biological effects of autophagy in mice with sepsis-induced acute kidney injury. Exp Ther Med 2018; 17:316-322. [PMID: 30651797 PMCID: PMC6307358 DOI: 10.3892/etm.2018.6899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/27/2018] [Indexed: 12/14/2022] Open
Abstract
This study investigated whether autophagy is activated after sepsis-induced acute kidney injury (AKI) and explored its biological role. Seventy-two normal C57 mice were randomly divided into sham operation group, cecal ligation and puncture (CLP) group and CLP+3-MA (autophagy inhibitor) group; 24 mice in each group. Mice in CLP and CLP+3-MA group were treated with cecal ligation to establish sepsis, while mice in sham operation group were treated with the same surgical operations, but not cecal ligation. Blood samples were collected from 12 mice of each group and the levels of serum creatinine (Cr) and blood urea nitrogen (BUN) were measured. The pathological changes were observed. The remaining 12 mice in each group were kept and the survival rate was recorded. Changes in the expressions of autophagy-related proteins were detected by reverse transcription-semi-quantitative PCR and western blotting. The results revealed that the levels of Cr and BUN in CLP and CLP+3-MA group were significantly higher than those in sham operation group (P<0.05), and the levels of Cr and BUN in CLP+3-MA group were higher than those in CLP group (P<0.05). The pathological score of renal injury in CLP+3-MA group was significantly higher than that of CLP group (P<0.01). The expression levels of Beclin1 and LC3-II/I were significantly increased in CLP group compared to sham operation group (P<0.01), while the expression of p62 was decreased (P<0.01). After 3-MA treatment the expression levels of Beclin1 and LC3-II/I were decreased, compared with CLP group, but accumulation of p62 occurred, and the degree of renal injury was increased. In conclusion, AKI induced by sepsis in mice can induce apoptosis and activate autophagy. The activation of autophagy aggravates the renal injury in mice, which in turn inhibits AKI after sepsis.
Collapse
Affiliation(s)
- Yu Wu
- Department of Nephrology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Ling Wang
- Department of Nephrology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Lei Meng
- Department of Intensive Care Unit, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Guang-Ke Cao
- Department of Nephrology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Yu-Liang Zhao
- Department of Nephrology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Yang Zhang
- Department of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
26
|
Jiang Z, Bo L, Meng Y, Wang C, Chen T, Wang C, Yu X, Deng X. Overexpression of homeodomain-interacting protein kinase 2 (HIPK2) attenuates sepsis-mediated liver injury by restoring autophagy. Cell Death Dis 2018; 9:847. [PMID: 30154452 PMCID: PMC6113252 DOI: 10.1038/s41419-018-0838-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
Sepsis is the leading cause of death in intensive care units worldwide. Autophagy has recently been shown to protect against sepsis-induced liver injury. Here, we investigated the roles of homeodomain-interacting protein kinase 2 (HIPK2) in the molecular mechanism of sepsis-induced liver injury. HIPK2 expression was reduced in sepsis-induced liver injury, and HIPK2 overexpression increased the survival rate and improved caecal ligation and puncture (CLP)-induced liver injury by reducing serum and liver aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) levels in mice with sepsis. HIPK2 overexpression significantly decreased CLP-induced release of inflammatory cytokines into the serum and attenuated oxidative stress-associated indicators in mice with CLP-induced liver injury, whereas HIPK2 knockdown produced the opposite results, suggesting that HIPK2 is a negative regulator of sepsis. Furthermore, HIPK2 overexpression inhibited lipopolysaccharide (LPS)-induced apoptosis of primary hepatocytes, increased the autophagic flux, and restored both autophagosome and autolysosome formation in the livers of CLP-induced mice by suppressing calpain signalling. Importantly, HIPK2 overexpression reduced the elevated cytosolic Ca2+ concentration in LPS-treated primary hepatocytes by interacting with calpain 1 and calmodulin. Finally, several anti-inflammatory drugs, including resveratrol, aspirin, vitamin E and ursolic acid, significantly increased the levels of the HIPK2 mRNA and protein by modulating promoter activity and the 3′-UTR stability of the HIPK2 gene. In conclusion, HIPK2 overexpression may improve sepsis-induced liver injury by restoring autophagy and thus might be a promising target for the clinical treatment of sepsis.
