1
|
Rajaselvi ND, Jida MD, Ajeeshkumar KK, Nair SN, John P, Aziz Z, Nisha AR. Antineoplastic activity of plant-derived compounds mediated through inhibition of histone deacetylase: a review. Amino Acids 2023; 55:1803-1817. [PMID: 37389730 DOI: 10.1007/s00726-023-03298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
In the combat of treating cancer recent therapeutic approaches are focused towards enzymatic targets as they occupy a pivotal participation in the cascade of oncogenesis and malignancy. There are several enzymes that modulate the epigenetic pathways and chromatin structure related to cancer mutation. Among several epigenetic mechanisms such as methylation, phosphorylation, and sumoylation, acetylation status of histones is crucial and is governed by counteracting enzymes like histone acetyl transferase (HAT) and histone deacetylases (HDAC) which have contradictory effects on the histone acetylation. HDAC inhibition induces chromatin relaxation which forms euchromatin and thereby initiates the expression of certain transcription factors attributed with apoptosis, which are mostly correlated with the expression of the p21 gene and acetylation of H3 and H4 histones. Most of the synthetic and natural HDAC inhibitors elicit antineoplastic effect through activation of various apoptotic pathways and promoting cell cycle arrest at various phases. Due to their promising chemo preventive action and low cytotoxicity against normal host cells, bioactive substances like flavonoids, alkaloids, and polyphenolic compounds from plants have recently gained importance. Even though all bioactive compounds mentioned have an HDAC inhibitory action, some of them have a direct effect and others enhance the effects of the standard well known HDAC inhibitors. In this review, the action of plant derived compounds against histone deacetylases in a variety of in vitro cancer cell lines and in vivo animal models are articulated.
Collapse
Affiliation(s)
- N Divya Rajaselvi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - M D Jida
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - K K Ajeeshkumar
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Suresh N Nair
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - Preethy John
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Wayanad, 673 576, India
| | - Zarina Aziz
- Department of Veterinary Physiology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - A R Nisha
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India.
| |
Collapse
|
2
|
Amaryllidaceae Alkaloids Decrease the Proliferation, Invasion, and Secretion of Clinically Relevant Cytokines by Cultured Human Colon Cancer Cells. Biomolecules 2022; 12:biom12091267. [PMID: 36139106 PMCID: PMC9496155 DOI: 10.3390/biom12091267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 12/30/2022] Open
Abstract
Alkaloids isolated from members of the Amaryllidaceae plant family are promising anticancer agents. The purpose of the current study was to determine if the isocarbostyrils narciclasine, pancratistatin, lycorane, lycorine, crinane, and haemanthamine inhibit phenomena related to cancer progression in vitro. To achieve this, we examined the proliferation, adhesion, and invasion of cultured human colon cancer cells via MTT assay and Matrigel-coated Boyden chambers. In addition, Luminex assays were used to quantify the secretion of matrix metalloproteinases (MMP) and cytokines associated with poor clinical outcomes. We found that all alkaloids decreased cell proliferation regardless of TP53 status, with narciclasine exhibiting the greatest potency. The effects on cell proliferation also appear to be specific to cancer cells. Narciclasine, lycorine, and haemanthamine decrease both adhesion and invasion but with various potencies depending on the cell line. In addition, narciclasine, lycorine, and haemanthamine decreased the secretion of MMP-1, -2, and -7, as well as the secretion of the cytokines pentraxin 3 and vascular endothelial growth factor. In conclusion, the present study shows that Amaryllidaceae alkaloids decrease phenomena and cytokines associated with colorectal cancer progression, supporting future investigations regarding their potential as multifaceted drug candidates.
