1
|
Rahman AA, Hegazy A, Elabbasy LM, Shoaeir MZ, Abdel-Aziz TM, Abbas AS, Khella HWZ, Eltrawy AH, Alshaman R, Aloyouni SY, Aldahish AA, Zaitone SA. Leflunomide-induced cardiac injury in adult male mice and bioinformatic approach identifying Nrf2/NF-κb signaling interplay. Toxicol Mech Methods 2024; 34:639-653. [PMID: 38389224 DOI: 10.1080/15376516.2024.2322666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Leflunomide (LFND) is an immunosuppressive and immunomodulatory disease-modifying antirheumatic drug (DMARD) that was approved for treating rheumatoid arthritis. LFND-induced cardiotoxicity was not fully investigated since its approval. We investigated the cardiac injury in male mice and identified the role of nuclear factor erythroid 2-related factor 2/nuclear factor-κ B (Nrf2/NF-κB) signaling. Male albino mice were assigned into five groups as control, vehicle, and LFND (2.5, 5, and 10 mg/kg). We investigated cardiac enzymes, histopathology, and the mRNA expression of Nrf2, NF-κB, BAX, and tumor necrosis factor-α (TNF-α). The bioinformatic study identified the interaction between LFND and Nrf2/NF-κB signaling; this was confirmed by amelioration in mRNA expression (0.5- to 0.34-fold decrease in Nrf2 and 2.6- to 4.61-fold increases in NF-κB genes) and increased (1.76- and 2.625-fold) serum creatine kinase (CK) and 1.38- and 2.33-fold increases in creatine kinase-MB (CK-MB). Histopathological results confirmed the dose-dependent effects of LFND on cardiac muscle structure in the form of cytoplasmic, nuclear, and vascular changes in addition to increased collagen deposits and apoptosis which were increased compared to controls especially with LFND 10 mg/kg. The current study elicits the dose-dependent cardiac injury induced by LFND administration and highlights, for the first time, dysregulation in Nrf2/NF-κB signaling.
Collapse
Affiliation(s)
- Abeer A Rahman
- Department of Histology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ann Hegazy
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Lamiaa M Elabbasy
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Mohamed Z Shoaeir
- Department of Rheumatology and Rehabilitation, Al-Azhar Asyut Faculty of Medicine for Men, Asyut, Egypt
| | - Tarek M Abdel-Aziz
- Department of Rheumatology and Rehabilitation, Al-Azhar Asyut Faculty of Medicine for Men, Asyut, Egypt
| | - Awad S Abbas
- Department of Rheumatology and Rehabilitation, Al-Azhar Asyut Faculty of Medicine for Men, Asyut, Egypt
| | - Heba W Z Khella
- Department of Clinical Education, Canadian Memorial Chiropractic College, Toronto, Canada
| | - Amira H Eltrawy
- Department of Anatomy and Embryology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sheka Yagub Aloyouni
- Research Department, Natural and Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Afaf A Aldahish
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
2
|
Jiang A, Liu L, Wang J, Liu Y, Deng S, Jiang T. Linarin Ameliorates Restenosis After Vascular Injury in Type 2 Diabetes Mellitus via Regulating ADAM10-Mediated Notch Signaling Pathway. Cardiovasc Toxicol 2024; 24:587-597. [PMID: 38691303 DOI: 10.1007/s12012-024-09863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Vascular lesions frequently arise as complication in patients diagnosed with diabetes mellitus (DM). Presently, percutaneous coronary intervention (PCI) and antithrombotic therapy serve as primary treatments. However, in-stent restenosis persists as a challenging clinical issue following PCI, lacking sustained and effective treatment. Linarin (LN) exhibits diverse pharmacological activities and is regarded as a potential drug for treating various diseases, including DM. But its specific role in restenosis after vascular injury in DM patients remains unclear. A rat model of diabetes-related restenosis was established to evaluate the role of LN on neointimal hyperplasia. Vascular smooth muscle cells (VSMCs) stimulated by high glucose (HG, 30 mM) underwent LN treatment. Additionally, an overexpression plasmid of A disintegrin and metalloproteinases (ADAM10) was constructed to transfect VSMCs. We employed CCK-8, Brdu, wound-healing scratch, and transwell migration assays to evaluate the proliferation and migration of VSMCs. Furthermore, western blot and immunofluorescence assays were utilized to investigate the expressions of ADAM10 and the downstream Notch signaling pathway in vivo and in vitro models. LN notably alleviated intimal hyperplasia after vascular injury in DM rats and reduced the protein expression of ADAM10, alongside its downstream Notch1 signaling pathway-related proteins (Notch1, NICD and Hes1) in rat carotid artery tissues. LN effectively suppressed the proliferation and migration of VSMCs induced by HG, downregulating the protein expression of ADAM10, Notch1, NICD and Hes1. Moreover, our findings indicated that ADAM10 overexpression significantly reversed LN's effects on proliferation, migration, and the expression of Notch1 signaling pathway-related proteins in HG-treated VSMCs. LN demonstrates potential therapeutic efficacy in addressing restenosis after diabetic-related vascular injury, with the ADAM10 mediated Notch signaling pathway playing a pivotal role.
