1
|
Alimohammadi S, Mohaddes G, Keyhanmanesh R, Athari SZ, Azizifar N, Farajdokht F. Intranasal AdipoRon mitigates motor and cognitive deficits in hemiparkinsonian rats through neuroprotective mechanisms against oxidative stress and synaptic dysfunction. Neuropharmacology 2025; 262:110180. [PMID: 39393589 DOI: 10.1016/j.neuropharm.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
While motor symptoms are the most well-known manifestation of Parkinson's disease (PD), patients may also suffer from non-motor signs like cognitive impairments. The adiponectin receptor agonist AdipoRon (Adipo) has shown neuroprotective effects in preclinical studies. The objective of this study was to determine the potential benefits of chronic intranasal treatment of Adipo on motor function and cognitive performance in a hemiparkinsonian rat model caused by injecting 6-hydroxydopamine (6-OHDA) into the left forebrain bundle. After one week, PD rats were given either a vehicle or one of three dosages of Adipo (0.1, 1, and 10 μg) or levodopa (10 mg/kg orally) daily for 21 days. Recognition and spatial memory were determined using the novel object recognition test (NORT) and the Barnes maze test, respectively. The hippocampal tissues of the animals were harvested to examine oxidative stress status as well as the protein expressions of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD-95). In hemiparkinsonian rats, motor impairments, recognition memory, and spatial memory were all improved by chronic intranasal Adipo at 1 and 10 μg. Furthermore, we found that unilateral 6-OHDA injection elevated hippocampal oxidative stress (ROS) while concurrently reducing total antioxidant capacity (TAC), BDNF, PSD-95, and antioxidant enzymes (SOD, GPx). However, Adipo 10 μg significantly reduced these biochemical alterations in the hippocampus of 6-OHDA-lesioned rats. Chronic intranasal Adipo ameliorated spatial and recognition memory deterioration in hemiparkinsonian rats, presumably by increasing hippocampal synaptic protein levels, reducing oxidative stress, and increasing BDNF.
Collapse
Affiliation(s)
- Soraya Alimohammadi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Zanyar Athari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Azizifar
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Bourque M, Morissette M, Di Paolo T. Neuroactive steroids and Parkinson's disease: Review of human and animal studies. Neurosci Biobehav Rev 2024; 156:105479. [PMID: 38007170 DOI: 10.1016/j.neubiorev.2023.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The greater prevalence and incidence of Parkinson's disease (PD) in men suggest a beneficial effect of sex hormones. Neuroactive steroids have neuroprotective activities thus offering interesting option for disease-modifying therapy for PD. Neuroactive steroids are also neuromodulators of neurotransmitter systems and may thus help to control PD symptoms and side effect of dopamine medication. Here, we review the effect on sex hormones (estrogen, androgen, progesterone and its metabolites) as well as androstenediol, pregnenolone and dehydroepiandrosterone) in human studies and in animal models of PD. The effect of neuroactive steroids is reviewed by considering sex and hormonal status to help identify specifically for women and men with PD what might be a preventive approach or a symptomatic treatment. PD is a complex disease and the pathogenesis likely involves multiple cellular processes. Thus it might be useful to target different cellular mechanisms that contribute to neuronal loss and neuroactive steroids provide therapeutics options as they have multiple mechanisms of action.
Collapse
Affiliation(s)
- Mélanie Bourque
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada
| | - Marc Morissette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada; Faculté de pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec G1V 0A6, Canada.
