1
|
Ye Y, Tang S, Tai Y, Zhao C, Tang C, Huang Z, Gao J. The transcriptomic profile shows the protective effects of celecoxib on cirrhotic splenomegaly. Immunopharmacol Immunotoxicol 2024; 46:117-127. [PMID: 38047472 DOI: 10.1080/08923973.2023.2281282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/04/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Splenomegaly can exacerbate liver cirrhosis and portal hypertension. We have previously demonstrated that cyclooxygenase-2 (COX-2) inhibitor can attenuate cirrhotic splenomegaly. However, the mechanism of cirrhotic splenomegaly remains unclear, thus becoming the focus of the present study. MATERIALS AND METHODS Thioacetamide (TAA) intraperitoneal injection was used to induce cirrhotic splenomegaly. Rats were randomized into the control, TAA and TAA + celecoxib groups. Histological analysis and high-throughput RNA sequencing of the spleen were conducted. Splenic collagen III, α-SMA, Ki-67, and VEGF were quantified. RESULTS A total of 1461 differentially expressed genes (DEGs) were identified in the spleens of the TAA group compared to the control group. The immune response and immune cell activation might be the major signaling pathways involved in the pathogenesis of cirrhotic splenomegaly. With its immunoregulatory effect, celecoxib presents to ameliorate cirrhotic splenomegaly and liver cirrhosis. Furthermore, 304 coexisting DEGs were obtained between TAA vs. control and TAA + celecoxib vs. TAA. Gene ontology (GO) and KEGG analyses collectively indicated that celecoxib may attenuate cirrhotic splenomegaly through the suppression of splenic immune cell proliferation, inflammation, immune regulation, and fibrogenesis. The impacts on these factors were subsequently validated by the decreased splenic Ki-67-positive cells, macrophages, fibrotic areas, and mRNA levels of collagen III and α-SMA. CONCLUSIONS Celecoxib attenuates cirrhotic splenomegaly by inhibiting splenic immune cell proliferation, inflammation, and fibrogenesis. The current study sheds light on the therapeutic strategy of liver cirrhosis by targeting splenic abnormalities and provides COX-2 inhibitors as a novel medical treatment for cirrhotic splenomegaly.
Collapse
Affiliation(s)
- Yanting Ye
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Shihang Tang
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yang Tai
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhao
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Khaleel A, El-Sheakh AR, Suddek GM. Celecoxib abrogates concanavalin A-induced hepatitis in mice: Possible involvement of Nrf2/HO-1, JNK signaling pathways and COX-2 expression. Int Immunopharmacol 2023; 121:110442. [PMID: 37352567 DOI: 10.1016/j.intimp.2023.110442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/25/2023]
Abstract
Concanavalin A (ConA) is an established model for inducing autoimmune hepatitis (AIH) in mice, mimicking clinical features in human. The aimof the current study is to explore the possible protective effect of celecoxib, a cyclooxygenase-2 inhibitor,on immunological responses elicited in the ConA model of acute hepatitis. ConA (20 mg/kg) was administered intravenously to adult male mice for 6 h. Prior to ConA intoxication, mice in the treatedgroups received daily doses of celecoxib (30 and 60 mg/kg in CMC) for 7 days. Results revealed that administration of celecoxib 60 mg/kg for 7 days significantly protected the liver from ConA-induced liver damage revealed by significant decrease in ALT and AST serum levels. Celecoxib 30 and 60 mg/kg pretreatment enhanced oxidant/antioxidant hemostasis by significantreduction of MDA and NO content and increase hepatic GSH contents and SOD activity. In addition, celecoxib 30 and 60 mg/kg caused significant increase in hepatic nuclear factor erythroid 2-related factor 2 (Nrf2) and the stress protein heme oxygenase-1 (HO-1) levels. Moreover, celecoxib 30 and 60 mg/kg inhibited the release of proinflammatory markers including IL-1β and TNF-α along with significant decrease in p-JNK, AKT phosphorylation ratio and caspase-3 expression. Besides, Con A was correlated to high expression of cyclooxygenase COX-2 and this increasing was improved by administration of celecoxib. These changes were in good agreement with improvement in histological deterioration. The protective effect of celecoxib was also associated with significant reduction of autophagy biomarkers (Beclin-1 and LC3II). In conclusion, celecoxib showed antioxidant, anti-inflammatory, anti-apoptotic and anti-autophagy activity against Con A-induced immune-mediated hepatitis. These effects could be produced by modulation of Nrf2/HO-1, IL-1B /p-JNK/p-AKT, JNK/caspase-3, and Beclin-1/LC3II signaling pathways.
