1
|
Wang H, Yang D, Jiang S, Ren Y, Wu L, Wang Z, Kuang H, Wang Z. Simultaneous determination of four phytoecdysteroids by LC-MS/MS: application to a comparative pharmacokinetic study in normal and adjuvant arthritis rats after oral administration of C. officinalis Kuan phytoecdysteroids extract. Xenobiotica 2023; 53:634-643. [PMID: 38053346 DOI: 10.1080/00498254.2023.2270741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/07/2023]
Abstract
C. officinalis Kuan is the dry root of Cyathula officinalis Kuan. Clinically, it is used for fall and flutter injury, rheumatism and arthralgia. Phytoecdysteroids have significant anti-inflammatory effects, and the phytoecdysteroids present in C. officinalis Kuan exhibit potential for treating rheumatoid arthritis.This study first developed a selective, accurate and efficient LC-MS/MS method for 12-day pharmacokinetic studies regarding the simultaneous determination of cyasterone, 25-epi-28-epi-cyasterone, precyasterone and capitasterone from C. officinalis Kuan phytoecdysteroids extract in normal and adjuvant arthritis rats.An Agilent Eclipse Plus C18 RRHD column (1.8 µm, 50mm × 2.1 mm) with a gradient mobile phase consisting of water (A) and acetonitrile (B) was used for analysis. The mass analysis was performed in an Agilent 6430 QQQ-MS mass spectrometer with positive mode multiple reaction monitoring (MRM).The results indicated that the AUC0-t and AUC0-∞ values of the four phytoecdysteroids in adjuvant arthritis rats were different from those in normal rats on the first day, which could provide a helpful reference for pharmacological and toxicological studies, as well as clinical applications of C. officinalis Kuan in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Haiqiang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Deqiang Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuang Jiang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yixuan Ren
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lihong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhenyue Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Sun Y, Liang M, Xing Y, Duan Y, Zhang S, Deng B, Xiang X, Zhou B. Cyasterone has a protective effect on steroid-induced Osteonecrosis of the femoral head. PLoS One 2023; 18:e0293530. [PMID: 37903142 PMCID: PMC10615314 DOI: 10.1371/journal.pone.0293530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/30/2023] [Indexed: 11/01/2023] Open
Abstract
CONTEXT Cyasterone alleviated the apoptosis of BMSCs induced by Dexamethasone via the PI3K/AKT signaling pathway. In addition, Cyasterone had a protective effect on SIONFH model rats by reducing the percentage of empty bone lacunae. OBJECTIVE To study the effect of Cyasterone on apoptosis of rat BMSCs and its function on the SIONFH rat model. METHODS Rat BMSCs were cultured and divided into Control, DXM and Cyasterone (DXM+Cyasterone) groups. The apoptosis of each group was detected by flow cytometry, the expressions of Caspase-3 and Caspase-9 were detected by immunofluorescence staining, and the mRNA and protein expressions of AKT, BAX, P53, P85, Bcl-2 and Cytochrome C were detected by qPCR and WB. In animal experiments, the femoral head of rats were subjected to HE staining and Micro-CT to observe the necrosis and repair conditions. RESULTS The apoptosis rate of DXM and Cyasterone groups increased compared with Control group, and the apoptosis rate of Cyasterone group decreased compared with DXM group. Compared with DXM group, the mRNA expression of BAX, P53, P85 and Cytochrome C in Cyasterone group were increased, while the protein expression of AKT and Bcl-2 decreased. The histopathological and morphological analysis showed that Cyasterone promoted the trabecular bone structure in rat, which evenly benefit for the repair of SIONFH. CONCLUSION Cyasterone can reduce the apoptosis of rat BMSCs induced by Dexamethasone, and help promoting the bone repair in SIONFH rats.