Collapse
MESH Headings
- Animals
- ADAM10 Protein/metabolism
- Signal Transduction
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/enzymology
- Cell Movement/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/enzymology
- Cell Proliferation/drug effects
- Male
- Rats, Sprague-Dawley
- Neointima
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Amyloid Precursor Protein Secretases/metabolism
- Cells, Cultured
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/drug therapy
- Carotid Artery Injuries/enzymology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Hyperplasia
- Receptors, Notch/metabolism
- Receptor, Notch1/metabolism
- Transcription Factor HES-1/metabolism
- Transcription Factor HES-1/genetics
- Disease Models, Animal
- Rats
- Coronary Restenosis/pathology
- Coronary Restenosis/etiology
- Coronary Restenosis/metabolism
- Coronary Restenosis/prevention & control
Collapse
Affiliation(s)
- Aihua Jiang
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China
| | - Lin Liu
- Department of Gastroenterology, Hengyang Central Hospital, Hengyang, 421001, China
| | - Jianping Wang
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China
| | - Yinglan Liu
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China
| | - Shanshan Deng
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China
| | - Tao Jiang
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
3
|
Han M, Lin J, Yang Y, Ding Y, Ge W, Fan H, Wang C, Xie W. Xinshuaining preparation protects H9c2 cells from H 2O 2-induced oxidative damage through the PI3K/Akt/Nrf-2 signaling pathway. Clin Exp Hypertens 2023; 45:2131806. [PMID: 36266998 DOI: 10.1080/10641963.2022.2131806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death. Oxidative stress is an important pathological process of a variety of CVDs. Xinshuaining preparation has a therapeutic effect on the heart failure. However, the anti-oxidative stress role of Xinshuaining preparation in H9c2 cells is still unclear. METHODS The medicated serum of Xinshuaining preparation was acquired and utilized to hatch with H2O2-induced H9c2 cells. Main components in the Xinshuaining preparation were analyzed by liquid chromatography-mass spectrometry (LC/MS). The effect of medicated serum on the cell viability, apoptosis rate, the oxidative stress indicators (SOD, GSH-Px, and MDA), mitochondrial membrane potential (MMP), and ROS level was evaluated by CCK-8, flow cytometry, commercial biochemical detection kits, and JC-1 staining. Additionally, the associated mechanism was determined by the detection of the protein levels (PI3K, phosphorylated PI3K, Akt, phosphorylated Akt, and Nrf-2) through western blot assays, which was also further assessed with the application of LY294002. RESULTS The medicated serum of Xinshuaining preparation notably increased the H2O2-reduced, the cell viability, the concentration of SOD and GSH-Px, MMP level and the relative protein expression level of phosphorylated PI3K and Akt and Nrf-2, while dampened the H2O2-elevated the level of the cell apoptosis rate, MDA, and ROS. However, Xinshuaining preparation on the cell viability, apoptosis, and oxidative stress was notably antagonized by LY294002 pre-treatment. CONCLUSIONS The medicated serum of Xinshuaining preparation increased the cell viability and suppressed apoptosis and oxidative stress via the PI3K/Akt/Nrf-2 signaling pathway.