| |
Collapse
|
3
|
Liu Y, Duan R, Li P, Zhang B, Liu Y. 3-N-butylphthalide attenuates neuroinflammation in rotenone-induced Parkinson's disease models via the cGAS-STING pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241229041. [PMID: 38315064 PMCID: PMC10846052 DOI: 10.1177/03946320241229041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Neuroinflammation is crucial in the onset and progression of dopaminergic neuron loss in Parkinson's disease (PD). We aimed to determine whether 3-N-Butylphthalide (NBP) can protect against PD by inhibiting the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway and the inflammatory response of microglia. MitoSOX/MitoTracker/Hoechst staining was used to detect the levels of mitochondrial reactive oxygen species (ROS) in BV2 cells. Quantitative Real-Time Polymerase Chain Reaction was used to measure the levels of free cytoplasmic mitochondrial DNA (mtDNA) in BV2 cells and mouse brain tissues. Behavioral impairments were assessed using rotarod, T-maze, and balance beam tests. Dopaminergic neurons and microglia were observed using immunohistochemical staining. Expression levels of cGAS, STING, nuclear factor kappa-B (NfκB), phospho- NfκB (p-NfκB), inhibitor of NfκBα (IκBα), and phospho-IκBα (p-IκBα) proteins in the substantia nigra and striatum were detected using Western Blot. NBP decreased mitochondrial ROS levels in rotenone-treated BV2 cells. NBP alleviated behavioral impairments and protected against rotenone-induced microgliosis and damage to dopaminergic neurons in the substantia nigra and striatum of rotenone-induced PD mice. NBP decreased rotenone-induced mtDNA leakage and mitigated neuroinflammation by inhibiting cGAS-STING pathway activation. NBP exhibited a protective effect in rotenone-induced PD models by significantly inhibiting the cGAS-STING pathway. Moreover, NBP can alleviate neuroinflammation, and is a potential therapeutic drug for alleviating clinical symptoms and delaying the progression of PD. This study provided insights for the potential role of NBP in PD therapy, potentially mitigating neurodegeneration, and consequently improving the quality of life and lifespan of patients with PD. The limitations are that we have not confirmed the exact mechanism by which NBP decreases mtDNA leakage, and this study was unable to observe the actual clinical therapeutic effect, so further cohort studies are required for validation.
Collapse
Affiliation(s)
- Yuqian Liu
- Qilu Hospital of Shandong University, Jinan, China
| | - Ruonan Duan
- Qilu Hospital of Shandong University, Jinan, China
| | - Peizheng Li
- Qilu Hospital of Shandong University, Jinan, China
| | - Bohan Zhang
- Qilu Hospital of Shandong University, Jinan, China
| | - Yiming Liu
- Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Rajizadeh MA, Khaksari M, Bejeshk MA, Amirkhosravi L, Jafari E, Jamalpoor Z, Nezhadi A. The Role of Inhaled Estradiol and Myrtenol, Alone and in Combination, in Modulating Behavioral and Functional Outcomes Following Traumatic Experimental Brain Injury: Hemodynamic, Molecular, Histological and Behavioral Study. Neurocrit Care 2023; 39:478-498. [PMID: 37100976 DOI: 10.1007/s12028-023-01720-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/24/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is an important and growing cause of disability worldwide, and its cognitive consequences may be particularly significant. This study assessed the neuroprotective impacts of estradiol (E2), myrtenol (Myr), and the combination of the two on the neurological outcome, hemodynamic parameters, learning and memory, brain-derived neurotrophic factor (BDNF) level, phosphoinositide 3-kinases (PI3K/AKT) signaling, and inflammatory and oxidative factors in the hippocampus after TBI. METHODS Eighty-four adult male Wistar rats were randomly divided into 12 groups with seven rats in each (six groups to measure intracranial pressure, cerebral perfusion pressure, brain water content, and veterinary coma scale, and six groups for behavioral and molecular studies): sham, TBI, TBI/vehicle, TBI/Myr, TBI/E2, and TBI/Myr + E2 (Myr 50 mg/kg and E2 33.3 μg/kg via inhalation for 30 min after TBI induction). Brain injury was induced by using Marmarou's method. Briefly, a 300-g weight was dropped down from a 2-m height through a free-falling tube onto the head of the anesthetized animals. RESULTS Veterinary coma scale, learning and memory, brain water content, intracranial pressure, and cerebral perfusion pressure were impaired following TBI, and inflammation and oxidative stress were raised in the hippocampus after TBI. The BDNF level and PI3K/AKT signaling were impaired due to TBI. Inhalation of Myr and E2 had protective effects against all negative consequences of TBI by decreasing brain edema and the hippocampal content of inflammatory and oxidant factors and also by improving BDNF and PI3K/AKT in the hippocampus. Based on these data, there were no differences between alone and combination administrations. CONCLUSIONS Our results propose that Myr and E2 have neuroprotective effects on cognition impairments due to TBI.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Cognitive and Neuroscience Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Khaksari