Collapse
|
3
|
Zhao S, Guo Y, Wang Q, An B. Antifungal effects of lycorine on Botrytis cinerea and possible mechanisms. Biotechnol Lett 2021; 43:1503-1512. [PMID: 33856593 DOI: 10.1007/s10529-021-03128-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/08/2021] [Indexed: 12/31/2022]
Abstract
Botrytis cinerea cause postharvest diseases on fruit and lead economic losses. Application of environment-friendly natural compounds is an alternative for synthetic fungicides to control postharvest disease. Lycorine is an indolizidine alkaloid which is widely used for human drug design, however, application of lycorine in controlling postharvest disease and the underlying mechanisms have not been reported. In this study, the effects of lycorine on mycelium growth, spore germination, disease development in apple fruit, cell viability, cell membrane integrity, cell wall deposition, and expression of mitogen-activated protein kinase (MAPK) and GTPase of B. cinerea were investigated. Our results showed that lycorine was effective in controlling postharvest gray mold caused by B. cinerea on apple fruit. In the in vitro tests, lycorine strongly inhibited spore germination and mycelium spreading in culture medium. Investigation via fluorescein diacetate and propidium iodide staining suggested that lycorine could damage the membrane integrity and impair cell viability of B. cinerea. Furthermore, the expression levels of several MAPK and GTPase coding genes were reduced upon the lycorine treatment. Taken together, lycorine is an effective and promising way to control postharvest disease caused by B. cinerea.
Collapse
Affiliation(s)
- Shixue Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yanhua Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Zhao Z, Xiang S, Qi J, Wei Y, Zhang M, Yao J, Zhang T, Meng M, Wang X, Zhou Q. Correction of the tumor suppressor Salvador homolog-1 deficiency in tumors by lycorine as a new strategy in lung cancer therapy. Cell Death Dis 2020; 11:387. [PMID: 32439835 PMCID: PMC7242319 DOI: 10.1038/s41419-020-2591-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
Salvador homolog-1 (SAV1) is a tumor suppressor required for activation of the tumor-suppressive Hippo pathway and inhibition of tumorigenesis. SAV1 is defective in several cancer types. SAV1 deficiency in cells promotes tumorigenesis and cancer metastasis, and is closely associated with poor prognosis for cancer patients. However, investigation of therapeutic strategies to target SAV1 deficiency in cancer is lacking. Here we found that the small molecule lycorine notably increased SAV1 levels in lung cancer cells by inhibiting SAV1 degradation via a ubiquitin-lysosome system, and inducing phosphorylation and activation of the SAV1-interacting protein mammalian Ste20-like 1 (MST1). MST1 activation then caused phosphorylation, ubiquitination, and degradation of the oncogenic Yes-associated protein (YAP), therefore inhibiting YAP-activated transcription of oncogenic genes and tumorigenic AKT and NF-κB signal pathways. Strikingly, treating tumor-bearing xenograft mice with lycorine increased SAV1 levels, and strongly inhibited tumor growth, vasculogenic mimicry, and metastasis. This work indicates that correcting SAV1 deficiency in lung cancer cells is a new strategy for cancer therapy. Our findings provide a new platform for developing novel cancer therapeutics.
Collapse
Affiliation(s)
- Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shufen Xiang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jindan Qi
- School of Nursing, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Yijun Wei
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jun Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Tong Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaohua Wang
- School of Nursing, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China. .,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and the Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
5
|
Wu D, Dong W, Fang K, Wang M. As 4S 4 Exhibits Good Killing Effect on Multiple Myeloma Cells Via Repressing SOCS1 Methylation-Mediated JAK2/STAT3 Signaling Pathway. Technol Cancer Res Treat 2020; 18:1533033819896806. [PMID: 31868118 PMCID: PMC6928533 DOI: 10.1177/1533033819896806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective: This study aimed to investigate the effect of tetra-arsenic tetra-sulfide on treating multiple myeloma and its potential regulation on suppressor of cytokine signaling 1 methylation-mediated Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway. Methods: Tetra-arsenic tetra-sulfide with different concentrations were used to treat U266 cells, and cell viability was measured at 12, 24, and 48 hours with 0 μM tetra-arsenic tetra-sulfide treatment as control by Cell Counting Kit-8 assay. Suppressor of cytokine signaling 1 methylation and expression were determined by methylation-specific polymerase chain reaction, quantitative polymerase chain reaction, and Western blot, respectively, in U266 cells and normal plasma cells and in U266 cells treated by tetra-arsenic tetra-sulfide. Then, rescue experiments were performed by transfecting suppressor of cytokine signaling 1 small interfering RNA into tetra-arsenic tetra-sulfide-treated U266 cells. Besides, phosphor–Janus kinase 2, Janus kinase 2, phospho–signal transducer and activator of transcription 3, and signal transducer and activator of transcription 3 expressions were determined by Western blot. Results: Tetra-arsenic tetra-sulfide inhibited U266 cell viability efficiently in a dose- and time-dependent manner. Suppressor of cytokine signaling 1 methylation was higher while suppressor of cytokine signaling 1 expression was lower in U266 cells compared to normal plasma cells; when treated by tetra-arsenic tetra-sulfide, suppressor of cytokine signaling 1 methylation was decreased while suppressor of cytokine signaling 1 expression was increased in U266 cells, along with the reduced phospho–Janus kinase 2 and phospho–signal transducer and activator of transcription 3 expressions. Then, suppressor of cytokine signaling 1 small interfering RNA enhanced the cell viability and phospho–Janus kinase 2 as well as phospho–signal transducer and activator of transcription 3 expressions in both tetra-arsenic tetra-sulfide treatment-free and tetra-arsenic tetra-sulfide-treated U266 cells. Conclusion: Tetra-arsenic tetra-sulfide exhibits good killing effect on multiple myeloma cells via repressing suppressor of cytokine signaling 1 methylation and downstream Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway, which might serve as a potential treatment option for multiple myeloma.