Collapse
Affiliation(s)
- Mingjun Han
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Jie Lin
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Yi Yang
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Yumei Ding
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Wenjun Ge
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Haoran Fan
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Ce Wang
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Wen Xie
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| |
Collapse
|
4
|
A Linarin Derivative Protects against Ischemia-Induced Neuronal Injury in Mice by Promoting Cerebral Blood Flow Recovery via KDELR-Dependent CSPG4 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6434086. [PMID: 35927993 PMCID: PMC9345725 DOI: 10.1155/2022/6434086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
The cerebral ischemic microvascular response and collateral circulation compensatory capacity are important for the outcome of ischemic stroke. Here, we sought to evaluate the effect of a linarin derivate 4′-benzylapigenin-7-β-rutinoside (BLR) on neurological function and cerebral blood flow restoration in ischemic stroke. A mouse model of middle cerebral artery occlusion (30 min) with reperfusion (24 h) was used to mimic ischemic stroke in vivo, and 2,3,5-triphenyltetrazolium chloride (TTC) staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays, and immunofluorescence microscopy were used to assess the protective effects of BLR on infarct volume, neurological function, neuronal apoptosis, and inflammatory damage. Cerebral blood flow was assayed by laser speckle contrast imaging. Double immunostaining of GFAP-collagen IV and brain lucidification were performed to determine the protective effects of BLR on the disruption of brain vasculature. Differential gene expression was assessed by RNA sequencing. Coimmunoprecipitation and western blotting were used to explore the mechanism of BLR-induced neuroprotection. The results of in vivo experiments showed that BLR administration after reperfusion onset reduced infarct volume, improved neurological function, and decreased the neural cell apoptosis and inflammatory response in the ischemic brain, which was accompanied by increased cerebral blood flow and reduced detachment of astrocyte endfeet from the capillary basement membrane. The RNA sequencing data showed that BLR promoted the upregulation of extracellular matrix and angiogenesis pathway-related genes; in particular, BLR significantly increased the expression of the chondroitin sulfate proteoglycan 4 (CSPG4) gene, enhanced the membrane location of CSPG4, and promoted its downstream signaling protein expression, which is associated with KDEL receptor (KDELR) activation. In addition, activated KDELR further increased the phosphorylation of mitogen-activated protein kinases after BLR treatment. Taken together, our data showed that BLR could protect against ischemic brain injury and may serve as a new promising therapeutic candidate drug for ischemic stroke, and that KDELR might act as both a sensor and effector to activate CSPG4 to increase cerebral blood flow.
Collapse
|
5
|
Wu S, Luo H, Zhong Z, Ai Y, Zhao Y, Liang Q, Wang Y. Phytochemistry, Pharmacology and Quality Control of Xiasangju: A Traditional Chinese Medicine Formula. Front Pharmacol 2022; 13:930813. [PMID: 35814215 PMCID: PMC9259862 DOI: 10.3389/fphar.2022.930813] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
As a traditional Chinese herbal formula, Xiasangju (XSJ) is widely used in China for antipyresis and influenza treatment. However, XSJ still fails to have a comprehensive summary of the research progress in the last decade. This review summarizes the advanced research on the extraction process, phytochemistry, pharmacological activity, and quality control of XSJ. Current research mainly focuses on quality control and the pharmacological effects of single herbs and active ingredients, but many pharmacological mechanisms of the formula are unclear. The development of active ingredients reflects the active characteristics of triterpenes, phenolic acids and flavonoids, but the hepatotoxicity of Prunella vulgaris L. has not been taken into account. XSJ has extensive historical practical experiences, while systematic clinical trials remain lacking. Therefore, it is necessary to study the active ingredients and define the mechanisms of XSJ to develop multiple applications, and further studies on the dose range between its hepatoprotective activity and hepatotoxicity are necessary to improve the safety of the clinical application. In this review, the current problems are discussed to facilitate the reference basis for the subsequent research on the development of XSJ and future application directions.
Collapse
Affiliation(s)
- Siyuan Wu
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yongjian Ai
- Department of Chemistry, Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Beijing Key Lab of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
| | - Yonghua Zhao
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| | - Qionglin Liang
- Department of Chemistry, Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Beijing Key Lab of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| |
Collapse
|
6
|
Linarin, a Glycosylated Flavonoid, with Potential Therapeutic Attributes: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14111104. [PMID: 34832886 PMCID: PMC8621830 DOI: 10.3390/ph14111104] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Many flavonoids, as eminent phenolic compounds, have been commercialized and consumed as dietary supplements due to their incredible human health benefits. In the present study, a bioactive flavone glycoside linarin (LN) was designated to comprehensively overview its phytochemical and biological properties. LN has been characterized abundantly in the Cirsium, Micromeria, and Buddleja species belonging to Asteraceae, Lamiaceae, and Scrophulariaceae families, respectively. Biological assessments exhibited promising activities of LN, particularly, the remedial effects on central nervous system (CNS) disorders, whereas the remarkable sleep enhancing and sedative effects as well as AChE (acetylcholinesterase) inhibitory activity were highlighted. Of note, LN has indicated promising anti osteoblast proliferation and differentiation, thus a bone formation effect. Further biological and pharmacological assessments of LN and its optimized semi-synthetic derivatives, specifically its therapeutic characteristics on osteoarthritis and osteoporosis, might lead to uncovering potential drug candidates.