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ladan Amirkhosravi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Pathology Department, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Akram Nezhadi
- Cognitive and Neuroscience Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Mehrdad J, Leila E, Emsehgol N. The effect of vitamin B12 on synaptic plasticity of hippocampus in Alzheimer's disease model rats. Int J Neurosci 2023; 133:654-659. [PMID: 34347557 DOI: 10.1080/00207454.2021.1962863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/24/2020] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Hippocampus cells, responsible for learning and memory, are disturbed in Alzheimer's disease (AD), resulting in production of several inflammatory markers, such as neurexin 1 -neuroligin, cyclooxygenase-2 (COX-2), and caspase-3 proteins, used in measurement of AD's severity and development. Vitamin B12, which plays a role in brain functioning, has anti-inflammatory properties and its impairment is associated with apoptosis in Alzheimer's disease. This study aimed to investigate the effect of vitamin B12 on restoration of Synaptic Plasticity on scopolamine-induced AD in rats. METHODS To simulate AD, Rats, except the control group were i.p. injected with 3 mg/kg scopolamine. Before scopolamine the pretreatment group vitamin B12 (0.5, 2, and 4 mg/kg) was injected every day for the next 14 days. After 24 h, sectioning the rats' brains, the concentration of postsynaptic density protein 95 (PSD-95), neurexin 1-neurolgin, COX-2, and caspase-3 proteins in hippocampus were measured using immunoblotting. RESULTS B12 significantly enhanced molecular balance. PSD-95 and neurexin 1 and neuroligin concentrations were significantly reduced, whereas COX-2 and activated caspase-3 were enhanced in the hippocampus of scopolamine-injected subjects. Their alterations were decreased after B12 administration. CONCLUSIONS Vitamin B12 protected scopolamine-injected rats and inhibited hippocampal inflammation and apoptosis and preserved pre- and post-synaptic proteins and possibly synaptic integrity in hippocampus route.
Collapse
Affiliation(s)
- Jahanshahi Mehrdad
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Elyasi Leila
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nikmahzar Emsehgol
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
6
|
Sheibani V, Rajizadeh MA, Bejeshk MA, Haghparast E, Nozari M, Esmaeili-Mahani S, Nezhadi A. The effects of neurosteroid allopregnanolone on synaptic dysfunction in the hippocampus in experimental parkinsonism rats: An electrophysiological and molecular study. Neuropeptides 2022; 92:102229. [PMID: 35158223 DOI: 10.1016/j.npep.2022.102229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023]
Abstract
The dopaminergic system is a powerful candidate targeted for changes of synaptic plasticity in the hippocampus. Higher incidence of Parkinson's disease (PD) in men than women indicates the influence of sex hormones on the PD development. Previous studies have shown that neurodegenerative diseases such as PD are related to the decline of Allopregnanolon (Allo), a metabolite of progesterone; it is also well known that learning and memory are influenced by oscillations in steroidal hormones. Although abnormalities in hippocampal plasticity have been observed in the toxic models of PD, effects of Allo on hippocampal LTP and hippocampal synaptic protein levels, which play an important role in maintaining the integrity of neural connections, have never been analyzed thus far. Experimental groups subjected to the long-term potentiation (LTP) were studied in the CA1 area of the hippocampus. In addition, the levels of hippocampal postsynaptic density protein 95 (PSD-95), neurexin-1 (Nrxn1) and neuroligin (Nlgn) as synaptic molecular components were determined by immunoblotting. Although dopamine denervation did not alter basal synaptic transmission and pair-pulse facilitation of field excitatory postsynaptic potentials (fEPSPs), the induction and maintenance of LTP were impaired in the CA1 region. In addition, the levels of PSD-95, Nrxn1 and Nlgn were significantly decreased in the hippocampus of 6-OHDA-treated animals. Such abnormalities in synaptic electrophysiological aspects and protein levels were abolished by the treatment with Allo. These findings showed that partial dopamine depletion led to unusual synaptic plasticity in the CA1 as well as the decrease in synaptic proteins in the hippocampus. Our results demonstrated that Allo ameliorated these deficits and preserved pre- and post-synaptic proteins. Therefore, Allo may be an effective factor in maintaining synaptic integrity in the mesolimbic pathway.
