1
|
Taha Z, Crupi MJ, Alluqmani N, Fareez F, Ng K, Sobh J, Lee E, Chen A, Thomson M, Spinelli MM, Ilkow CS, Bell JC, Arulanandam R, Diallo JS. Syngeneic mouse model of human HER2+ metastatic breast cancer for the evaluation of trastuzumab emtansine combined with oncolytic rhabdovirus. Front Immunol 2023; 14:1181014. [PMID: 37153626 PMCID: PMC10154558 DOI: 10.3389/fimmu.2023.1181014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Background Established mouse models of HER2+ cancer are based on the over-expression of rodent Neu/Erbb2 homologues, which are incompatible with human HER2 (huHER2) targeted therapeutics. Additionally, the use of immune-deficient xenograft or transgenic models precludes assessment of native anti-tumour immune responses. These hurdles have been a challenge for our understanding of the immune mechanisms behind huHER2-targeting immunotherapies. Methods To assess the immune impacts of our huHER2-targeted combination strategy, we generated a syngeneic mouse model of huHER2+ breast cancer, using a truncated form of huHER2, HER2T. Following validation of this model, we next treated tumour-bearing with our immunotherapy strategy: oncolytic vesicular stomatitis virus (VSVΔ51) with clinically approved antibody-drug conjugate targeting huHER2, trastuzumab emtansine (T-DM1). We assessed efficacy through tumour control, survival, and immune analyses. Results The generated truncated HER2T construct was non-immunogenic in wildtype BALB/c mice upon expression in murine mammary carcinoma 4T1.2 cells. Treatment of 4T1.2-HER2T tumours with VSVΔ51+T-DM1 yielded robust curative efficacy compared to controls, and broad immunologic memory. Interrogation of anti-tumour immunity revealed tumour infiltration by CD4+ T cells, and activation of B, NK, and dendritic cell responses, as well as tumour-reactive serum IgG. Conclusions The 4T1.2-HER2T model was used to evaluate the anti-tumour immune responses following our complex pharmacoviral treatment strategy. These data demonstrate utility of the syngeneic HER2T model for assessment of huHER2-targeted therapies in an immune-competent in vivo setting. We further demonstrated that HER2T can be implemented in multiple other syngeneic tumour models, including but not limited to colorectal and ovarian models. These data also suggest that the HER2T platform may be used to assess a range of surface-HER2T targeting approaches, such as CAR-T, T-cell engagers, antibodies, or even retargeted oncolytic viruses.
Collapse
Affiliation(s)
- Zaid Taha
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mathieu J.F. Crupi
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nouf Alluqmani
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Faiha Fareez
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Kristy Ng
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Judy Sobh
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Emily Lee
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Andrew Chen
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Max Thomson
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Marcus M. Spinelli
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Carolina S. Ilkow
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - John C. Bell
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rozanne Arulanandam
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jean-Simon Diallo
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Jean-Simon Diallo,
| |
Collapse
|
2
|
Liu W, Gong X, Luo J, Jiang L, Lu W, Pan C, Yao W, Gao X, Tian H. A purified acidic polysaccharide from Sarcandra glabra as vaccine adjuvant to enhance anti-tumor effect of cancer vaccine. Carbohydr Polym 2021; 263:117967. [PMID: 33858570 DOI: 10.1016/j.carbpol.2021.117967] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Immunological adjuvants are an important part of tumor vaccines and are critical for stimulating anti-tumor immune responses. However, the clinical needs of strong adjuvants have not been met. In this work, we found that the purified acidic polysaccharide from Sarcandra glabra, named p-SGP, is an ideal adjuvant for tumor vaccines. Cancer vaccines could induce stronger humoral and cellular immune responses when they are adjuvanted with p-SGP. Compared with CpG, a well-studied adjuvant, p-SGP significantly augmented the anti-tumor immunity of various cancer vaccines, which is leading to noticeable inhibition of tumor growth and metastasis in tumor-bearing mice. Moreover, p-SGP promoted dendritic cells (DCs) maturation and Th1-polarized immune response. Toll-like receptor 4 (TLR4) inhibitor TAK-242 could significantly inhibit the expression of mature molecules on the surface of DCs stimulated by p-SGP, suggesting that p-SGP could play the role of activating DCs through the TLR4 receptor. Results of RNA-seq showed that the Delta-like ligand 4 (DLL4) gene in the pathway Th1 and Th2 cell differentiation was significantly up-regulated in the DCs treated with p-SGP, suggesting that p-SGP has a unique mechanism of enhancing anti-tumor immunity.