Collapse
Affiliation(s)
- Zhengyu Jiang
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yan Meng
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Chen Wang
- Department of Cell Biology, School of Basic Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Tianxing Chen
- School of Life Science, Nanjing University, 210023, Nanjing, Jiangsu Province, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210023, Nanjing, Jiangsu Province, China
| | - Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xiya Yu
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
27
|
Abstract
Ghrelin, a gastric-derived acylated peptide, regulates energy homeostasis by transmitting information about peripheral nutritional status to the brain, and is essential for protecting organisms against famine. Ghrelin operates brain circuits to regulate homeostatic and hedonic feeding. Recent research advances have shed new light on ghrelin's multifaceted roles in cellular homeostasis, which could maintain the internal environment and overcome metaflammation in metabolic organs. Here, we highlight our current understanding of the regulatory mechanisms of the ghrelin system in energy metabolism and cellular homeostasis and its clinical trials. Future studies of ghrelin will further elucidate how the stomach regulates systemic homeostasis.
Collapse
Affiliation(s)
- Shigehisa Yanagi
- Divisions of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Takahiro Sato
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume 839-0864, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Masamitsu Nakazato
- Divisions of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
28
|
Tanshinone IIA Sodium Sulfonate Attenuates LPS-Induced Intestinal Injury in Mice. Gastroenterol Res Pract 2018; 2018:9867150. [PMID: 29706995 PMCID: PMC5863351 DOI: 10.1155/2018/9867150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022] Open
Abstract
Background Tanshinone IIA sodium sulfonate (TSS) is known to possess anti-inflammatory effects and has exhibited protective effects in various inflammatory conditions; however, its role in lipopolysaccharide- (LPS-) induced intestinal injury is still unknown. Objective The present study is designed to explore the role and possible mechanism of TSS in LPS-induced intestinal injury. Methods Male C57BL/6J mice, challenged with intraperitoneal LPS injection, were treated with or without TSS 0.5 h prior to LPS exposure. At 1, 6, and 12 h after LPS injection, mice were sacrificed, and the small intestine was excised. The intestinal tissue injury was analyzed by HE staining. Inflammatory factors (TNF-α, IL-1β, and IL-6) in the intestinal tissue were examined by ELISA and RT-PCR. In addition, expressions of autophagy markers (microtubule-associated light chain 3 (LC3) and Beclin-1) were detected by western blot and RT-PCR. A number of autophagosomes were also observed under electron microscopy. Results TSS treatment significantly attenuated small intestinal epithelium injury induced by LPS. LPS-induced release of inflammatory mediators, including TNF-α, IL-1β, and IL-6, were markedly inhibited by TSS. Furthermore, TSS treatment could effectively upregulate LPS-induced decrease of autophagy levels, as evidenced by the increased expression of LC3 and Beclin-1, and more autophagosomes. Conclusion The protective effect of TSS on LPS-induced small intestinal injury may be attributed to the inhibition of inflammatory factors and promotion of autophagy levels. The present study may provide novel insight into the molecular mechanisms of TSS on the treatment of intestinal injury.
Collapse
|
29
|
Dkhil MA, Al-Quraishy S, Moneim AEA. Ziziphus spina-christi leaf extract pretreatment inhibits liver and spleen injury in a mouse model of sepsis via anti-oxidant and anti-inflammatory effects. Inflammopharmacology 2018; 26:779-791. [PMID: 29327282 DOI: 10.1007/s10787-017-0439-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022]
Abstract
Sepsis is a systemic response to infection that can result in acute hepatic and splenic damage. Ziziphus spina-christi (L.) is a wild tree used as a medicinal plant by ancient Egyptians. However, little is known about the mechanism underlying its effects on sepsis. The current study investigated the protective effects of a Z. spina-christi leaf extract (ZSCLE) on liver and spleen damage in a male C57BL/6 mouse model of sepsis, induced by cecal ligation and puncture (CLP). Prior to CLP, ZSCLE was administered daily for five consecutive days via oral gavage at doses of 100, 200, or 300 mg/kg. The mice were euthanized 9 h after CLP, and oxidative stress markers were measured (myeloperoxidase, lipid peroxidation, nitric oxide, and reduced glutathione). In addition, we investigated histological changes, anti-oxidant enzyme activities (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), cytokine levels, protein expression of nuclear factor-κB and inducible nitric oxide synthase (iNOS), and mRNA levels of mitogen-activated protein kinase (8, 9, and 14), iNOS, tumor necrosis factor-α, and interleukin-1β. Our results indicated that ZSCLE significantly and dose-dependently inhibited sepsis-induced liver and spleen injury. These results suggest that ZSCLE could provide a therapeutic agent for sepsis by inducing anti-inflammatory and anti-oxidant effects.