Collapse
Affiliation(s)
- Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Haghparast
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoumeh Nozari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Akram Nezhadi
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Cuttler K, Hassan M, Carr J, Cloete R, Bardien S. Emerging evidence implicating a role for neurexins in neurodegenerative and neuropsychiatric disorders. Open Biol 2021; 11:210091. [PMID: 34610269 PMCID: PMC8492176 DOI: 10.1098/rsob.210091] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Synaptopathies are brain disorders characterized by dysfunctional synapses, which are specialized junctions between neurons that are essential for the transmission of information. Synaptic dysfunction can occur due to mutations that alter the structure and function of synaptic components or abnormal expression levels of a synaptic protein. One class of synaptic proteins that are essential to their biology are cell adhesion proteins that connect the pre- and post-synaptic compartments. Neurexins are one type of synaptic cell adhesion molecule that have, recently, gained more pathological interest. Variants in both neurexins and their common binding partners, neuroligins, have been associated with several neuropsychiatric disorders. In this review, we summarize some of the key physiological functions of the neurexin protein family and the protein networks they are involved in. Furthermore, examination of published literature has implicated neurexins in both neuropsychiatric and neurodegenerative disorders. There is a clear link between neurexins and neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia. However, multiple expression studies have also shown changes in neurexin expression in several neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Therefore, this review highlights the potential importance of neurexins in brain disorders and the importance of doing more targeted studies on these genes and proteins.
Collapse
Affiliation(s)
- Katelyn Cuttler
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Maryam Hassan
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| |
Collapse
|
8
|
Komeili G, Haghparast E, Sheibani V. Marijuana improved motor impairments and changes in synaptic plasticity-related molecules in the striatum in 6-OHDA-treated rats. Behav Brain Res 2021; 410:113342. [PMID: 33961911 DOI: 10.1016/j.bbr.2021.113342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 01/06/2023]
Abstract
Using marijuana has become popular and is allowed for medical purposes in some countries. The effect of marijuana on Parkinson's disease is controversial and Medical marijuana may benefit for motor and non-motor symptoms of patients with Parkinson's disease. No research has been conducted to fully prove the benefits, risks, and uses of marijuana as a treatment for patients with Parkinson's disease. In the present study, several different approaches, including behavioral measures and the western blot method for protein level assay, were used to investigate whether exposure to marijuana affects the motor and synaptic plasticity impairment induced by 6-OHDA. Marijuana consumption significantly decreased apomorphine-induced contralateral rotation, beam travel time, beam freeze time, and catalepsy time, but significantly increased latency to fall in the rotarod test, balance time, and protein level of PSD-95 and dopamine receptor D1 in the 6-OHDA + marijuana group. These results suggest that marijuana may be helpful for motor disorders and synaptic changes in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Gholamreza Komeili
- Department of Physiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Elham Haghparast
- Department of Physiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Vahid Sheibani
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Esmaeili-Mahani S, Haghparast E, Nezhadi A, Abbasnejad M, Sheibani V. Apelin-13 prevents hippocampal synaptic plasticity impairment in Parkinsonism rats. J Chem Neuroanat 2020; 111:101884. [PMID: 33161074 DOI: 10.1016/j.jchemneu.2020.101884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
