1
|
Tian Y, Wang Z, Xu X, Guo Y, Ma Y, Lu Y, Shen M, Geng Y, Tomás H, Rodrigues J, Sheng R. Natural alkaloids from Dicranostigma leptopodum (Maxim.) Fedde and their G5. NHAc-PBA dendrimer-alkaloid complexes for targeting chemotherapy in breast cancer MCF-7 cells. Nat Prod Res 2024:1-18. [PMID: 38586940 DOI: 10.1080/14786419.2024.2335669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
Herein, we isolated five natural alkaloids, iso-corydine (iso-CORY), corydine (CORY), sanguinarine (SAN), chelerythrine (CHE) and magnoflorine (MAG), from traditional medicinal herb Dicranostigma leptopodum (Maxim.) Fedde (whole herb) and elucidated their structures. Then we synthesised G5. NHAc-PBA as targeting dendrimer platform to encapsulate the alkaloids into G5. NHAc-PBA-alkaloid complexes, which demonstrated alkaloid-dependent positive zeta potential and hydrodynamic particle size. G5. NHAc-PBA-alkaloid complexes demonstrated obvious breast cancer MCF-7 cell targeting effect. Among the G5. NHAc-PBA-alkaloid complexes, G5.NHAc-PBA-CHE (IC50=13.66 μM) demonstrated the highest MCF-7 cell inhibition capability and G5.NHAc-PBA-MAG (IC50=24.63 μM) had equivalent inhibitory effects on cell proliferation that comparable to the level of free MAG (IC50=23.74 μM), which made them the potential breast cancer targeting formulation for chemotherapeutic application. This work successfully demonstrated a pharmaceutical research model of 'natural bioactive product isolation-drug formulation preparation-breast cancer cell targeting inhibition'.
Collapse
Affiliation(s)
- Ye Tian
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou Railway Vocational and Technical College, Zhengzhou, China
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xu Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yanni Ma
- Henan Natural Products Biotechnology Co., Ltd, Henan Academy of Sciences, Zhengzhou, Henan, China
| | - Yanqi Lu
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou Railway Vocational and Technical College, Zhengzhou, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yang Geng
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou Railway Vocational and Technical College, Zhengzhou, China
| | - Helena Tomás
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Ruilong Sheng
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
2
|
Tang N, Hong F, Hao W, Yu TT, Wang GG, Li W. Riboflavin ameliorates mitochondrial dysfunction via the AMPK/PGC1α/HO‑1 signaling pathway and attenuates carbon tetrachloride‑induced liver fibrosis in rats. Exp Ther Med 2022; 24:608. [PMID: 36160891 PMCID: PMC9468838 DOI: 10.3892/etm.2022.11545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/06/2022] [Indexed: 12/01/2022] Open
Abstract
Hepatic fibrosis is a global health problem, with increasing evidence demonstrating that oxidative stress serves a pivotal role in fibrogenesis. Riboflavin is a vital nutrient in the human and animal diet, which enhances the activity of antioxidant enzymes and ameliorates oxidative stress. The present study evaluated the effect of riboflavin on liver fibrosis and the mechanisms underlying this process. Rats were subcutaneously injected with carbon tetrachloride (CCl4) dissolved in sterile olive oil twice per week to induce hepatic fibrosis. The effect of riboflavin on CCl4-induced liver fibrosis was then assessed. Blood samples and liver tissues were collected and analyzed. The liver tissue morphological changes, immunohistochemical analysis, levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in the mitochondria, and the protein expression levels of α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), extracellular signal-regulated kinase (ERK), p38, c-Jun N-terminal kinase (JNK), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and heme oxygenase 1 (HO-1) in the liver were also analyzed. The results demonstrated that riboflavin treatment significantly decreased the levels of alanine transaminase and aspartate transaminase in the serum, increased SOD activity and modulated the MDA level in the mitochondria. Furthermore, riboflavin significantly inhibited the CCl4-induced, upregulated protein expression levels of phosphorylated (p)-ERK, p-p38, p-JNK, TGF-β1 and α-SMA. Moreover, riboflavin significantly increased the expression of p-AMPK, PGC-1α and HO-1 in the liver tissue. These results suggested that riboflavin delays CCl4-induced hepatic fibrosis by enhancing the mitochondrial function via the AMPK/PGC-1α/HO-1 and mitogen-activated protein kinase signaling pathways.