Collapse
Affiliation(s)
- Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xingqun Gong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianhua Luo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Liangliang Jiang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Weisheng Lu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Chun Pan
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
PDL1-targeted vaccine exhibits potent antitumor activity by simultaneously blocking PD1/PDL1 pathway and activating PDL1-specific immune responses. Cancer Lett 2020; 476:170-182. [PMID: 32092355 DOI: 10.1016/j.canlet.2020.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/30/2022]
Abstract
Despite the clinical success of immune checkpoint blockade, only a subset of people exhibits durable responses, suggesting that an alternative immunotherapeutic strategy is required. This paper reported a two-in-one cancer vaccine that targets programmed death ligand 1 (PDL1) that blocks the PD1/PDL1 pathway and also activates antitumor immune response. The PDL1- NitraTh vaccine, which consists of the extracellular domain of PDL1 and nitrated T cell epitope, effectively broke the immune tolerance of PDL1 and elicited PDL1-specific humoral and cellular immunity. The treatment of PDL1-NitraTh exhibited potent antitumor activity. Moreover, immunization of PDL1 vaccine increased the infiltration of tumor lymphocytes and decreased the proportion of Treg cells in tumor tissues, suggesting that the vaccine may remodel the tumor microenvironment. The upregulation of PDL1 in tumor tissues was induced by PDL1-NitraTh vaccine but not in spleen and lymphomas. This upregulation of PDL1 is beneficial to the antitumor activity of PDL1-specific humoral and cellular immunity induced by PDL1-NitraTh. In summary, PDL1-targeted vaccine exhibits potent antitumor activity and may provide an alternative immunotherapy strategy for patients who are not sensitive to PDL1 antibody drugs.
Collapse
|
5
|
Chen X, Yu X, Song X, Liu L, Yi Y, Yao W, Gao X. Selection, purification, and characterization of a HER2-targeting soluble designed ankyrin repeat protein by E. coli surface display using HER2-positive melanoma cells. Prep Biochem Biotechnol 2018; 48:144-150. [PMID: 29313422 DOI: 10.1080/10826068.2017.1407944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a powerful target for cancer immune therapy. The development of anti-HER2 monoclonal antibodies targeting different domains of HER2 is quite effective. However, the selection and production of multivalent antibodies are complicated. In this study, a mimivirus-based designed ankyrin repeat protein (DARPin) targeting HER2 was selected from an artificial library by bacteria surface display. The selection was performed on HER2-positive B16BL6/E2 melanoma cells and HER2-nagative cells. DARPin selected from the library could be expressed in soluble form with a yield of 70 mg/L. After purified by two continuous and easy steps, the purity of DARPin was 90% as established by SDS-PAGE and RP-HPLC. Selected DARPin showed significant HER2-targeting ability with an affinity of 1.05 ± 0.47 µM. MTT assay demonstrated that at the concentration of 640 nM, the selected DARPin dimer could inhibit the SK-BR-3 growth at a rate of 36.63 and 46.34% in 48 and 72 hr incubation separately, which was similar to trastuzumab (43.12 and 49.14% separately). These findings suggested that it was an effective method to select antibody mimetic DARPin by bacteria surface display combined with live cells sorting and provided a drug candidate for cancer therapy.
Collapse
Affiliation(s)
- Xiaofei Chen
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines , School of Life Science and Technology, China Pharmaceutical University , Nanjing , PR China
| | - Xiaoxiao Yu
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines , School of Life Science and Technology, China Pharmaceutical University , Nanjing , PR China
| | - Xiaoda Song
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines , School of Life Science and Technology, China Pharmaceutical University , Nanjing , PR China
| | - Li Liu
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines , School of Life Science and Technology, China Pharmaceutical University , Nanjing , PR China
| | - Yuting Yi
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines , School of Life Science and Technology, China Pharmaceutical University , Nanjing , PR China
| | - Wenbing Yao
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines , School of Life Science and Technology, China Pharmaceutical University , Nanjing , PR China
| | - Xiangdong Gao
- a Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines , School of Life Science and Technology, China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|
6
|
Rodríguez-Cerdeira C, Carnero Gregorio M, López-Barcenas A, Sánchez-Blanco E, Sánchez-Blanco B, Fabbrocini G, Bardhi B, Sinani A, Guzman RA. Advances in Immunotherapy for Melanoma: A Comprehensive Review. Mediators Inflamm 2017; 2017:3264217. [PMID: 28848246 PMCID: PMC5564072 DOI: 10.1155/2017/3264217] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/21/2017] [Accepted: 04/03/2017] [Indexed: 12/18/2022] Open
Abstract
Melanomas are tumors originating from melanocytes and tend to show early metastasis secondary to the loss of cellular adhesion in the primary tumor, resulting in high mortality rates. Cancer-specific active immunotherapy is an experimental form of treatment that stimulates the immune system to recognize antigens on the surface of cancer cells. Current experimental approaches in immunotherapy include vaccines, biochemotherapy, and the transfer of adoptive T cells and dendritic cells. Several types of vaccines, including peptide, viral, and dendritic cell vaccines, are currently under investigation for the treatment of melanoma. These treatments have the same goal as drugs that are already used to stimulate the proliferation of T lymphocytes in order to destroy tumor cells; however, immunotherapies aim to selectively attack the tumor cells of each patient. In this comprehensive review, we describe recent advancements in the development of immunotherapies for melanoma, with a specific focus on the identification of neoantigens for the prediction of their elicited immune responses. This review is expected to provide important insights into the future of immunotherapy for melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ardiana Sinani
- Dermatology Service, Military Medical Unit, University Trauma Hospital, Tirana, Albania
| | | |
Collapse
|