Collapse
Affiliation(s)
- Aya Khaleel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt; Future Studies and Risks Management' National Committee of Drugs, Academy of Scientific Research, Ministry of Higher Education, Elsayeda Zeinab, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
3
|
Effects of Dietary Macleaya cordata Extract on Growth Performance, Biochemical Indices, and Intestinal Microbiota of Yellow-Feathered Broilers Subjected to Chronic Heat Stress. Animals (Basel) 2022; 12:ani12172197. [PMID: 36077916 PMCID: PMC9454434 DOI: 10.3390/ani12172197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated the effect of dietary Macleaya cordata extract (MCE) supplementation on the growth performance, serum parameters, and intestinal microbiota of yellow-feather broilers under heat stress. A total of 216 yellow-feather broilers (28-days-old) were randomly allotted into three groups. A control group (CON) (24 ± 2 °C) and heat stress group (HS) (35 ± 2 °C) received a basal diet, and heat-stressed plus MCE groups (HS-MCE) (35 ± 2 °C) were fed the basal diet with 1000 mg/kg MCE for 14 consecutive days. The results revealed that MCE supplementation improved the final body weight, average daily feed intake, average daily gain, and spleen index when compared with the HS group (p < 0.05). In addition, MCE supplementation decreased (p < 0.05) the activities of aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and creatinine, and increased (p < 0.05) the glucose level and alkaline phosphatase activity in heat-stressed yellow-feathered broilers. Moreover, MCE treatment alleviated heat-stress-induced intestinal flora disturbances, decreased the Bacteroidota and Bacteroides relative abundances, and increased Firmicutes. A linear discriminant analysis effect size analysis found five differentially abundant taxa in the HS-MCE group, including Alistipes, Rikenellaceae, Mogibacterium, Butyrivibrio, and Lachnospira. These results suggest that MCE can alleviate HS-induced decline in growth performance by modulating blood biochemical markers and cecal flora composition in broilers.
Collapse
|
4
|
Senousy SR, El-Daly M, Ibrahim ARN, Khalifa MMA, Ahmed ASF. Effect of Celecoxib and Infliximab against Multiple Organ Damage Induced by Sepsis in Rats: A Comparative Study. Biomedicines 2022; 10:biomedicines10071613. [PMID: 35884918 PMCID: PMC9312943 DOI: 10.3390/biomedicines10071613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 12/30/2022] Open
Abstract
In cases of sepsis, the immune system responds with an uncontrolled release of proinflammatory cytokines and reactive oxygen species. The lungs, kidneys, and liver are among the early impacted organs during sepsis and are a direct cause of mortality. The aim of this study was to compare the effects of infliximab (IFX) and celecoxib (CLX) on septic rats that went through a cecal ligation and puncture (CLP) surgery to induce sepsis. This study included four groups: sham, CLP (untreated), and CLP-treated with CLX or IFX. The administration of “low dose” CLX or IFX was performed after 2 h following the induction of sepsis. Twenty-four hours following the induction of sepsis, the rats were sacrificed and blood samples were collected to evaluate kidney, liver, and lung injuries. MDA and NOx content, in addition to SOD activity and GSH levels, were evaluated in the tissue homogenates of each group. Tissue samples were also investigated histopathologically. In a separate experiment, the same groups were employed to evaluate the survival of septic rats in a 7-day observation period. The results of this study showed that treatment with either CLX or IFX ameliorated the three organs’ damage compared to septic-untreated rats, decreased oxidative stress, enhanced the antioxidant defense, and reduced serum cytokines. As a result, a higher survival rate resulted: 62.5% and 37.5% after the administration of CLX and IFX, respectively, compared to 0% in the CLP group after 7 days. No significant differences were observed between the two agents in all measured parameters. Histopathological examination confirmed the observed results. In conclusion, CLX and IFX ameliorated lung, kidney, and liver injuries associated with sepsis through anti-inflammatory and antioxidant actions, which correlated to the increase in survival observed with both of them.