Collapse
Affiliation(s)
- Youqiang Sun
- Department of Sports Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Mengmeng Liang
- Department of Obstetrics, Guangdong Women and Chifldren Hospital, Guangzhou, 510010, Guangdong Province, China
| | - Yuemeng Xing
- The First Clinical College of Guangzhouf University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Yinfan Duan
- The First Clinical College of Guangzhouf University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shuangxiao Zhang
- Department of Sports Medicine, Heyuan Hospital of Chinese Medicine, Heyuan, 517000, Guangdong Province, China
| | - Baogui Deng
- Department of Sports Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Xiaobing Xiang
- Department of Sports Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Bengen Zhou
- Department of Sports Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| |
Collapse
|
3
|
Lin M, Xie W, Xiong D, Tang S, Huang X, Deng L, Huang L, Zhang X, Zhou T, Qian R, Zeng Q, Sang X, Luo Y, Hua Q, Ren L, Liu W. Cyasterone ameliorates sepsis-related acute lung injury via AKT (Ser473)/GSK3β (Ser9)/Nrf2 pathway. Chin Med 2023; 18:136. [PMID: 37853474 PMCID: PMC10585798 DOI: 10.1186/s13020-023-00837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a severe disease that can lead to acute respiratory distress syndrome (ARDS), characterized by intractable hypoxemia, poor lung compliance, and respiratory failure, severely affecting patients' quality of life. The pathogenesis of ALI has not been fully elucidated yet, and sepsis is an important cause of ALI. Among the organ injuries caused by sepsis, the lungs are the earliest damaged ones. Radix cyathulae is reported to have analgesic, anti-inflammatory, and anti-aging effects. Cyasterone is extracted from Radix cyathulae. However, it is not known whether cyasterone has protective effects for ALI. This study aims to investigate the effect of cyasterone on sepsis-related ALI and its mechanism. METHODS We used the cecal ligation peferation (CLP) method to establish a mouse sepsis model, and cyasterone was given intraperitoneally on days 1-3 to observe its preventive effect on sepsis-related acute lung injury. Primary murine peritoneal macrophages were used to investigate the molecular mechanism of cyasterone in vitro. RESULTS Cyasterone pretreatment inhibits pro-inflammatory cytokine production, NLRP3 inflammasome activation, and oxidative stress in vivo and in vitro. In addition, cyasterone attenuates sepsis-induced ALI by activating nuclear factor erythroid2-related factor (Nrf2), which may be associated with AKT(Ser473)/GSK3β(Ser9) pathway activation. CONCLUSIONS Cyasterone defends against sepsis-induced ALI by inhibiting inflammatory responses and oxidative stress, which depends heavily on the upregulation of the Nrf2 pathway through phosphorylation of AKT(Ser473)/GSK3β(Ser9). These results suggest cyasterone may be a valuable drug candidate for preventing sepsis-related ALI.
Collapse
Affiliation(s)
- Miao Lin
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, 410013, China
| | - Weixi Xie
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, 410013, China
| | - Dayan Xiong
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, 410013, China
| | - Siyuan Tang
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, 410013, China
| | - Xiaoting Huang
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, 410013, China
| | - Lang Deng
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, 410013, China
| | - Lei Huang
- Occupational Disease Department, Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, 410013, China
| | - Xiaohua Zhang
- Occupational Disease Department, Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, 410013, China
| | - Tingting Zhou
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, 410013, China
| | - Rui Qian
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, 410013, China
| | - Qian Zeng
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, 410013, China
| | - Xiaoxue Sang
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, 410013, China
| | - Yuyang Luo
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, 410013, China
| | - Qingzhong Hua
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, 410013, China
| | - Lu Ren
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Wei Liu
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, 410013, China.
| |
Collapse
|
4
|
Halike X, Li J, Yuan P, Yasheng K, Chen M, Xia L, Li J. The petroleum ether extract of Brassica rapa L. induces apoptosis of lung adenocarcinoma cells via the mitochondria-dependent pathway. Food Funct 2021; 12:10023-10039. [PMID: 34523644 DOI: 10.1039/d1fo01547h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Brassica rapa L. is one of the most popular traditional foods with a variety of biological activities. In this study, the petroleum ether extract of B. rapa was separated by silica gel column chromatography, and named BRPS, which was identified by LC-MS. The effects and pharmacological mechanisms of BRPS on the treatment of lung cancer were investigated both in vitro and in vivo. The results showed that BRPS significantly inhibited the proliferation of both human lung cancer A549 and mouse lung cancer LLC cells, while its toxicity to normal cells was lower than that of cancer cells. BRPS induced cell cycle arrest at the G2/M phase and significantly reduced the levels of CDK1 and CyclinB1 in A549 cells. Moreover, BRPS induced apoptosis in a dose-dependent manner, and increased the Bax/Bcl-2 ratio, while it decreased mitochondrial membrane potential, promoted the release of cytochrome c, activated caspase 9 and 3, and enhanced the degradation of PARP in A549 cells. Furthermore, the levels of reactive oxygen species (ROS) were also upregulated by BRPS and ROS inhibitor reversed BRPS-induced apoptosis. Importantly, BRPS significantly suppressed the growth of LLC cells in vivo without any obvious side effect on body weight and organs of mice, and increased the proportion of B cells, CD4+ T cells, CD8+ T cells and CD44+CD8+ T cells in the spleen. These results revealed that BRPS inhibited the growth of lung cancer cells through inducing cell cycle arrest, mitochondria-dependent apoptosis, and activating immunity of mice, and BRPS might be a potential anti-tumor functional food and promising agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xierenguli Halike