Collapse
Affiliation(s)
- Ning Tang
- Emergency Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Feng Hong
- Department of Physiology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Wei Hao
- Department of Experimental Center for Function Subjects, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Ting-Ting Yu
- Department of Experimental Center for Function Subjects, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Guo-Guang Wang
- Department of Pathophysiology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Wei Li
- Department of Pathophysiology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
3
|
Wei E, Zhang S, Zhai J, Wu S, Wang G. The evaluation of hepatoprotective effects of flavonoids from Scorzonera austriaca Wild against CCl 4-induced acute liver injury in vitro and in vivo. Drug Chem Toxicol 2020; 45:1284-1294. [PMID: 32921158 DOI: 10.1080/01480545.2020.1815763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Scorzonera austriaca Wild is a traditional herbal medicine; however, little is known with regard to the effect of flavonoids from S. austriaca (FSA) on liver injury induced by Carbon tetrachloride (CCl4), especially the mechanism remains unknown. Therefore, our paper was designed to investigate the hepatoprotective effect of FSA against CCl4-induced acute liver injury in vitro and in vivo, with focus on its potential mechanism. The purity of FSA prepared by using polyporous resin column chromatography could reach 94.5%, and seven flavonoid compounds in FSA were identified by using LC-ESI-MS analysis. In vivo results showed that FSA markedly decreased the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and malonaldehyde (MDA) and increased the contents of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Furthermore, in vivo and in vitro results confirmed that FSA could inhibit inflammatory response, as evidenced by decreasing the levels of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) through inactivating toll-like receptor-4/nuclear factor-κB (TLR4/NF-κB) signaling pathway. FSA activated autophagy by increasing the ratio of LC3B-II/I and decreasing the protein level of p62 so as to exert its hepatoprotective effect. In general, these evidences suggested that FSA is likely to serve as a potential material for the drugs against chemical hepatic injury.
Collapse
Affiliation(s)
- Enwei Wei
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Sixi Zhang
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Jinghui Zhai
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Sitong Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Guangshu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
4
|
Ben Hsouna A, Dhibi S, Dhifi W, Ben Saad R, Brini F, Hfaidh N, Almeida JRGDS, Mnif W. Lobularia maritima leave extract, a nutraceutical agent with antioxidant activity, protects against CCl4-induced liver injury in mice. Drug Chem Toxicol 2020; 45:604-616. [DOI: 10.1080/01480545.2020.1742730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anis Ben Hsouna
- Department of Life Sciences, Faculty of Sciences of Gafsa, Gafsa, Tunisia
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, Sfax, Tunisia
| | - Sabah Dhibi
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Gafsa, Gafsa, Tunisia
| | - Wissal Dhifi
- Laboratory of Physiopathology, Alimentation and Biomolecules, PAB, LR17ES03, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Rania Ben Saad
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, Sfax, Tunisia
| | - Faical Brini
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, Sfax, Tunisia
| | - Najla Hfaidh
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Gafsa, Gafsa, Tunisia
| | | | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha, Saudi Arabia
- Laboratory of Biotechnology and Valorisation of Bio-GeoRessources, BVBGR, LR11ES31, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana, Tunisia
| |
Collapse
|
5
|
Zhang HY, Wang HL, Zhong GY, Zhu JX. Molecular mechanism and research progress on pharmacology of traditional Chinese medicine in liver injury. PHARMACEUTICAL BIOLOGY 2018; 56:594-611. [PMID: 31070528 PMCID: PMC6282438 DOI: 10.1080/13880209.2018.1517185] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/27/2018] [Accepted: 08/21/2018] [Indexed: 05/09/2023]
Abstract
CONTEXT Liver disease is a common threat to human health, caused by a variety of factors that damage the liver. Recent studies have shown that active ingredients (for example: flavonoids, saponins, acids, phenols, and alkaloids) from Traditional Chinese Medicine (TCM) can have hepatoprotective benefits, which represents an attractive source of drug discovery for treating liver injury. OBJECTIVE We reviewed recent contributions on the chemically induced liver injury, immunological liver damage, alcoholic liver injury, and drug-induced liver injury, in order to summarize the research progress in molecular mechanism and pharmacology of TCM, and provides a comprehensive overview of new TCM treatment strategies for liver disease. MATERIALS AND METHODS Relevant literature was obtained from scientific databases such as Pubmed, Web of Science. and CNKI databases on ethnobotany and ethnomedicines (from January 1980 to the end of May 2018). The experimental studies involving the antihepatic injury role of the active agents from TCM and the underlying mechanisms were identified. The search terms included 'liver injury' or 'hepatic injury', and 'traditional Chinese medicine', or 'herb'. RESULTS A number of studies revealed that the active ingredients of TCM exhibit potential therapeutic benefits against liver injury, while the underlying mechanisms appear to contribute to the regulation of inflammation, oxidant stress, and pro-apoptosis signaling pathways. DISCUSSION AND CONCLUSIONS The insights provided in this review will help further exploration of botanical drugs in the development of liver injury therapy via study on the effective components of TCM.