Collapse
Affiliation(s)
- Shaymaa Ramzy Senousy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; (S.R.S.); (M.E.-D.); (M.M.A.K.); (A.-S.F.A.)
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; (S.R.S.); (M.E.-D.); (M.M.A.K.); (A.-S.F.A.)
| | - Ahmed R. N. Ibrahim
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61511, Egypt
- Correspondence: ; Tel.: +96-65-5408-8979
| | - Mohamed Montaser A. Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; (S.R.S.); (M.E.-D.); (M.M.A.K.); (A.-S.F.A.)
| | - Al-Shaimaa F. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; (S.R.S.); (M.E.-D.); (M.M.A.K.); (A.-S.F.A.)
| |
Collapse
|
5
|
Chen J, Cai S, Li R, Xie J, Yang F, Liu T. Blockade of Cycloxygenase-2 ameliorates sepsis induced immune-suppression by regulating myeloid-derived suppressor cells. Int Immunopharmacol 2022; 104:108506. [PMID: 35008007 DOI: 10.1016/j.intimp.2021.108506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) and cyclooxy-genase-2 (COX-2)/Prostaglandin E2 (PGE2) axis are important contributors to sepsis-induced immune-suppression. The purpose of present study is to explore whether COX-2 inhibitor can improve immunological disorder after sepsis via regulating MDSCs. METHODS A ''two-hit'' model reflecting clinical sepsis development was performed. Cecal ligation and puncture (CLP) and Legionella pneumophila infection were used as the first and the second hit, respectively. NS398, a selective COX-2 inhibitor, was utilized to treat septic mice. The motality, bacterial counts in the lung, systematic inflammatory reaction and CD4 + T cells response after sepsis were assessed, so as the frequency and function of MDSCs. In some experiments, the number of MDSCs was manipulated by adoptive transfer or neutralizing antibody before induction of secondary infection. RESULTS Mice surviving CLP showed a marked expansion and activation of MDSCs in spleen, accompanied by suppressed proliferating capability, impaired secreting functionand increased apoptosis of CD4 + T cells. Majority of CLP survivors became succumbed to L. pneumophila invasion, associated with defective bacteria elimination ability. NS398 treatment was found to ameliorate these adverse outcomes significantly. CONCLUSION MDSCs contribute greatly to the sepsis-induced immune dysfunction. Inhibiting COX-2 may become a promising therapy that targets MDSCs-induced immunosuppression.
Collapse
Affiliation(s)
- Jiajun Chen
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei, PR China
| | - Shiqi Cai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei, PR China
| | - Renjie Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei, PR China
| | - Jie Xie
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei, PR China
| | - Fan Yang
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei, PR China
| | - Tao Liu
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei, PR China.
| |
Collapse
|
6
|
Effects of Dietary Tributyrin on Growth Performance, Biochemical Indices, and Intestinal Microbiota of Yellow-Feathered Broilers. Animals (Basel) 2021; 11:ani11123425. [PMID: 34944202 PMCID: PMC8697914 DOI: 10.3390/ani11123425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/21/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
This study aimed to evaluate the effects of tributyrin on growth performance, biochemical indices and intestinal microbiota of yellow-feathered broilers. 360 one-day-old chicks were randomly allocated to three treatments with six replicates of 20 chicks each, including a normal control group (NC), an antibiotic group (PC), and a tributyrin (250 mg/kg) group (TB) for 63 days. The results showed that compared with the control, the feed conversion ratio (FCR) in the TB group decreased during the d22 to d42 (p < 0.05) and overall, the final weight and FCR of broilers tended to increase and decrease, respectively. Moreover, the TB group showed the highest creatine concentrations at the entire period (p < 0.05). TB treatment increased the Bacteroidetes relative abundance and decreased Firmicutes. Principal coordinates analysis yielded clear clustering of the three groups. Linear discriminant analysis effect size analysis found seven differentially abundant taxa in the TB group, including several members of Bacteroidedetes. The relative abundance of Eisenbergiella, Phascolarctobacterium, Megasphaera and Intestinimonas increased in tributyrin-treated broilers. Spearman correlation analysis identified a correlation between Eisenbergiella abundance and overall feed efficiency. These results demonstrated that tributyrin could improve the growth performance by modulating blood biochemical indices and the cecal microflora composition of broilers.