Collapse
Affiliation(s)
- Di Wu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Dong
- Department of Sales, Kindstar Global, Wuhan, China
| | - Kun Fang
- Department of Sales, Kindstar Global, Wuhan, China
| | - Mengchang Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Yang L, Zhang JH, Zhang XL, Lao GJ, Su GM, Wang L, Li YL, Ye WC, He J. Tandem mass tag-based quantitative proteomic analysis of lycorine treatment in highly pathogenic avian influenza H5N1 virus infection. PeerJ 2019; 7:e7697. [PMID: 31592345 PMCID: PMC6778435 DOI: 10.7717/peerj.7697] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Highly pathogenic H5N1 influenza viruses (HPAIV) cause rapid systemic illness and death in susceptible animals, leading to a disease with high morbidity and mortality rates. Although vaccines and drugs are the best solution to prevent this threat, a more effective treatment for H5 strains of influenza has yet to be developed. Therefore, the development of therapeutics/drugs that combat H5N1 influenza virus infection is becoming increasingly important. Lycorine, the major component of Amaryllidaceae alkaloids, exhibits better protective effects against A/CK/GD/178/04 (H5N1) (GD178) viruses than the commercial neuraminidase (NA) inhibitor oseltamivir in our prior study. Lycorine demonstrates outstanding antiviral activity because of its inhibitory activity against the export of viral ribonucleoprotein complexes (vRNPs) from the nucleus. However, how lycorine affects the proteome of AIV infected cells is unknown. Therefore, we performed a comparative proteomic analysis to identify changes in protein expression in AIV-infected Madin-Darby Canine Kidney cells treated with lycorine. Three groups were designed: mock infection group (M), virus infection group (V), and virus infection and lycorine-treated after virus infection group (L). The multiplexed tandem mass tag (TMT) approach was employed to analyze protein level in this study. In total, 5,786 proteins were identified from the three groups of cells by using TMT proteomic analysis. In the V/M group, 1,101 proteins were identified, of which 340 differentially expressed proteins (DEPs) were determined during HPAIV infection; among the 1,059 proteins identified from the lycorine-treated group, 258 proteins presented significant change. Here, 71 proteins showed significant upregulation or downregulation of expression in the virus-infected/mock and virus-infected/lycorine-treated comparisons, and the proteins in each fraction were functionally classified further. Interestingly, lycorine treatment decreased the levels of the nuclear pore complex protein 93 (Nup93, E2RSV7), which is associated with nuclear–cytoplasmic transport. In addition, Western blot experiments confirmed that the expression of Nup93 was significantly downregulated in lycorine treatment but induced after viral infection. Our results may provide new insights into how lycorine may trap vRNPs in the nucleus and suggest new potential therapeutic targets for influenza virus.