The hippocampus is involved in learning and memory for novel information and implicated within the cognitive dysfunction in Parkinson's disease. Long-term potentiation (LTP), the most type of synaptic plasticity, is the base of learning and memory. We evaluated the consequences of apelin-13 on early long-term potentiation (E-LTP) in the Cornu Ammonis (CA1) area of the hippocampus and synaptic hippocampal protein expression of postsynaptic density protein 95 (PSD-95) and dopaminergic receptor (DR1) of the rat model of Parkinsonism. 6-hydroxydopamine (6-OHDA) was infused within the right substantia nigra. Intra-nigral transfusion of apelin-13 (1, 2, and 3 μg/rat) was performed one week after the 6-OHDA injection. Using hematoxylin and eosin staining, the pathological changes in the substantia nigra neurons were examined. In Vivo field excitatory postsynaptic potentials were recorded in the CA1 region one month after the apelin injection. The PSD-95 and DR1 protein levels were assessed by western blotting. The mRNA expression level of DR1 was also measured by real-time PCR. 6-OHDA meaningfully disrupted short-term memory and LTP, and altered the expression levels of the above-mentioned proteins in the hippocampus. The results suggest that apelin-13 (especially at 3 μg/rat) significantly ameliorates the E-LTP impairment and attenuates the changes in hippocampal synaptic proteins in 6-OHDA-treated rats.
Collapse
Affiliation(s)
- Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Haghparast
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Akram Nezhadi
- Neuroscience Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahid Sheibani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Khodadadi H, Jahromi GP, Zaeinalifard G, Fasihi-Ramandi M, Esmaeili M, Shahriary A. Neuroprotective and Antiapoptotic Effects of Allopregnanolone and Curcumin on Arsenic-Induced Toxicity in SH-SY5Y Dopaminergic Human Neuroblastoma Cells. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Conner MR, Jang D, Anderson BJ, Kritzer MF. Biological Sex and Sex Hormone Impacts on Deficits in Episodic-Like Memory in a Rat Model of Early, Pre-motor Stages of Parkinson's Disease. Front Neurol 2020; 11:942. [PMID: 33041964 PMCID: PMC7527538 DOI: 10.3389/fneur.2020.00942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/21/2020] [Indexed: 01/30/2023] Open
Abstract
Episodic memory deficits are among the earliest appearing and most commonly occurring examples of cognitive impairment in Parkinson's disease (PD). These enduring features can also predict a clinical course of rapid motor decline, significant cognitive deterioration, and the development of PD-related dementia. The lack of effective means to treat these deficits underscores the need to better understand their neurobiological bases. The prominent sex differences that characterize episodic memory in health, aging and in schizophrenia and Alzheimer's disease suggest that neuroendocrine factors may also influence episodic memory dysfunction in PD. However, while sex differences have been well-documented for many facets of PD, sex differences in, and sex hormone influences on associated episodic memory impairments have been less extensively studied and have never been examined in preclinical PD models. Accordingly, we paired bilateral neostriatal 6-hydroxydopamine (6-OHDA) lesions with behavioral testing using the What-Where-When Episodic-Like Memory (ELM) Task in adult rats to first determine whether episodic-like memory is impaired in this model. We further compared outcomes in gonadally intact female and male subjects, and in male rats that had undergone gonadectomy—with and without hormone replacement, to determine whether biological sex and/or sex hormones influenced the expression of dopamine lesioned-induced memory deficits. These studies showed that 6-OHDA lesions profoundly impaired recall for all memory domains in male and female rats. They also showed that in males, circulating gonadal hormones powerfully modulated the negative impacts of 6-OHDA lesions on What, Where, and When discriminations in domain-specific ways. Specifically, the absence of androgens was shown to fully attenuate 6-OHDA lesion-induced deficits in ELM for “Where” and to partially protect against lesion-induced deficits in ELM for “What.” In sum, these findings show that 6-OHDA lesions in rats recapitulate the vulnerability of episodic memory seen in early PD. Together with similar evidence recently obtained for spatial working memory, the present findings also showed that diminished androgen levels provide powerful, highly selective protections against the harmful effects that 6-OHDA lesions have on memory functions in male rats.