Collapse
Affiliation(s)
- Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia. .,Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
30
|
Ren C, Zhang H, Wu TT, Yao YM. Autophagy: A Potential Therapeutic Target for Reversing Sepsis-Induced Immunosuppression. Front Immunol 2017; 8:1832. [PMID: 29326712 PMCID: PMC5741675 DOI: 10.3389/fimmu.2017.01832] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/04/2017] [Indexed: 01/17/2023] Open
Abstract
Sepsis remains the leading cause of mortality in intensive care units and an intractable condition due to uncontrolled inflammation together with immune suppression. Dysfunction of immune cells is considered as a major cause for poor outcome of septic patients but with little specific treatments. Currently, autophagy that is recognized as an important self-protective mechanism for cellular survival exhibits great potential for maintaining immune homeostasis and alleviating multiple organ failure, which further improves survival of septic animals. The protective effect of autophagy on immune cells covers both innate and adaptive immune responses and refers to various cellular receptors and intracellular signaling. Multiple drugs and measures are reportedly beneficial for septic challenge by inducing autophagy process. Therefore, autophagy might be an effective target for reversing immunosuppression compromised by sepsis.
Collapse
Affiliation(s)
- Chao Ren
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Hui Zhang
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Tian-Tian Wu
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Yong-Ming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China.,State Key Laboratory of Kidney Disease, The Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
31
|
Guan XF, Duan ZJ. Protective effects of brain-gut peptides against intestinal barrier injury and mechanisms involved. Shijie Huaren Xiaohua Zazhi 2017; 25:2805-2812. [DOI: 10.11569/wcjd.v25.i31.2805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Brain-gut peptides, a group of small molecule polypeptides, have been found to distribute widely in the brain and the gastrointestinal system and act as both neurotransmitters and hormones. Intestinal barrier injury has a serious impact on the prognosis of critical diseases. Brain-gut peptides can modulate tight junction proteins, promote epithelial cell proliferation, and inhibit apoptosis and inflammatory cytokines, thus playing an important role in the maintenance of intestinal barrier and mucosal immunity. In this review, we discuss the protective effects of brain-gut peptides against intestinal barrier injury and the underlying mechanisms.
Collapse
Affiliation(s)
- Xing-Fang Guan
- Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Zhi-Jun Duan
- Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| |
Collapse
|
32
|
Ingels C, Gunst J, Van den Berghe G. Endocrine and Metabolic Alterations in Sepsis and Implications for Treatment. Crit Care Clin 2017; 34:81-96. [PMID: 29149943 DOI: 10.1016/j.ccc.2017.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sepsis induces profound neuroendocrine and metabolic alterations. During the acute phase, the neuroendocrine changes are directed toward restoration of homeostasis, and also limit unnecessary energy consumption in the setting of restricted nutrient availability. Such changes are probably adaptive. In patients not recovering quickly, a prolonged critically ill phase may ensue, with different neuroendocrine changes, which may represent a maladaptive response. Whether stress hyperglycemia should be aggressively treated or tolerated remains a matter of debate. Until new evidence from randomized controlled trials becomes available, preventing severe hyperglycemia is recommended. Evidence supports withholding parenteral nutrition in the acute phase of sepsis.