Collapse
|
7
|
Roles of Eicosanoids in Regulating Inflammation and Neutrophil Migration as an Innate Host Response to Bacterial Infections. Infect Immun 2021; 89:e0009521. [PMID: 34031130 DOI: 10.1128/iai.00095-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Eicosanoids are lipid-based signaling molecules that play a unique role in innate immune responses. The multiple types of eicosanoids, such as prostaglandins (PGs) and leukotrienes (LTs), allow the innate immune cells to respond rapidly to bacterial invaders. Bacterial pathogens alter cyclooxygenase (COX)-derived prostaglandins (PGs) in macrophages, such as PGE2 15d-PGJ2, and lipoxygenase (LOX)-derived leukotriene LTB4, which has chemotactic functions. The PG synthesis and secretion are regulated by substrate availability of arachidonic acid and by the COX-2 enzyme, and the expression of this protein is regulated at multiple levels, both transcriptionally and posttranscriptionally. Bacterial pathogens use virulence strategies such as type three secretion systems (T3SSs) to deliver virulence factors altering the expression of eicosanoid-specific biosynthetic enzymes, thereby modulating the host response to bacterial lipopolysaccharides (LPS). Recent advances have identified a novel role of eicosanoids in inflammasome activation during intracellular infection with bacterial pathogens. Specifically, PGE2 was found to enhance inflammasome activation, driving the formation of pore-induced intracellular traps (PITs), thus trapping bacteria from escaping the dying cell. Finally, eicosanoids and IL-1β released from macrophages are implicated in the efferocytosis of neighboring neutrophils. Neutrophils play an essential role in phagocytosing and degrading PITs and associated bacteria to restore homeostasis. This review focuses on the novel functions of host-derived eicosanoids in the host-pathogen interactions.
Collapse
|
8
|
Chen G, Liu Y, Xu Y, Zhang M, Guo S, Zhang G. Isoimperatorin exerts anti-inflammatory activity by targeting the LPS-TLR4/MD-2-NF-κB pathway. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211000573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Isoimperatorin (QHS) is a phytoconstituent found in the methanolic extracts obtained from the roots of Angelica dahurica, which contains anti-inflammatory, anti-bacterial, analgesic, anti-tumor, and vasodilatory activities. QHS possesses potent antagonistic activity against lipopolysaccharide (LPS)-induced inflammation; however, the mechanism of action remains unclear. In this study, we investigated the anti-inflammatory effect of QHS and explored the underlying mechanisms. The QHS was purchased from Jiangsu Yongjian Pharmaceutical Co., Ltd. (Jiangsu, China). We performed MTT assay, real-time PCR, ELISA, and western blotting experiments to assess the anti-inflammatory activity and the possible mechanism of QHS in vitro. Molecular docking was performed to study the binding of QHS and myeloid differentiation protein-2 (MD-2) and elucidate the possible anti-inflammatory mechanism. QHS had no significant effect on cell viability. Moreover, pre-treatment with QHS significantly decreased the release of inflammatory cytokines and mediators including NO, TNF-α, IL-6, and IL-1β. In addition, real-time PCR showed that QHS decreased the mRNA expressions of iNOS, COX-2 TNF-α, IL-6, and IL-1β. Western blotting indicated that QHS could inhibit the expression of the proteins associated with the LPS-TLR4/MD-2-NF-κB signaling pathway. Lastly, molecular docking revealed a possible binding mechanism between QHS and MD-2. QHS exhibited anti-inflammatory activity when combined with MD-2, regulating the LPS-TLR4/MD-2-NF-κB signaling pathway, and inhibiting the release and expression of inflammatory cytokines and mediators. Furthermore, QHS can be used as a potential TLR4 antagonist, which blocks MD-2 binding, for treating inflammatory responses induced by LPS.