Collapse
|
7
|
Li GH, Fang KL, Yang K, Cheng XP, Wang XN, Shen T, Lou HX. Thesium chinense Turcz.: An ethnomedical, phytochemical and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113950. [PMID: 33610713 DOI: 10.1016/j.jep.2021.113950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/30/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thesium chinense Turcz. has been used to treat mastitis, pulmonitis, tonsillitis, iaryngopharyngitis and upper respiratory tract infections in the indigenous medicine of China for a long history. Presently, several pharmaceutics prepared by this medical herb have been clinically used for the therapy of infectious diseases. AIM OF THE REVIEW This review aims to comprehensively summarize the current researches on the ethnomedical, phytochemical and pharmacological aspects of T. chinense, and discuss their possible opportunities for the future research. MATERIALS AND METHODS Extensive database searches, including Web of Science, SciFinder, Google Scholar and China Knowledge Resource Integrated, were performed using keywords such as 'Thesium chinense', 'Bai Rui Cao', and their chemical constituents. In addition, local classic herbal literature on ethnopharmacology and relevant textbooks were consulted to provide a comprehensive survey of this ethnomedicine. RESULTS Thirty four chemical constituents, including flavonoids, alkaloids, and terpenoids, have been identified from T. chinense. Of which, flavonoids are the predominant and characteristic constituents. The crude extracts, the purified constituents, and commercial available pharmaceutics have displayed diverse in vitro and in vivo pharmacological functions (e.g. anti-inflammation, antimicrobial activity, analgesic effect, hepaprotection), and are particularly useful as a potential therapeutic agent against inflammation-related diseases. CONCLUSIONS T. chinense is an important ethnomedical medicine and possesses a satisfying effect for treating inflammation, microbial infection, and upper respiratory diseases. It has received plenty of researches on its phytochemical and pharmacological aspects since 1970s. These findings definitely establish the link between chemical composition and pharmacological application, and support the ethnomedical use of T. chinense in the indigenous medicine of China. However, chemical composition of this plant and the molecular mechanisms of purified constituents have not been comprehensively investigated, and thus the trace constituents and the therapeutic targets of bioactive constituents deserve a further exploration. Collectively, the researchers should pay more attention to a better understanding and application of this ethnomedical plant.
Collapse
Affiliation(s)
- Guo-Hui Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China; Department of Pharmacy, Jinan Maternity and Child Care Hospital, Jinan, People's Republic of China
| | - Kai-Li Fang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Kang Yang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xin-Ping Cheng
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
8
|
Syed AM, Ram C, Murty US, Sahu BD. A review on herbal Nrf2 activators with preclinical evidence in cardiovascular diseases. Phytother Res 2021; 35:5068-5102. [PMID: 33894007 DOI: 10.1002/ptr.7137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 12/31/2022]
Abstract
Cardiovascular diseases (CVDs) are an ever-growing problem and are the most common cause of death worldwide. The uncontrolled production of reactive oxygen species (ROS) and the activation of ROS associated with various cell signaling pathways with oxidative cellular damage are the most common pathological conditions connected with CVDs including endothelial dysfunction, hypercontractility of vascular smooth muscle, cardiac hypertrophy and heart failure. The nuclear factor E2-related factor 2 (Nrf2) is a basic leucine zipper redox transcription factor, together with its negative regulator, kelch-like ECH-associated protein 1 (Keap1), which serves as a key regulator of cellular defense mechanisms to combat oxidative stress and associated diseases. Multiple lines of evidence described here support the cardiac protective property of Nrf2 in various experimental models of cardiac related disease conditions. In this review, we emphasized the molecular mechanisms of Nrf2 and described the detailed outline of current findings on the therapeutic possibilities of the Nrf2 activators specifically from herbal origin in various CVDs. Based on evidence from various preclinical experimental models, we have highlighted the activation of Nrf2 pathway as a budding therapeutic option for the prevention and treatment of CVDs, which needs further investigation and validation in the clinical settings.
Collapse
Affiliation(s)
- Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| |
Collapse
|
9
|
Chengyu Y, Long Z, Bin Z, Hong L, Xuefei S, Congjuan L, Caixia C, Yan X. Linarin Protects the Kidney against Ischemia/Reperfusion Injury via the Inhibition of Bioactive ETS2/IL-12. Biol Pharm Bull 2021; 44:25-31. [PMID: 33390546 DOI: 10.1248/bpb.b20-00508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemia/reperfusion injury (IRI), a participant in acute kidney injury (AKI), can occur as a series of pathological processes such as inflammation. Linarin (LIN) has been widely used for different diseases. To confirm the anti-inflammatory value and relevant mechanism of LIN during IRI, in vivo and vitro models were established. LIN or dissolvent was given, and histologic analysis, quantitative (q)RT-PCR, serum creatinine and blood urea nitrogen testing were used to evaluate kidney injury. Microarray analysis, protein-protein interaction (PPI) analysis and molecular docking were used to identify the target protein of LIN, and small interfering RNA (siRNA) transfection was applied to explore the crucial role of identified protein. First, we found that LIN inhibited kidney injury in an in vivo IRI model and decreased the expression of interleukin-12 (IL-12) p40 in vivo and in vitro IRI models. To explore the mechanism of LIN, we collected raw data from a public microarray database and identified E26 oncogene homolog 2 (ETS2) as a crucial protein of LIN according to microarray analysis and PPI. Meanwhile, qRT-PCR indicated that IL-12 p40 showed no significant difference between ETS2 knock down group and LIN treated ETS2 knock down group after hypoxia reoxygenation treatment. In addition, according to molecular docking the contact area is highly conserved and located on a PPI domain of ETS2 which indicates that LIN may alter the interaction with synergistic proteins in the regulation of IL-12 p40 expression. Our study demonstrated the anti-inflammatory effect of LIN during IRI-AKI, broadening the medicinal value of LIN and the therapeutic options for IRI-AKI.