Collapse
Affiliation(s)
- Hong Yang Zhang
- Research Center of Traditional Chinese Medicine Resources and Minority Medicine, Jiangxi University of Traditional Chinese Medicine, Nan Chang, China
| | - Hong Ling Wang
- Research Center of Traditional Chinese Medicine Resources and Minority Medicine, Jiangxi University of Traditional Chinese Medicine, Nan Chang, China
| | - Guo Yue Zhong
- Research Center of Traditional Chinese Medicine Resources and Minority Medicine, Jiangxi University of Traditional Chinese Medicine, Nan Chang, China
| | - Ji Xiao Zhu
- Research Center of Traditional Chinese Medicine Resources and Minority Medicine, Jiangxi University of Traditional Chinese Medicine, Nan Chang, China
| |
Collapse
|
6
|
Liu W, Wang Z, Hou JG, Zhou YD, He YF, Jiang S, Wang YP, Ren S, Li W. The Liver Protection Effects of Maltol, a Flavoring Agent, on Carbon Tetrachloride-Induced Acute Liver Injury in Mice via Inhibiting Apoptosis and Inflammatory Response. Molecules 2018; 23:molecules23092120. [PMID: 30142916 PMCID: PMC6225187 DOI: 10.3390/molecules23092120] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/19/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022] Open
Abstract
The purpose of this research was to evaluate whether maltol could protect from hepatic injury induced by carbon tetrachloride (CCl4) in vivo by inhibition of apoptosis and inflammatory responses. In this work, maltol was administered at a level of 100 mg/kg for 15 days prior to exposure to a single injection of CCl4 (0.25%, i.p.). The results clearly indicated that the intrapulmonary injection of CCl4 resulted in a sharp increase in serum aspartate transaminase (AST) and alanine transaminase (ALT) activities, tumor necrosis factor-α (TNF-α), irreducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB) and interleukin-1β (IL-1β) levels. Histopathological examination demonstrated severe hepatocyte necrosis and the destruction of architecture in liver lesions. Immunohistochemical staining and western blot analysis suggested an accumulation of iNOS, NF-κB, IL-1β and TNF-α expression. Maltol, when administered to mice for 15 days, can significantly improve these deleterious changes. In addition, TUNEL and Hoechst 33258 staining showed that a liver cell nucleus of a model group diffused uniform fluorescence following CCl4 injection. Maltol pretreatment groups did not show significant cell nuclear condensation and fragmentation, indicating that maltol inhibited CCl4-induced cell apoptosis. By evaluating the liver catalase (CAT), glutathione (GSH), superoxide dismutase (SOD) activity, and further using a single agent to evaluate the oxidative stress in CCl4-induced hepatotoxicity by immunofluorescence staining, maltol dramatically attenuated the reduction levels of hepatic CAT, GSH and SOD, and the over-expression levels of CYP2E1 and HO-1. In the mouse model of CCl4-induced liver injury, we have demonstrated that the inflammatory responses were inhibited, the serum levels of ALT and AST were reduced, cell apoptosis was suppressed, and liver injury caused by CCl4 was alleviated by maltol, demonstrating that maltol may be an efficient hepatoprotective agent.