Collapse
Affiliation(s)
- Guirong Chen
- 967th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Dalian, Liaoning, China
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yunong Liu
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yubin Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Mingbo Zhang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Song Guo
- Department of Computer Application, Shenyang Sport University, Shenyang, Liaoning, China
| | - Gang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Baris E, Simsek O, Efe H, Oncu S, Gelal A, Hamurtekin E, Tosun M, Ozbal S, Yuce Z, Arici M. Effects of CDP-Choline and Choline on COX Pathway in LPS-Induced Inflammatory Response in Rats. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.84.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Tang S, Huang Z, Jiang J, Gao J, Zhao C, Tai Y, Ma X, Zhang L, Ye Y, Gan C, Su W, Jia X, Liu R, Wu H, Tang C. Celecoxib ameliorates liver cirrhosis via reducing inflammation and oxidative stress along spleen-liver axis in rats. Life Sci 2021; 272:119203. [PMID: 33577848 DOI: 10.1016/j.lfs.2021.119203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/13/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Splenomegaly is usually taken as a consequence of liver cirrhosis. However, as a risk factor for cirrhosis, the impacts of spleen-liver axis on the development of cirrhosis are largely unknown. This study focused on the impacts of splenomegaly on the development of cirrhosis and assessment of the effects of celecoxib, a selective COX-2 inhibitor, on the splenomegaly and cirrhotic liver. MATERIALS AND METHODS Liver cirrhosis was induced by thioacetamide (TAA). Sixty rats were randomly divided into control, TAA-16w, TAA + celecoxib groups and normal, TAA + sham, TAA + splenectomy groups. Hepatic stellate cells (HSCs) or hepatocytes were co-cultured with splenocytes from those groups. RESULTS Splenocytes of cirrhotic rats stimulated the HSCs activation and induced hepatocyte apoptosis via enhancing oxidative stress. The hepatic levels of NOX-4 and the in situ O2- were profoundly reduced in TAA + splenectomy group by 50.6% and 18.5% respectively, p < 0.05. Celecoxib significantly decreased the hepatic fibrotic septa induced with TAA by 50.8%, p < 0.05. Splenic lymphoid tissue proliferation and proinflammatory cytokines of the cirrhotic rats were also obviously suppressed by celecoxib, p < 0.05. Compared with the HSC or hepatocyte cell line co-cultured with the cirrhotic splenocytes, the expression of alpha-SMA, NOX-4, in situ O2- or the levels of cleaved caspase3 and NOX-4 were significantly decreased in those cell lines co-cultured with cirrhotic splenocytes treated by celecoxib, p < 0.05. CONCLUSION Splenomegaly contributed to the development of liver cirrhosis through enhancing oxidative stress in liver. Celecoxib could effectively ameliorate liver cirrhosis via reducing inflammatory cytokines and immune cells derived from spleen and suppressing oxidative stress.