Collapse
Affiliation(s)
- Yang Chengyu
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Zhao Long
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Zhou Bin
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Luan Hong
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Shen Xuefei
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Luo Congjuan
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Cao Caixia
- Department of Geriatrics, The Affiliated Hospital of Qingdao University
| | - Xu Yan
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| |
Collapse
|
10
|
Kim SI, Kim YH, Kang BG, Kang MK, Lee EJ, Kim DY, Oh H, Oh SY, Na W, Lim SS, Kang YH. Linarin and its aglycone acacetin abrogate actin ring formation and focal contact to bone matrix of bone-resorbing osteoclasts through inhibition of αvβ3 integrin and core-linked CD44. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153351. [PMID: 32987362 DOI: 10.1016/j.phymed.2020.153351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Since enhanced bone resorption due to osteoclast differentiation and activation cause skeletal diseases, there is a growing need in therapeutics for combating bone-resorbing osteoclasts. Botanical antioxidants are being increasingly investigated for their health-promoting effects on bone. Edible Cirsium setidens contains various polyphenols of linarin, pectolinarin, and apigenin with antioxidant and hepatoprotective effects. PURPOSE This study aimed to determine whether linarin present in Cirsium setidens water extracts (CSE) and its aglycone acacetin inhibited osteoclastogenesis of RANKL-exposed RAW 264.7 murine macrophages for 5 days. METHODS This study assessed the osteoprotective effects of CSE, linarin and acacetin on RANKL-induced differentiation and activation of osteoclasts by using MTT assay, TRAP staining, Western blot analysis, bone resorption assay actin ring staining, adhesion assay and immunocytochemical assay. This study explored the underlying mechanisms of their osteoprotection, and identified major components present in CSE by HPLC analysis. RESULTS Linarin and pectolinarin were identified as major components of CSE. Nontoxic linarin and acacetin as well as CSE, but not pectolinarin attenuated the RANKL-induced macrophage differentiation into multinucleated osteoclasts, and curtailed osteoclastic bone resorption through reducing lacunar acidification and bone matrix degradation in the osteoclast-bone interface. Linarin and acacetin in CSE reduced the transmigration and focal contact of osteoclasts to bone matrix-mimicking RGD peptide. Such reduction was accomplished by inhibiting the induction of integrins, integrin-associated proteins of paxillin and gelsolin, cdc42 and CD44 involved in the formation of actin rings. The inhibition of integrin-mediated actin ring formation by linarin and acacetin entailed the disruption of TRAF6-c-Src-PI3K signaling of bone-resorbing osteoclasts. The functional inhibition of c-Src was involved in the loss of F-actin-enriched podosome core protein cortactin-mediated actin assembly due to linarin and acacetin. CONCLUSION These observations demonstrate that CSE, linarin and acacetin were effective in retarding osteoclast function of focal adhesion to bone matrix and active bone resorption via inhibition of diffuse cloud-associated αvβ3 integrin and core-linked CD44.
Collapse
Affiliation(s)
- Soo-Il Kim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Yun-Ho Kim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Beom Goo Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Eun-Jung Lee
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Dong Yeon Kim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Hyeongjoo Oh
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Su Yeon Oh
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Woojin Na
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea.
| |
Collapse
|
11
|
Yang H, Kuhn C, Kolben T, Ma Z, Lin P, Mahner S, Jeschke U, von Schönfeldt V. Early Life Oxidative Stress and Long-Lasting Cardiovascular Effects on Offspring Conceived by Assisted Reproductive Technologies: A Review. Int J Mol Sci 2020; 21:ijms21155175. [PMID: 32707756 PMCID: PMC7432066 DOI: 10.3390/ijms21155175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Assisted reproductive technology (ART) has rapidly developed and is now widely practised worldwide. Both the characteristics of ART (handling gametes/embryos in vitro) and the infertility backgrounds of ART parents (such as infertility diseases and unfavourable lifestyles or diets) could cause increased oxidative stress (OS) that may exert adverse influences on gametogenesis, fertilisation, and foetation, even causing a long-lasting influence on the offspring. For these reasons, the safety of ART needs to be closely examined. In this review, from an ART safety standpoint, the origins of OS are reviewed, and the long-lasting cardiovascular effects and potential mechanisms of OS on the offspring are discussed.