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Jinyu Li
- College of Life Science, Xinjiang Normal University, Urumqi, Xinjiang, China
| | - Pengfei Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Kaimeiliya Yasheng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Min Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| |
Collapse
|
5
|
Wang M, Lv Q, Zhao L, Wang Y, Luan Y, Li Z, Fu G, Zhang W. Metoprolol and bisoprolol ameliorate hypertrophy of neonatal rat cardiomyocytes induced by high glucose via the PKC/NF-κB/c-fos signaling pathway. Exp Ther Med 2020; 19:871-882. [PMID: 32010247 PMCID: PMC6966202 DOI: 10.3892/etm.2019.8312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022] Open
Abstract
Hyperglycemia caused by diabetes mellitus could increase the risk of diabetic cardiomyopathy. However, to the best of our knowledge, the underlying mechanism of this process is still not fully explored. Thus, developing ways to prevent hyperglycemia can be beneficial for diabetic patients. The present study was designed to investigate the influence of metoprolol and bisoprolol on the cardiomyocytic hypertrophy of neonatal rat cardiomyocytes. Cardiomyocytes were cultured in two types of media: One with low glucose levels and one with high glucose levels. Cardiomyocytes cultured in high glucose were further treated with the following: A protein kinase C (PKC) inhibitor, an NF-κB inhibitor, metoprolol or bisoprolol. The pulsatile frequency, cellular diameter and surface area of cardiomyocytes were measured. Protein content and [3H]-leucine incorporation were determined, atrial natriuretic peptide (ANP), α-myosin heavy chain (α-MHC) and β-myosin heavy chain (β-MHC) mRNA levels were calculated by reverse transcription-quantitative PCR, while the expression and activation of PKC-α, PKC-β2, NF-κB, tumor necrosis factor-α (TNF-α), and c-fos were detected by western blotting. Metoprolol or bisoprolol were also used in combination with PKC inhibitor or NF-κB inhibitor to determine whether the hypertrophic response would be attenuated to a lower extent compared with metroprolol or bisoprolol alone. Cardiomyocytes cultured in high glucose presented increased pulsatile frequency, cellular diameter, surface area, and protein content and synthesis, higher expression of ANP and β-MHC, and lower α-MHC expression. High glucose levels also upregulated the expression and activation of PKC-α, PKC-β2, NF-κB, TNF-α and c-fos. Metoprolol and bisoprolol partly reversed the above changes, while combined use of metoprolol or bisoprolol with PKC inhibitor or NF-κB inhibitor further ameliorated the hypertrophic response mentioned above to lower levels compared with using metroprolol or bisoprolol alone. In conclusion, metoprolol and bisoprolol could prevent hypertrophy of cardiomyocytes cultured in high glucose by the inhibition of the total and phospho-PKC-α, which could further influence the PKC-α/NF-κB/c-fos signaling pathway.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Liding Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Yao Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Yi Luan
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Zhengwei Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Wenbin Zhang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| |
Collapse
|
6
|
Li F, Wu H, Sun LL, Wu H, Wang R, Li SP, Wang WY, Dai L, Zhang ZR, Fu J, Deng R. Quantitative Analysis of Multi-components by Single Marker and Fingerprint Analysis of Achyranthes bidentata Blume. J Chromatogr Sci 2018; 56:595-603. [DOI: 10.1093/chromsci/bmy031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 03/24/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Feng Li
- Key Laboratory of Modernized Chinese Medicine in Anhui Province, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hong Wu
- Key Laboratory of Modernized Chinese Medicine in Anhui Province, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Liang-liang Sun
- College of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui, China
| | - Huan Wu
- Key Laboratory of Modernized Chinese Medicine in Anhui Province, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Rong Wang
- Key Laboratory of Modernized Chinese Medicine in Anhui Province, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shu-ping Li
- Key Laboratory of Modernized Chinese Medicine in Anhui Province, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wen-yu Wang
- Key Laboratory of Modernized Chinese Medicine in Anhui Province, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Li Dai
- Key Laboratory of Modernized Chinese Medicine in Anhui Province, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zheng-rong Zhang
- Key Laboratory of Modernized Chinese Medicine in Anhui Province, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jun Fu