Collapse
Affiliation(s)
- Shihang Tang
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyin Huang
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingsun Jiang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhao
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Tai
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Ma
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Linhao Zhang
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanting Ye
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Can Gan
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Su
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xintong Jia
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Liu
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - Chengwei Tang
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Wei S, Bi J, Yang L, Zhang J, Wan Y, Chen X, Wang Y, Wu Z, Lv Y, Wu R. Serum irisin levels are decreased in patients with sepsis, and exogenous irisin suppresses ferroptosis in the liver of septic mice. Clin Transl Med 2020; 10:e173. [PMID: 32997405 PMCID: PMC7522760 DOI: 10.1002/ctm2.173] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Sepsis remains a major health issue without an effective therapy. Ferroptosis, an iron-dependent programmed cell death, has been proposed to be related to the pathogenesis of sepsis. Irisin, a myokine released during exercise, improves mitochondrial function under various conditions. Ferroptosis is closely related to mitochondrial function. However, the role of irisin in sepsis-induced ferroptosis and mitochondrial dysfunction in the liver remained unknown. Thus, we hypothesize that irisin treatment suppresses ferroptosis and improves mitochondrial function in sepsis. METHODS To study this, we first explored the role of serum irisin levels in patients with sepsis, and then determined the effect of irisin administration on ferroptosis and mitochondrial function in the liver of septic mice. RESULTS Serum irisin levels were decreased and negatively correlated with the APACHE II scores in patients with sepsis. In mice subjected to cecal ligation and puncture (CLP), exogenous irisin administration suppressed ferroptosis, inhibited inflammatory response, decreased reactive oxygen species (ROS) production, restored abnormal mitochondrial morphology, and increased mtDNA copy number and adenosine triphosphate (ATP) content. The effect of irisin on ferroptosis was confirmed in LPS-treated hepatocytes and CLP-induced septic mice. Inhibition of glutathione peroxidase 4 (GPX4), a central regulator of ferroptosis, reduced irisin's protective effects in LPS-treated hepatocytes and CLP-induced septic mice, while blocking the irisin receptor with RGD peptide or Echistain decreased irisin-induced GPX4 expression. CONCLUSIONS Serum irisin levels are decreased and negatively correlated with disease severity in patients with sepsis, and irisin treatment suppresses ferroptosis and restores mitochondrial function in experimental sepsis. Irisin may offer therapeutic potential in the management of sepsis.
Collapse
Affiliation(s)
- Shasha Wei
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Lifei Yang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Yafeng Wan
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Yawen Wang
- BioBank, First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Zheng Wu
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| |
Collapse
|
12
|
Zhang YF, Sun CC, Duan JX, Yang HH, Zhang CY, Xiong JB, Zhong WJ, Zu C, Guan XX, Jiang HL, Hammock BD, Hwang SH, Zhou Y, Guan CX. A COX-2/sEH dual inhibitor PTUPB ameliorates cecal ligation and puncture-induced sepsis in mice via anti-inflammation and anti-oxidative stress. Biomed Pharmacother 2020; 126:109907. [PMID: 32114358 DOI: 10.1016/j.biopha.2020.109907] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
Arachidonic acid can be metabolized to prostaglandins and epoxyeicosatrienoic acids (EETs) by cyclooxygenase-2 (COX-2) and cytochrome P450 (CYP), respectively. While protective EETs are degraded by soluble epoxide hydrolase (sEH) very fast. We have reported that dual inhibition of COX-2 and sEH with specific inhibitor PTUPB shows anti-pulmonary fibrosis and renal protection. However, the effect of PTUPB on cecal ligation and puncture (CLP)-induced sepsis remains unclear. The current study aimed to investigate the protective effects of PTUPB against CLP-induced sepsis in mice and the underlying mechanisms. We found that COX-2 expressions were increased, while CYPs expressions were decreased in the liver, lung, and kidney of mice undergone CLP. PTUPB treatment significantly improved the survival rate, reduced the clinical scores and systemic inflammatory response, alleviated liver and kidney dysfunction, and ameliorated the multiple-organ injury of the mice with sepsis. Besides, PTUPB treatment reduced the expression of hypoxia-inducible factor-1α in the liver, lung, and kidney of septic mice. Importantly, we found that PTUPB treatment suppressed the activation of NLRP3 inflammasome in the liver and lung of septic mice. Meanwhile, we found that PTUPB attenuated the oxidative stress, which contributed to the activation of NLRP3 inflammasome. Altogether, our data, for the first time, demonstrate that dual inhibition of COX-2 and sEH with PTUPB ameliorates the multiple organ dysfunction in septic mice.
Collapse
Affiliation(s)
- Yan-Feng Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Chen-Chen Sun
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Jia-Xi Duan
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Hunan Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Hui-Hui Yang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Chen-Yu Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Jian-Bing Xiong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Wen-Jing Zhong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Cheng Zu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xin-Xin Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Hui-Ling Jiang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China.