Collapse
Affiliation(s)
- Huixia Yang
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Zhi Ma
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Peng Lin
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
- Correspondence: ; Tel.: +49-(0)821-400-165505
| | - Viktoria von Schönfeldt
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| |
Collapse
|
12
|
Integrated metabolomic and transcriptomic profiling reveals the tissue-specific flavonoid compositions and their biosynthesis pathways in Ziziphora bungeana. Chin Med 2020; 15:73. [PMID: 32695217 PMCID: PMC7364582 DOI: 10.1186/s13020-020-00354-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background Ziziphora bungeana Juz. is a folk medicine from the Xinjiang Uygur Autonomous Region. The herb or the aerial parts of it have been used to medicinally treat cardiovascular diseases. Flavonoids are the main pharmacologically active ingredients in Z. bungeana. Identification of the tissue-specific distribution of flavonoids in Z. bungeana is crucial for effective and sustainable medicinal use of the plant. Furthermore, understanding of the biosynthesis pathways of these flavonoids in Z. bungeana is of great biological significance. Methods The flavonoids from different tissues of Z. bungeana were identified using liquid chromatography-tandem mass spectrometry (LC–MS/MS). The full-length transcriptome of Z. bungeana was determined using a strategy based on a combination of Illumina and PacBio sequencing techniques. The functions of differentially expressed unigenes were predicted using bioinformatics methods and further investigated by real-time quantitative PCR and phylogenetic relationship analysis. Results Among the 12 major flavonoid components identified from Z. bungeana extracts, linarin was the most abundant component. Nine flavonoids were identified as characteristic components of specific tissues. Transcriptome profiling and bioinformatic analysis revealed that 18 genes were putatively involved in flavonoid biosynthesis. The gene expression and phylogenetic analysis results indicated that ZbPALs, Zb4CL3, ZbCHS1, and ZbCHI1 may be involved in the biosynthesis of the main flavonoid intermediate. ZbFNSII, ZbANS, and ZbFLS may be involved in the biosynthesis of flavones, anthocyanins, and flavonols, respectively. A map of the biosynthesis pathways of the 12 major flavonoids in Z. bungeana is proposed. Conclusions The chemical constituent analysis revealed the compositions of 9 characteristic flavonoids in different tissues of Z. bungeana. Linarin can be hydrolysed into acacetin to exert a pharmaceutical role. Apigenin-7-O-rutinoside is hypothesised to be the precursor of linarin in Z. bungeana. There was greater content of linarin in the aerial parts of the plant than in the whole herb, which provides a theoretical basis for using the aerial parts of Z. bungeana for medicine. These results provide a valuable reference for further research on the flavonoid biosynthesis pathways of Z. bungeana and will be significant for the effective utilisation and ecological protection of Z. bungeana.
Collapse
|
13
|
Infusion of Melatonin Into the Paraventricular Nucleus Ameliorates Myocardial Ischemia-Reperfusion Injury by Regulating Oxidative Stress and Inflammatory Cytokines. J Cardiovasc Pharmacol 2020; 74:336-347. [PMID: 31356536 PMCID: PMC6791501 DOI: 10.1097/fjc.0000000000000711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Melatonin, the receptors for which are abundant in the hypothalamic paraventricular nucleus (PVN), can protect the heart from myocardial ischemia–reperfusion (MI/R) injury. The aim of this study was to determine whether the infusion of melatonin into the PVN protects the heart from MI/R injury by suppressing oxidative stress or regulating the balance between proinflammatory cytokines and anti-inflammatory cytokines in MI/R rats. Male Sprague–Dawley rats were treated with a bilateral PVN infusion of melatonin. MI/R operation was performed 1 week after infusion. At the end of the third week after the infusion, all the rats were euthanized. This was followed by immunohistochemistry and immunofluorescence studies of the rats. MI/R rats showed larger infarct size, increased left ventricular (LV) end-diastolic volume, and decreased LV ejection fraction and LV fractional shortening. Moreover, MI/R rats had a higher level of norepinephrine in the plasma, heart, and PVN; higher PVN levels of reactive oxygen species, NOX2, NOX4, IL-1β, and NF-κB activity; and lower PVN levels of copper/zinc superoxide dismutase (Cu/Zn-SOD) and IL-10 compared with the sham group. Melatonin infusion in PVN reduced LV end-diastolic volume, norepinephrine, reactive oxygen species, NOX2, NOX4, IL-1β, and NF-κB activity, and increased LV ejection fraction, LV fractional shortening, Cu/Zn-SOD, and IL-10. Overall, these results suggest that the infusion of melatonin ameliorates sympathetic nerve activity and MI/R injury by attenuating oxidative stress and inflammatory cytokines in the PVN of MI/R rats.