Collapse
Affiliation(s)
- Meagan R Conner
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, United States.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Doyeon Jang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Brenda J Anderson
- Department of Psychology, Stony Brook University, Stony Brook, NY, United States
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
12
|
Haghparast E, Sheibani V, Abbasnejad M, Esmaeili-Mahani S. Apelin-13 attenuates motor impairments and prevents the changes in synaptic plasticity-related molecules in the striatum of Parkinsonism rats. Peptides 2019; 117:170091. [PMID: 31121196 DOI: 10.1016/j.peptides.2019.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/24/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022]
Abstract
The striatum plays a critical role in motor control and also learning and memory of motor skills. It has been reported that striatal synaptic components are significantly decreased in dopaminergic-denervated striatum. In this study the effects of apelin-13 were investigated on motor disorders and striatal synaptosomal expression of PSD-95, neurexin1, neuroligin, metabotropic glutamate receptor (mGlu R1) and dopaminergic receptors (DR1 and DR2) in rat parkinsonism experimental model. 6-hydroxydopamine (6-OHDA) was injected into the substantia nigra. Apelin-13 (1, 2 and 3 μg/rat) was administered into the substantia nigra one week after the 6-OHDA injection. Accelerating rotarod, beam-balance, beam-walking and bar tests were performed one month after the apelin injection. Immunohistochemistry staining of dopaminergic neurons was performed. The levels of synaptic proteins were determined by immunoblotting. 6-OHDA-treated animals showed a significant impairment in motor-skill tasks and a dramatically change in the expression levels of mentioned proteins. Apelin-13 (3 μg/rat) significantly attenuates the motor impairments and prevents the changes in striatal synaptic elements in 6-OHDA-treated animals. In addition, it could rescue the dopaminergic neurons of the substantia nigra. The data will potentially extend the possible benefic aspect of apelin in neurodegenerative disorders.
Collapse
Affiliation(s)
- Elham Haghparast
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman. Kerman, Iran
| | - Vahid Sheibani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman. Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman. Kerman, Iran.
| |
Collapse
|
13
|
Wang Z, Hou L, Wang D. Effects of exercise-induced fatigue on the morphology of asymmetric synapse and synaptic protein levels in rat striatum. Neurochem Int 2019; 129:104476. [PMID: 31145967 DOI: 10.1016/j.neuint.2019.104476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/20/2019] [Accepted: 05/26/2019] [Indexed: 12/12/2022]
Abstract
Corticostriatal synaptic plasticity is considered to be a cellular basis for somatic motor regulation and motor skill learning. Changes in synaptic transmission efficiency underlie functional plasticity, while structural plasticity involves changes in the ultrastructure of the synapse and the levels of synaptic proteins. Exercise-induced fatigue may impair corticostriatal synaptic plasticity, and this impairment may be an important mechanism for exercise-induced fatigue. However, prior research focused mainly on functional plasticity such that the structural plasticity was not well understood. Because corticostriatal synapses are typical asymmetric synapses, here we have used transmission electron microscopy to examine the changes of asymmetry synaptic ultrastructure in rat striatum before and after repetitive exercise-induced fatigue; we have also used western blotting to detect the levels of synaptic active region protein Munc 13, RIM1 and synaptic vesicle protein Rab3A and postsynaptic density PSD-95 protein in rat striatum before and after exercise-induced fatigue. The results showed that the ultrastructure of asymmetry corticostriatal synapses and synaptic protein levels in the striatum of rats were abnormally changed after repetitive exercise-induced fatigue. These abnormal changes in synaptic ultrastructure and related protein levels may be the structural basis for the corticostriatal plasticity impairment after exercise-induced fatigue.