Collapse
Affiliation(s)
- Catherine Ingels
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Jan Gunst
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven 3000, Belgium.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW A compromised autophagy is associated with the onset of obesity, type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases. Our aim is to review the potential role of ghrelin, a gut hormone involved in energy homeostasis, in the regulation of autophagy. RECENT FINDINGS In the recent years, it has been demonstrated that autophagy constitutes an important mechanism by which ghrelin exerts a plethora of central and peripheral actions. Ghrelin enhances autophagy through the activation of AMP-activated protein kinase in different target organs to regulate lipid and glucose metabolism, the remodeling and protection of small intestine mucosa, protection against cardiac ischemia as well as higher brain functions such as learning and memory consolidation. Nonetheless, in inflammatory states, such as acute hepatitis, liver fibrosis or adipose tissue inflammation, ghrelin acts as an anti-inflammatory factor reducing the autophagic flux to prevent further cell injury. Interestingly, several cardiometabolic disorders, including obesity, type 2 diabetes, nonalcoholic fatty liver disease or chronic heart failure are accompanied by low ghrelin levels in addition to altered autophagy. SUMMARY Ghrelin represents an attractive target for development of therapeutics for prevention or treatment of metabolic, cardiac or neuronal disorders, in which autophagy is impaired.
Collapse
Affiliation(s)
- Silvia Ezquerro
- aMetabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona bCIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid cDepartment of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | |
Collapse
|
34
|
Association between genetic polymorphisms in the autophagy-related 5 gene promoter and the risk of sepsis. Sci Rep 2017; 7:9399. [PMID: 28839236 PMCID: PMC5570943 DOI: 10.1038/s41598-017-09978-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022] Open
Abstract
Previous studies demonstrated significant roles of autophagy in the pathogenesis of sepsis, but few studies focused on the effect of autophagy-related SNPs on sepsis susceptibility. In this present study, five polymorphisms of ATG5/ATG16L1 were investigated for the possible risk on sepsis in a Chinese Han population. Our results showed that ATG5 expression levels decreased with the severity of sepsis, and rs506027 T > C and rs510432 G > A were associated with sepsis progression and mortality. Moreover, the rs506027 TT and rs510432 GG carriers also exhibited increased expression levels of ATG5. Functional assays showed that ATG5 knockdown elevated the secretion of pro-inflammatory cytokines in THP-1 cells, and the extracted mononuclear cell of the risk C-A carriers exhibited decreased ATG5 expression levels, leading to enhanced releases of TNF-α and IL-1β under LPS stimulation in vitro. Furthermore, ATG5 T-G haplotype mutation showed higher promoter activities compared to C-A haplotype mutation, suggesting the effect of these SNPs on ATG5 gene transcription. Taken together, these results above indicated that these two ATG5 promoter polymorphisms may be functional and clinically significant for sepsis progression, underscoring its potentially therapeutic implications for sepsis and other inflammatory diseases.
Collapse
|
35
|
Weis S, Rubio I, Ludwig K, Weigel C, Jentho E. Hormesis and Defense of Infectious Disease. Int J Mol Sci 2017; 18:E1273. [PMID: 28617331 PMCID: PMC5486095 DOI: 10.3390/ijms18061273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases are a global health burden and remain associated with high social and economic impact. Treatment of affected patients largely relies on antimicrobial agents that act by directly targeting microbial replication. Despite the utility of host specific therapies having been assessed in previous clinical trials, such as targeting the immune response via modulating the cytokine release in sepsis, results have largely been frustrating and did not lead to the introduction of new therapeutic tools. In this article, we will discuss current evidence arguing that, by applying the concept of hormesis, already approved pharmacological agents could be used therapeutically to increase survival of patients with infectious disease via improving disease tolerance, a defense mechanism that decreases the extent of infection-associated tissue damage without directly targeting pathogenic microorganisms.
Collapse
Affiliation(s)
- Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Jena 07747, Germany.
- Center for Infectious Diseases and Infection Control, University Hospital Jena, Jena 07747, Germany.
- Center for Sepsis Control and Care, University Hospital Jena, Jena 07747, Germany.
| | - Ignacio Rubio
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, Jena 07745, Germany.
| | - Kristin Ludwig
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, Jena 07745, Germany.
| | - Cynthia Weigel
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Jena 07747, Germany.
- Fritz Lipmann Institute, Leibniz Institute on Aging, Jena 07745, Germany.
| | - Elisa Jentho
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Jena 07747, Germany.
| |
Collapse
|