Collapse
|
14
|
The effect of ellagic acid on caspase-3/bcl-2/Nrf-2/NF-kB/TNF-α /COX-2 gene expression product apoptosis pathway: a new approach for muscle damage therapy. Mol Biol Rep 2020; 47:2573-2582. [DOI: 10.1007/s11033-020-05340-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
|
15
|
Han X, Wu YC, Meng M, Sun QS, Gao SM, Sun H. Linarin prevents LPS‑induced acute lung injury by suppressing oxidative stress and inflammation via inhibition of TXNIP/NLRP3 and NF‑κB pathways. Int J Mol Med 2018; 42:1460-1472. [PMID: 29845284 PMCID: PMC6089707 DOI: 10.3892/ijmm.2018.3710] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/09/2018] [Indexed: 11/16/2022] Open
Abstract
Acute lung injury (ALI) is an important cause of morbidity and mortality for critically ill patients, and linarin (LR) may be a potential treatment for ALI as it reportedly has antioxidant, anti-inflammatory and apoptotic-regulating activity. In the present study, the authors report that saline and LR (12.5, 25 and 50 mg/kg) were applied to male C57BL/6 mice via gavage. Then, mice were intratracheally injected with either saline or lipopolysaccharide (LPS). LR-pretreatment attenuated LPS-induced ALI and platelet activation and reduced CD41 expression levels and neutrophil platelet aggregates. Additionally, LPS-triggered pulmonary myeloperoxidase activity and neutrophil infiltration in lung tissues, and this was eliminated by LR dose-dependently. Furthermore, LPS-induced oxidative stress and pro-inflammatory cytokine release were downregulated by LR by inhibiting thioredoxin-interacting protein and nuclear factor-κB signaling pathways, including their downstream and upstream signals, such as xanthine oxidase, NLR family WHAT, pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), caspase-1, IκB kinase-α (IKK-α) and IκBα. Moreover, in LPS-induced mice, the mitogen-activated protein kinase pathway was inactivated by LR. In vitro, LR reduced LPS-induced inflammation and oxidative stress, which was linked to reduction of ROS. In conclusion, LR pretreatment may be protective against LPS-induced ALI.
Collapse
Affiliation(s)
- Xiang Han
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yi-Chen Wu
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Min Meng
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Qing-Song Sun
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Su-Min Gao
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hong Sun
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
16
|
Xu C, Liang C, Sun W, Chen J, Chen X. Glycyrrhizic acid ameliorates myocardial ischemic injury by the regulation of inflammation and oxidative state. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1311-1319. [PMID: 29849452 PMCID: PMC5965375 DOI: 10.2147/dddt.s165225] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Glycyrrhizic acid (GA), a bioactive triterpenoid saponin isolated from the roots of licorice plants (Glycyrrhiza glabra), has been shown to exert a variety of pharmacological activities and is considered to have potential therapeutic applications. The purpose of the present study was to investigate the cardioprotective effect of GA on myocardial ischemia (MI) injury rats induced by isoproterenol (ISO), and explore the potential mechanisms underlying these effects. Materials and methods The rats were randomized into five groups: control, ISO, ISO+diltiazem (10 mg/kg), ISO+GA (10 mg/kg), and ISO+GA (20 mg/kg). Electrocardiogram and histopathological examination were performed. Markers of cardiac marker enzymes (creatine kinase-MB, lactate dehydrogenase), oxidative stress (superoxide dismutase, malondialdehyde [MDA]), and inflammation (TNF-α, IL-1β, and IL-6) were also measured in each group. Proteins involved in NF-κB and Nrf-2/HO-1 pathway were detected by Western blot. Results GA decreased the ST elevation induced by MI, decreased serum levels of creatine kinase, lactate dehydrogenase, malondialdehyde, IL-6, IL-1β, and TNF-α, and increased serum superoxide dismutase and malondialdehyde activities. Furthermore, GA increased the protein levels of Nrf-2 and HO-1 and downregulated the phosphorylation of IκB, and NF-κB p65 in ISO-induced MI. Conclusion These observations indicated that GA has cardioprotective effects against MI, and these effects might be related to the activation of Nrf-2/HO-1 and inhibition of NF-κB signaling pathway in the myocardium.