- Key Laboratory of Modernized Chinese Medicine in Anhui Province, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Ran Deng
- Key Laboratory of Modernized Chinese Medicine in Anhui Province, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
7
|
Wan B, Zhu J, Chang Q, Zhou H, Shi Z, Min L, Cai Y, Guan H. Alpha, 2'-dihydroxy-4,4'-dimethoxydihydrochalcone inhibits cell proliferation, invasion, and migration in gastric cancer in part via autophagy. Biomed Pharmacother 2018; 98:709-718. [PMID: 29306208 DOI: 10.1016/j.biopha.2017.12.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/26/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer is a leading cause of mortality worldwide. Alpha, 2'-dihydroxy-4,4'-dimethoxydihydrochalcone is a type of limonoid mainly isolated from Cedrela odorata (Meliaceae) that has been shown to suppress cell proliferation in several human carcinoma cell lines. In this study, we investigated the anti-cancer ability of alpha, 2'-dihydroxy-4,4'-dimethoxydihydrochalcone and its underlying mechanism in MKN45 cells. Alpha, 2'-dihydroxy-4,4'-dimethoxydihydrochalcone induced excess reactive oxygen species (ROS) accumulation. Transwell and wound healing assays demonstrated that alpha, 2'-dihydroxy-4,4'-dimethoxydihydrochalcone inhibited the invasion and migration ability of MKN45 cells. Moreover, autophagy-related proteins Beclin-1, Atg5, and Atg7 were up-regulated. Light chain 3 (LC3)-I protein was converted into LC3-II under alpha, 2'-dihydroxy-4,4'-dimethoxydihydrochalcone exposure. Transmission electron microscopy demonstrated that alpha, 2'-dihydroxy-4,4'-dimethoxydihydrochalcone treatment resulted in the formation of autophagosomes. Immunofluorescence assays suggested that alpha, 2'-dihydroxy-4,4'-dimethoxydihydrochalcone treatment elicited dot formation of green fluorescent protein (GFP)-LC3. 3-methyladenine (3-MA), an autophagy inhibitor, demonstrated that autophagy promoted death in MKN45 cells. Western blotting showed that ROS/mitogen activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathways play crucial roles in the intrinsic mechanism of alpha, 2'-dihydroxy-4,4'-dimethoxydihydrochalcone's activity. The combined use of N-acetyl-L-cysteine (NAC) or U0126 validated the regulatory role of ROS/MEK/ERK signaling pathways. Alpha, 2'-dihydroxy-4,4'-dimethoxydihydrochalcone administration inhibited the growth of MKN45 xenograft tumors in nude mice and suppressed Ki67 expression. More importantly, a similar effect was achieved in a patient-derived xenograft (PDX) model, which is more relevant to clinical application. Taken together, alpha, 2'-dihydroxy-4,4'-dimethoxydihydrochalcone has the potential to be further developed into an anti-tumor agent for clinical treatment of gastric cancer.
Collapse
Affiliation(s)
- Boshun Wan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow, 215000, PR China; Department of General Surgery, JiaDing District Central Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 201800, PR China
| | - Junqiu Zhu
- Department of Oncology, HuaDong Hospital, FuDan University, Shanghai, 200040, PR China
| | - Qing Chang
- Department of General Surgery, JiaDing District Central Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 201800, PR China
| | - Haihua Zhou
- Department of General Surgery, JiaDing District Central Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 201800, PR China
| | - Zhan Shi
- Department of Oncology, HuaDong Hospital, FuDan University, Shanghai, 200040, PR China
| | - Li Min
- Department of Anorectal, JiaDing Traditional Chinese Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201800, PR China
| | - YueJiao Cai
- No.2 Department of Oncology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, PR China
| | - Honggeng Guan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow, 215000, PR China.
| |
Collapse
|
8
|
The Anti-Inflammatory Activity of Toonaciliatin K against Adjuvant Arthritis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9436280. [PMID: 29181410 PMCID: PMC5664280 DOI: 10.1155/2017/9436280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022]
Abstract
Toonaciliatin K is a natural limonoid purified from the Toona ciliata Roem. var. ciliata (Meliaceae). This study is to reveal the inflammatory suppression effect of toonaciliatin K and further the intrinsic mechanism. Firstly, anti-inflammatory effect of toonaciliatin K was evaluated in lipopolysaccharide- (LPS-) induced RAW264.7 cells. RT-PCR results indicated that the mRNA expressions of TNF-α, IL-6, and IL-1β were downregulated by toonaciliatin K. The toonaciliatin K inhibited TNF-α, IL-6, and IL-1β levels stimulated by LPS. Furthermore, LPS elicited the excess iNOS and COX-2 mRNA and protein production and toonaciliatin K attenuated the excess production. Western blot assay demonstrated that MAPK and NF-κB signaling pathways play critical roles in the toonaciliatin K's anti-inflammatory activity. Secondly, toonaciliatin K inhibited carrageenan-induced paw edema in rats. Thirdly, toonaciliatin K alleviated the paw swelling and improved arthritis clinical scores in the adjuvant arthritis rats. Toonaciliatin K decreased the proinflammatory cytokines levels and Mankin scores in adjuvant arthritis rats. The HE staining, safranin O-fast green, and toluidine blue staining results demonstrated that toonaciliatin K alleviated the histological changes of paw, for example, pannus formation, focal loss of cartilage, bone erosion, and presence of extra-articular inflammation. Hence, toonaciliatin K is a promising agent for treatment of arthritis.
Collapse
|