Collapse
Affiliation(s)
- Li Yang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China.,College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jia Hao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao Li Zhang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Guang Jie Lao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guan Ming Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lei Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Yao Lan Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Wen Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Jun He
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China.,Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Yin B, Fang DM, Zhou XL, Gao F. Natural products as important tyrosine kinase inhibitors. Eur J Med Chem 2019; 182:111664. [PMID: 31494475 DOI: 10.1016/j.ejmech.2019.111664] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/13/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022]
Abstract
As an important source of drugs, natural products play an important role in the discovery and development of new drugs. More than 60% of anti-tumor drugs are closely related to natural products. At the same time, as the main cause of tumors, the abnormal activity of tyrosine kinase has become an important target for clinical treatment. Although, small molecule targeted drugs dominate the cancer treatment. Natural active products are driving the development of new tyrosine kinase inhibitors with their unique mode of action and molecular structure diversity. Obtaining new chemical entities with tyrosine kinase inhibitory activity from natural active products will bring new breakthroughs in the research of anticancer drugs. In this paper, different tyrosine kinases are mainly classified as targets, and natural products and derivatives which have been found to inhibit tyrosine kinase activity have been described. It is hoped that by analyzing the different aspects of the source, structural characteristics, mechanism of action and biological activity of these natural products, we will find new members that can be developed into drugs and promote the development of anti-tumor drugs.
Collapse
Affiliation(s)
- Bo Yin
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Dong-Mei Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Xian-Li Zhou
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Feng Gao
- Laboratory of Chemistry and Biodiversity, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China.
| |
Collapse
|
8
|
Roy M, Liang L, Xiao X, Feng P, Ye M, Liu J. Lycorine: A prospective natural lead for anticancer drug discovery. Biomed Pharmacother 2018; 107:615-624. [PMID: 30114645 PMCID: PMC7127747 DOI: 10.1016/j.biopha.2018.07.147] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/18/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Outline of the anticancer properties and associated molecular mechanism mediated by lycorine. Comprehensive analysis of the structure activity relationship associated with anticancer activity of lycorine. Summary of the pharmacological aspects and implications for future directions with this compound.
Nature is the most abundant source for novel drug discovery. Lycorine is a natural alkaloid with immense therapeutic potential. Lycorine is active in a very low concentration and with high specificity against a number of cancers both in vivo and in vitro and against various drug-resistant cancer cells. This review summarized the therapeutic effect and the anticancer mechanisms of lycorine. At the same time, we have discussed the pharmacology and comparative structure-activity relationship for the anticancer activity of this compound. The researches outlined in this paper serve as a foundation to explain lycorine as an important lead compound for new generation anticancer drug design and provide the principle for the development of biological strategies to utilize lycorine in the treatment of cancers.
Collapse
Affiliation(s)
- Mridul Roy
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Long Liang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Peifu Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
9
|
Wu S, Qiu Y, Shao Y, Yin S, Wang R, Pang X, Ma J, Zhang C, Wu B, Koo S, Han L, Zhang Y, Gao X, Wang T, Yu H. Lycorine Displays Potent Antitumor Efficacy in Colon Carcinoma by Targeting STAT3. Front Pharmacol 2018; 9:881. [PMID: 30135654 PMCID: PMC6092588 DOI: 10.3389/fphar.2018.00881] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an attractive therapeutic target for cancer treatment. In this study, we identify lycorine is an effective inhibitor of STAT3, leading to repression of multiple oncogenic processes in colon carcinoma. Lycorine selectively inactivates phospho-STAT3 (Tyr-705), and subsequent molecular docking uncovers that lycorine directly binds to the SH2 domain of STAT3. Consequently, we find that lycorine exhibits anti-proliferative activity and induces cell apoptosis on human colorectal cancer (CRC) in vitro. Lycorine induces the activation of the caspase-dependent mitochondrial apoptotic pathway, as indicated by activation of caspase and increase of the ratio of Bax/Bcl-2 and mitochondrial depolarization. Overexpressing STAT3 greatly blocks these effects by lycorine in CRC cells. Finally, lycorine exhibits a potential therapeutic effect in xenograft colorectal tumors by targeting STAT3 without observed toxicity. Taken together, the present study indicates that lycorine acts as a promising inhibitor of STAT3, which blocks tumorigenesis in colon carcinoma.
Collapse
Affiliation(s)
- Song Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yingying Shao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangshuang Yin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Pang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junhong Ma
- Department of Gastrointestinal Surgery, Nankai Hospital, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Bo Wu
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Sangho Koo
- Department of Chemistry, Myongji University, Seoul, South Korea
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|