Collapse
Affiliation(s)
- Zhifeng Wang
- Department of Physical Education, Xi'an Polytechnic University, Xi'an, Shanxi, 710048, China
| | - Lijuan Hou
- Physical Education and Sports College, Beijing Normal University, Beijing, 100875, China
| | - Dongmei Wang
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271000, China.
| |
Collapse
|
14
|
Bourque M, Morissette M, Di Paolo T. Repurposing sex steroids and related drugs as potential treatment for Parkinson's disease. Neuropharmacology 2018; 147:37-54. [PMID: 29649433 DOI: 10.1016/j.neuropharm.2018.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 01/19/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder for which a greater prevalence and incidence is described in men. This suggests a protective effect of sex hormones in the brain. Therefore, steroids and drugs to treat endocrine conditions could have additional application for PD. Here, we review the protective effect of sex hormones, particularly estrogens, progesterone, androgens and dehydroepiandrosterone, in animal models of PD and also in human studies. Data also support that drugs affecting estrogen neurotransmission such as selective estrogen receptor modulators or affecting steroid metabolism with 5α-reductase inhibitors could be repositioned for treatment of PD. Sex steroids are also modulator of neurotransmission, thus they could repurposed to treat PD motor symptoms and to modulate the response to PD medication. No drug is yet available to limit PD progression. PD is a complex disease implicating multiple pathological processes and a therapeutic strategy using drugs with several mechanisms of action, such as sex steroids and endocrine drugs are interesting repositioning options for symptomatic treatment and disease-modifying activity for PD. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.
Collapse
Affiliation(s)
- Mélanie Bourque
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Quebec City, G1K 7P4, Canada
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, G1V 4G2, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Quebec City, G1K 7P4, Canada.
| |
Collapse
|
15
|
Haghparast E, Esmaeili-Mahani S, Abbasnejad M, Sheibani V. Apelin-13 ameliorates cognitive impairments in 6-hydroxydopamine-induced substantia nigra lesion in rats. Neuropeptides 2018; 68:28-35. [PMID: 29329678 DOI: 10.1016/j.npep.2018.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/30/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022]
Abstract
Although Parkinson's disease (PD) is well known with its motor deficits, the patients often suffer from cognitive dysfunction. Apelin, as the endogenous ligand of the APJ receptor, is found in several brain regions such as substantia nigra and mesolimbic pathway. However, the role of apelin in cognition and cognitive disorders has not been fully clarified. In this study the effects of apelin-13 were investigated on cognitive disorders in rat Parkinsonism experimental model. 6-hydroxydopamine (6-OHDA) was administrated into the substantia nigra. Apelin-13 (1, 2 and 3μg/rat) was administered into the substantia nigra one week after the 6-OHDA injection. Morris water maze (MWM), object location and novel object recognition tests were performed one month after the apelin injection. 6-OHDA-treated animals showed a significant impairment in cognitive functions which was revealed by the increased in the escape latency and traveled distance in MWM test and decreased in the exploration index in novel object recognition and object location tasks. Apelin-13 (3μg/rat) significantly attenuates the mentioned cognitive impairments in 6-OHDA-treated animals. In conclusion, the data support the pro-cognitive property of apelin-13 in 6-OHDA-induced cognitive deficit and provided a new pharmacological aspect of the neuropeptide apelin.
Collapse
Affiliation(s)
- Elham Haghparast
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahid Sheibani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|