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
13
|
Abstract
Sepsis morbidity and mortality exacts a toll on patients and contributes significantly to healthcare costs. Preclinical models of sepsis have been used to study disease pathogenesis and test new therapies, but divergent outcomes have been observed with the same treatment even when using the same sepsis model. Other disorders such as diabetes, cancer, malaria, obesity, and cardiovascular diseases have used standardized, preclinical models that allow laboratories to compare results. Standardized models accelerate the pace of research and such models have been used to test new therapies or changes in treatment guidelines. The National Institutes of Health mandated that investigators increase data reproducibility and the rigor of scientific experiments and has also issued research funding announcements about the development and refinement of standardized models. Our premise is that refinement and standardization of preclinical sepsis models may accelerate the development and testing of potential therapeutics for human sepsis, as has been the case with preclinical models for other disorders. As a first step toward creating standardized models, we suggest standardizing the technical standards of the widely used cecal ligation and puncture model and creating a list of appropriate organ injury and immune dysfunction parameters. Standardized sepsis models could enhance reproducibility and allow comparison of results between laboratories and may accelerate our understanding of the pathogenesis of sepsis.
Collapse
|
14
|
Libert C, Ayala A, Bauer M, Cavaillon JM, Deutschman C, Frostell C, Knapp S, Kozlov AV, Wang P, Osuchowski MF, Remick DG. Part II: Minimum Quality Threshold in Preclinical Sepsis Studies (MQTiPSS) for Types of Infections and Organ Dysfunction Endpoints. Shock 2020; 51:23-32. [PMID: 30106873 DOI: 10.1097/shk.0000000000001242] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the clinical definitions of sepsis and recommended treatments are regularly updated, a systematic review has not been done for preclinical models. To address this deficit, a Wiggers-Bernard Conference on preclinical sepsis modeling reviewed the 260 most highly cited papers between 2003 and 2012 using sepsis models to create a series of recommendations. This Part II report provides recommendations for the types of infections and documentation of organ injury in preclinical sepsis models. Concerning the types of infections, the review showed that the cecal ligation and puncture model was used for 44% of the studies while 40% injected endotoxin. Recommendation #8 (numbered sequentially from Part I): endotoxin injection should not be considered as a model of sepsis; live bacteria or fungal strains derived from clinical isolates are more appropriate. Recommendation #9: microorganisms should replicate those typically found in human sepsis. Sepsis-3 states that sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection, but the review of the papers showed limited attempts to document organ dysfunction. Recommendation #10: organ dysfunction definitions should be used in preclinical models. Recommendation #11: not all activities in an organ/system need to be abnormal to verify organ dysfunction. Recommendation #12: organ dysfunction should be measured in an objective manner using reproducible scoring systems. Recommendation #13: not all experiments must measure all parameters of organ dysfunction, but investigators should attempt to fully capture as much information as possible. These recommendations are proposed as "best practices" for animal models of sepsis.
Collapse
Affiliation(s)
- Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Ghent University, Ghent, Belgium
| | - Alfred Ayala
- Rhode Island Hospital & Alpert School of Medicine at Brown University, Providence, Rhode Island
| | | | | | - Clifford Deutschman
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| | - Claes Frostell
- Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | | | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Ping Wang
- Feinstein Institute for Medical Research, Manhasset, New York
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | | |
Collapse
|
15
|
Abdelrahman RS, Abdelmageed ME. Renoprotective effect of celecoxib against gentamicin-induced nephrotoxicity through suppressing NFκB and caspase-3 signaling pathways in rats. Chem Biol Interact 2020; 315:108863. [DOI: 10.1016/j.cbi.2019.108863] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/28/2019] [Accepted: 10/12/2019] [Indexed: 12/26/2022]
|
16
|
El-Kashef DH, El-Sheakh AR. Hepatoprotective effect of celecoxib against tamoxifen-induced liver injury via inhibiting ASK-1/JNK pathway in female rats. Life Sci 2019; 231:116573. [DOI: 10.1016/j.lfs.2019.116573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
|
17
|
Gao Z, Lai Q, Yang Q, Xu N, Liu W, Zhao F, Liu X, Zhang C, Zhang J, Jia L. The characteristic, antioxidative and multiple organ protective of acidic-extractable mycelium polysaccharides by Pleurotus eryngii var. tuoliensis on high-fat emulsion induced-hypertriglyceridemic mice. Sci Rep 2018; 8:17500. [PMID: 30504780 PMCID: PMC6269502 DOI: 10.1038/s41598-018-35706-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/09/2018] [Indexed: 12/26/2022] Open
Abstract
The antioxidant and multiple organ protection effects of acid- extracted mycelia polysaccharides (Ac-MPS) from Pleurotus eryngii var. tuoliensis on HFE-induced hypertriglyceridemic mice were investigated. The results showed that Ac-MPS have potential ability to relieve the hypertriglyceridemia and preventing oxidative stress by decreasing levels of TG, TC LDL-C, elevating contents of HDL-C in serum, increasing the activities of SOD, GSH-Px, CAT and T-AOC, and the down regulating MDA and LPO contents in liver, heart, kidney and spleen. And the histopathological observations also displayed that Ac-MPS could alleviate organ damage. Moreover, the GC, HPGPC, FT-IR and AFM analyses revealed the Ac-MPS possessed the typical polysaccharides structure with the molecular weights (Mw) of 2.712 × 105 Da. These conclusions indicated that the Ac-MPS had the potential to develop new drugs for hypertriglyceridemia-induced multiple organ failure.