Collapse
Affiliation(s)
- Wei Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Jin-Gang Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea.
| | - Yan-Dan Zhou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Yu-Fang He
- College of Management, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China.
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China.
| |
Collapse
|
7
|
Oxaloacetate Ameliorates Chemical Liver Injury via Oxidative Stress Reduction and Enhancement of Bioenergetic Fluxes. Int J Mol Sci 2018; 19:ijms19061626. [PMID: 29857490 PMCID: PMC6032239 DOI: 10.3390/ijms19061626] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
Chemical injury is partly due to free radical lipid peroxidation, which can induce oxidative stress and produce a large number of reactive oxygen species (ROS). Oxaloacetic acid is an important intermediary in the tricarboxylic acid cycle (TCA cycle) and participates in metabolism and energy production. In our study, we found that oxaloacetate (OA) effectively alleviated liver injury which was induced by hydrogen peroxide (H₂O₂) in vitro and carbon tetrachloride (CCl₄) in vivo. OA scavenged ROS, prevented oxidative damage and maintained the normal structure of mitochondria. We further confirmed that OA increased adenosine triphosphate (ATP) by promoting the TCA production cycle and oxidative phosphorylation (OXPHOS). Finally, OA inhibited the mitogen-activated protein kinase (MAPK) and apoptotic pathways by suppressing tumor necrosis factor-α (TNF-α). Our findings reveal a mechanism for OA ameliorating chemical liver injury and suggest a possible implementation for preventing the chemical liver injury.
Collapse
|
8
|
Marslin G, Prakash J, Qi S, Franklin G. Oral Delivery of Curcumin Polymeric Nanoparticles Ameliorates CCl₄-Induced Subacute Hepatotoxicity in Wistar Rats. Polymers (Basel) 2018; 10:polym10050541. [PMID: 30966575 PMCID: PMC6415407 DOI: 10.3390/polym10050541] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/28/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
Curcumin is the major bioactive compound of Curcuma longa, an important medicinal plant used in traditional herbal formulations since ancient times. In the present study, we report that curcumin nanoparticles (ηCur) protects Wistar rats against carbon tetrachloride (CCl4)-induced subacute hepatotoxicity. Nanoparticles of sizes less than 220 nm with spherical shape were prepared using PLGA and PVA respectively as polymer and stabilizer. Test animals were injected via intraperitoneal route with 1 mL/kg CCl4 (8% in olive oil) twice a week over a period of 8 weeks to induce hepatotoxicity. On the days following the CCl4 injection, test animals were orally administered with either curcumin or its equivalent dose of ηCur. Behavioural observation, biochemical analysis of serum and histopathological examination of liver of the experimental animals indicated that ηCur offer significantly higher hepatoprotection compared to curcumin.
Collapse
Affiliation(s)
- Gregory Marslin
- Ratnam Institute of Pharmacy and Research, Nellore 524 346, India.
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China.
| | - Jose Prakash
- Department of Pharmaceutics, Jaya College of Paramedical Sciences, Tiruninravur 602 024, India.
- Department of Pharmaceutics, Vels University, Chennai 600 117, India.
| | - Shanshan Qi
- Dapartment of Pharmacology, Vitamin D research institute, Shaanxi University of Technology, Hanzhong 723000, China.
| | - Gregory Franklin
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, 34 Strzeszynska Street, PL-60-479 Poznan, Poland.
| |
Collapse
|
9
|
Niu X, Liu F, Li W, Zhi W, Yao Q, Zhao J, Yang G, Wang X, Qin L, He Z. Hepatoprotective effect of fraxin against carbon tetrachloride-induced hepatotoxicity in vitro and in vivo through regulating hepatic antioxidant, inflammation response and the MAPK-NF-κB signaling pathway. Biomed Pharmacother 2017; 95:1091-1102. [DOI: 10.1016/j.biopha.2017.09.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023] Open
|