1
|
Jaiswal S, Anjum MM, Arya DK, Thakur S, Pandey P, Deepak P, Kanaujiya S, Anand S, Kaushik AS, Mishra V, Rajinikanth PS. Surface entrenched β-sitosterol niosomes for enhanced cardioprotective activity against isoproterenol induced cardiotoxicity in rats. Int J Pharm 2024; 653:123872. [PMID: 38336178 DOI: 10.1016/j.ijpharm.2024.123872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Cardiotoxicity (CT) is a severe condition that negatively impacts heart function. β-sitosterol (BS) is a group of phytosterols and known for various pharmacological benefits, such as managing diabetes, cardiac protection, and neuroprotection. This study aims to develop niosomes (NS) containing BS, utilizing cholesterol as the lipid and Tween 80 as the stabilizer. The research focuses on designing and evaluating both conventional BS-NS and hyaluronic acid (HA) modified NS (BS-HA-NS) to enhance the specificity and efficacy of BS within cardiac tissue. The resulting niosomal formulation was spherical, with a size of about 158.51 ± 0.57 nm, an entrapment efficiency of 93.56 ± 1.48 %, and a drug loading of 8.07 ± 1.62 %. To evaluate cytotoxicity on H9c2 heart cells, the MTT assay was used. The cellular uptake of BS-NS and BS-HA-NS was confirmed by confocal microscopy on H9c2 cardiac cells. Administering BS-NS and BS-HA-NS intravenously at a dose of 10 mg/kg showed the ability to significantly decrease the levels of cardiac troponin-I (cTn-I), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and lipid peroxidation (MDA). Tissue histopathology indicated a substantial potential for repairing cardiac tissue after treatment with BS-NS and BS-HA-NS and strong cardioprotection against ISO induced myocardial tissue damages. Thus, enhancing BS's therapeutic effectiveness through niosome surface modification holds promise for mitigating cardiac damage resulting from CT.
Collapse
Affiliation(s)
- Shweta Jaiswal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Md Meraj Anjum
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sunita Thakur
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Payal Deepak
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shubham Kanaujiya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sneha Anand
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | | |
Collapse
|
2
|
Ramakrishna K, Krishnamurthy S. Indole-3-carbinol ameliorated the isoproterenol-induced myocardial infarction via multimodal mechanisms in Wistar rats. Nat Prod Res 2022; 36:6044-6049. [PMID: 35175868 DOI: 10.1080/14786419.2022.2041632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present study investigated the cardioprotection of Indole-3-carbinol on isoproterenol (ISO)-induced myocardial infarction in Wistar rats. I3C treatment significantly reduced the prolongation of the QRS complex, QT interval, and ST-segment elevation. I3C was also able to normalise blood pressure (SBP, DBP, and MAP) and HR. I3C significantly decreased heart weight, cardiac troponin I (cTn I), CK-MB, LDH, AST and ALT. I3C ameliorated acute hyperglycaemia, hyperlipidemia, and myocardial infarction (%) in ISO rats. I3C treatment significantly elevated the antioxidant enzymes like SOD, CAT, and GSH and attenuated the MDA levels. I3C reduced the inflammatory cytokines (TNF-α and IL-6) and increased the anti-inflammatory cytokine 1 L-10. Furthermore, I3C significantly recovered myocardial structure by inhibiting neutrophil infiltration and oedema. Moreover, I3C attenuated apoptotic markers (cytochrome C, caspase 9 and caspase 3). Consequently, I3C restored cardiac function in MI rats by alleviating oxidative stress, inflammation, and apoptosis, and I3C could be used to treat myocardial infarction.
Collapse
Affiliation(s)
- Kakarla Ramakrishna
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT), Banaras Hindu University (IIT BHU), Varanasi, Uttar Pradesh, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT), Banaras Hindu University (IIT BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Zhang R, Xu L, Zhang D, Hu B, Luo Q, Han D, Li J, Shen C. Cardioprotection of Ginkgolide B on Myocardial Ischemia/Reperfusion-Induced Inflammatory Injury via Regulation of A20-NF-κB Pathway. Front Immunol 2018; 9:2844. [PMID: 30619251 PMCID: PMC6299132 DOI: 10.3389/fimmu.2018.02844] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 12/26/2022] Open
Abstract
Inflammation urges most of the characteristics of plaques involved in the pathogenesis of myocardial ischemia/reperfusion injury (MI/RI). In addition, inflammatory signaling pathways not only mediate the properties of plaques that precipitate ischemia/reperfusion (I/R) but also influence the clinical consequences of the post-infarction remodeling and heart failure. Here, we studied whether Ginkgolide B (GB), an effective anti-inflammatory monomer, improved MI/RI via suppression of inflammation. Left anterior descending (LAD) coronary artery induced ischemia/reperfusion (I/R) of rats or A20 silencing mice, as well as hypoxia/reoxygenation (H/R) induced damages of primary cultured rat neonatal ventricular myocytes or A20 silencing ventricular myocytes, respectively, served as MI/RI model in vivo and in vitro to discuss the anti-I/R injury properties of GB. We found that GB significantly alleviated the symptoms of MI/RI evidently by reducing infarct size, preventing ultrastructural changes of myocardium, depressing Polymorphonuclears (PMNs) infiltration, lessening histopathological damage and suppressing the excessive inflammation. Further study demonstrated that GB remarkably inhibited NF-κB p65 subunit translocation, IκB-α phosphorylation, IKK-β activity, as well as the downstream inflammatory cytokines and proteins expressions via zinc finger protein A20. In conclusion, GB could alleviate MI/RI-induced inflammatory response through A20-NF-κB signal pathway, which may give us new insights into the preventive strategies for MI/RI disease.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lin Xu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Dong Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Bo Hu
- Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qi Luo
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiangbing Li
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chengwu Shen
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
4
|
Allawadhi P, Khurana A, Sayed N, Kumari P, Godugu C. Isoproterenol-induced cardiac ischemia and fibrosis: Plant-based approaches for intervention. Phytother Res 2018; 32:1908-1932. [PMID: 30009418 DOI: 10.1002/ptr.6152] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/04/2018] [Accepted: 06/18/2018] [Indexed: 11/08/2022]
Abstract
Heart is the most active and incumbent organ of the body, which maintains blood flow, but due to various pathological reasons, several acute and chronic cardiac complications arise out of which myocardial infarction is one of the teething problems. Isoproterenol (ISP)-induced myocardial ischemia is a classical model to screen the cardioprotective effects of various pharmacological interventions. Phytochemicals present a novel option for treating various human maladies including those of the heart. A large number of plant products and their active ingredients have been screened for efficacy in ameliorating ISP-induced myocardial ischemia including coriander, curcumin, Momordica, quercetin, and Withania somnifera. These phytochemicals constituents may play key role in preventing disease and help in cardiac remodeling. Reactive oxygen species scavenging, antiinflammatory, and modulation of various molecular pathways such as Nrf2, NFкB, p-21 activated kinase 1 (PAK1), and p-smad2/3 signaling modulation have been implicated behind the claimed protection. In this review, we have provided a focused overview on the utility of ISP-induced cardiotoxicity, myocardial ischemia, and cardiac fibrosis for preclinical research. In addition, we have also surveyed molecular mechanism of various plant-based interventions screened for cardioprotective effect in ISP-induced cardiotoxicity, and their probable mechanistic profile is summarized.
Collapse
Affiliation(s)
- Prince Allawadhi
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Nilofer Sayed
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Preeti Kumari
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| |
Collapse
|