Collapse
Affiliation(s)
- Chongli Xu
- Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China.,Jiangnin Hospital of Nanjing, Nanjing 211100, People's Republic of China
| | - Caihong Liang
- Jiangnin Hospital of Nanjing, Nanjing 211100, People's Republic of China
| | - Weixin Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Jiandong Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Xiaohu Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| |
Collapse
|
17
|
Wang J, Fu B, Lu F, Hu X, Tang J, Huang L. Inhibitory activity of linarin on osteoclastogenesis through receptor activator of nuclear factor κB ligand-induced NF-κB pathway. Biochem Biophys Res Commun 2017; 495:2133-2138. [PMID: 29269297 DOI: 10.1016/j.bbrc.2017.12.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/16/2017] [Indexed: 12/17/2022]
Abstract
Linarin, a natural flavonoid glycoside widely found in plants, has been reported to possess anti-inflammation, neuroprotection and osteogenic properties. However, its impact on osteoclast remains unclear. In the present study, the effects of linarin on osteoclastogenesis and its underlying molecular mechanisms of action were investigated. Using the culture systems of osteoclasts derived from bone marrow macrophages (BMMs), we found that linarin dose-dependently inhibited osteoclasts formation and bone resorptive activity. The Cell Counting Kit-8 test displayed that the viability of cells was not influenced by linarin at doses up to 10 μg/mL. In addition, linarin downregulated osteoclast-related genes expression, including nuclear factor of activated T cells cytoplasmic 1 (NFATc1), tartrate resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR) and c-Fos, as shown by quantitative real time polymerase chain reaction (RT-qPCR). Western blot analysis further showed that linarin inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced nuclear factor kappa B (NF-κB) p65 and NFATc1 activity. The present findings show that linarin exerted a potent inhibitory effect on osteoclastogenesis through RANKL-induced NF-κB signaling pathway. In conclusion, the results suggest that linarin has anti-osteoclastic effects and may serve as potential modulatory agents for the prevention and treatment of bone loss-associated diseases.
Collapse
Affiliation(s)
- Junsheng Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Orthopaedic Surgery, Huai'an Second People's Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an 223000, China
| | - Bin Fu
- Department of Orthopaedic Surgery, Changzhou Wujin People's Hospital, Changzhou 213100, China
| | - Fuchun Lu
- Department of Orthopaedic Surgery, Huai'an Second People's Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an 223000, China
| | - Xiaowu Hu
- Department of Orthopaedic Surgery, Huai'an Second People's Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an 223000, China
| | - Jinshan Tang
- Department of Orthopaedic Surgery, Huai'an Second People's Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an 223000, China
| | - Lixin Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
18
|
Kim HS. Extracts of Chrysanthemum zawadskii attenuate oxidative damage to vascular endothelial cells caused by a highly reducing sugar. Cytotechnology 2017; 69:915-924. [PMID: 28608258 DOI: 10.1007/s10616-017-0110-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/30/2017] [Indexed: 01/18/2023] Open
Abstract
Endothelial cells are considered candidates for involvement in the pathogenesis of diabetic vascular complications, and prevention of endothelial cell damage may be important in pharmacological attempts to prevent such complications. In the present study, I explored whether extracts of Chrysanthemum zawadskii (CZE) could prevent oxidative damage and dysfunction of a vascular endothelial cell line caused by the highly reducing sugar, 2-deoxy-D-ribose (dRib), and dysfunction of a vascular endothelial cell line. Vascular endothelial cells were treated with dRib in the presence or absence of CZE. Cell viability was monitored using a cell counting kit, and the induction of apoptosis was evaluated with a cell death kit. Prostaglandin E2 and cyclooxygenase-2 levels were measured using enzyme-linked immunosorbent assay kits. Mitochondrial membrane potential [ΔΨ(m)] was determined using a JC-1 kit. Intracellular oxidative stress was measured by fluorometric analysis of dichlorofluorescin oxidation using 2',7'-dichlorofluorescin diacetate as the probe. The expression levels of genes encoding antioxidant enzymes were analyzed by real-time polymerase chain reaction. dRib reduced cell survival and the ΔΨ(m) and markedly increased intracellular levels of reactive oxygen species and apoptosis. However, pretreatment of cells with CZE attenuated all these dRib-induced effects. The anti-oxidant N-acetyl-L-cysteine (NAC) also prevented dRib-induced oxidative cell damage. CZE attenuated the dRib-induced production of the inflammatory mediators cyclooxygenase-2 and Prostaglandin E2. NAC also exhibited anti-inflammatory effects and treatment with CZE caused transcriptional elevation of genes encoding antioxidant enzymes. Taken together, the results suggest that CZE may exert an antioxidant action that reduces dRib-induced cell damage to vascular endothelial cells and may thus aid in preventing diabetes-associated microvascular complications.
Collapse
Affiliation(s)
- Hyun-Sook Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, 298 Daeseong-ro, Cheongwon-gu, Cheongju, Chungbuk, 28503, Republic of Korea.
| |
Collapse
|