Collapse
Affiliation(s)
- Zheng Gao
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Qiangqiang Lai
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Qihang Yang
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Nuo Xu
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Wenbo Liu
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Fulan Zhao
- The First People's Hospital of Taian, Taian, 271000, PR China
| | - Xinchao Liu
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Chen Zhang
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China.
| |
Collapse
|
18
|
Wang P, Gao C, Guo N, Zhang SD, Wang W, Yao LP, Zhang J, Efferth T, Fu YJ. 2'- O-Galloylhyperin Isolated From Pyrola incarnata Fisch. Attenuates LPS-Induced Inflammatory Response by Activation of SIRT1/Nrf2 and Inhibition of the NF-κB Pathways in Vitro and Vivo. Front Pharmacol 2018; 9:679. [PMID: 29997508 PMCID: PMC6030669 DOI: 10.3389/fphar.2018.00679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023] Open
Abstract
2′-O-galloylhyperin, a major compound of Pyrola incarnata Fisch., possesses a variety of biological and pharmacological activities, including anti-oxidative and anti-inflammatory activities. Nevertheless, the underlying molecular mechanisms of 2′-O-GH in microbial infection and sepsis are not clear. In this study, we investigated the anti-inflammatory effects of 2′-O-GH. We found that 2′-O-GH significantly reduced the production of TNF-α, IL-6, and nitric oxide (NO), suppressed the expression levels of iNOS, blocked the translocation of NF-κB from the cytosol to nucleus, and decreased the MAPK activation in LPS-activated RAW 264.7 cells. 2′-O-GH also enhanced the nuclear translocation of Nrf2 and up-regulated the expression of heme oxygenase-1 (HO-1) and SIRT1. In addition, the administration of 2′-O-GH attenuated the TNF-α and IL-6 production in the serum, infiltration of inflammatory cells, liver tissue damage, and the mortality rate of LPS-challenged mice. Moreover, 2′-O-GH significantly upregulated Nrf2 and SIRT1 expression and inhibited the inflammatory responses in the liver of septic mice. The collective data indicate that 2′-O-GH could potentially be a novel functional food candidate in the treatment of sepsis.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chang Gao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Na Guo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Sun-Dong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Wei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Li-Ping Yao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jing Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
19
|
Ozer EK, Goktas MT, Kilinc I, Pehlivan S, Bariskaner H, Ugurluoglu C, Iskit AB. Coenzyme Q10 improves the survival, mesenteric perfusion, organs and vessel functions in septic rats. Biomed Pharmacother 2017; 91:912-919. [DOI: 10.1016/j.biopha.2017.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 01/16/2023] Open
|
20
|
Ozer EK, Goktas MT, Toker A, Bariskaner H, Ugurluoglu C, Iskit AB. Effects of Carvacrol on Survival, Mesenteric Blood Flow, Aortic Function and Multiple Organ Injury in a Murine Model of Polymicrobial Sepsis. Inflammation 2017. [DOI: 10.1007/s10753-017-0605-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|