1
|
Yadav E, Neupane NP, Otuechere CA, Yadav JP, Bhat MA, Al-Omar MA, Yadav P, Verma A. Cutaneous Wound-Healing Activity of Quercetin-Functionalized Bimetallic Nanoparticles. Chem Biodivers 2024:e202401551. [PMID: 39609953 DOI: 10.1002/cbdv.202401551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
Quercetin, a natural flavonol, is reported to have significant antioxidant and anti-inflammatory activity, which further aids in its good wound-healing properties via acting on acute as well as chronic inflammatory phases. The current study is focused on understanding the potential of the green-synthesized iron and zinc oxide bimetallic (i.e., zinc ferrite) nanoparticles of quercetin (ZFQNP) on wound healing by an in vivo study model. Bimetallic quercetin nanoparticles were prepared by the co-precipitation method and characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), and dynamic light scattering (DLS) analyses. Synthesized ZFQNP was utilized to prepare the ointment for topical application, and wound-healing activity was evaluated by using the excisional wound method in Wistar rats. The binding affinity of quercetin was ascertained against various wound-healing protein targets by molecular docking. Characterization data confirmed the synthesis of bimetallic ZFQNP of an irregular shape. Molecular docking studies showed satisfactory binding potential of quercetin with selected molecular targets. The study results of various parameters corroborated the significant wound-healing properties of ZFQNP, possibly attributed to the promising binding potential of quercetin with vital wound-healing targets. The study demonstrated that the quercetin bimetallic nanoparticles could provide a promising wound-healing effect.
Collapse
Affiliation(s)
- Ekta Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Netra Prasad Neupane
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Chiagoziem A Otuechere
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| | - Jagat Pal Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- Faculty of Pharmaceutical Sciences, Rama University, Kanpur, India
| | - Mashooq A Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Al-Omar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Pankajkumar Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
2
|
Riaz A, Ali S, Summer M, Noor S, Nazakat L, Aqsa, Sharjeel M. Exploring the underlying pharmacological, immunomodulatory, and anti-inflammatory mechanisms of phytochemicals against wounds: a molecular insight. Inflammopharmacology 2024:10.1007/s10787-024-01545-5. [PMID: 39138746 DOI: 10.1007/s10787-024-01545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/26/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Numerous cellular, humoral, and molecular processes are involved in the intricate process of wound healing. PHARMACOLOGICAL RELEVANCE Numerous bioactive substances, such as ß-sitosterol, tannic acid, gallic acid, protocatechuic acid, quercetin, ellagic acid, and pyrogallol, along with their pharmacokinetics and bioavailability, have been reviewed. These phytochemicals work together to promote angiogenesis, granulation, collagen synthesis, oxidative balance, extracellular matrix (ECM) formation, cell migration, proliferation, differentiation, and re-epithelialization during wound healing. FINDINGS AND NOVELTY To improve wound contraction, this review delves into how the application of each bioactive molecule mediates with the inflammatory, proliferative, and remodeling phases of wound healing to speed up the process. This review also reveals the underlying mechanisms of the phytochemicals against different stages of wound healing along with the differentiation of the in vitro evidence from the in vivo evidence There is growing interest in phytochemicals, or plant-derived compounds, due their potential health benefits. This calls for more scientific analysis and mechanistic research. The various pathways that these phytochemicals control/modulate to improve skin regeneration and wound healing are also briefly reviewed. The current review also elaborates the immunomodulatory modes of action of different phytochemicals during wound repair.
Collapse
Affiliation(s)
- Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Sharjeel
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
3
|
Lopes FB, Sarandy MM, Novaes RD, Valacchi G, Gonçalves RV. OxInflammatory Responses in the Wound Healing Process: A Systematic Review. Antioxidants (Basel) 2024; 13:823. [PMID: 39061892 PMCID: PMC11274091 DOI: 10.3390/antiox13070823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Significant sums are spent every year to find effective treatments to control inflammation and speed up the repair of damaged skin. This study investigated the main mechanisms involved in the skin wound cure. Consequently, it offered guidance to develop new therapies to control OxInflammation and infection and decrease functional loss and cost issues. This systematic review was conducted using the PRISMA guidelines, with a structured search in the MEDLINE (PubMed), Scopus, and Web of Science databases, analyzing 23 original studies. Bias analysis and study quality were assessed using the SYRCLE tool (Prospero number is CRD262 936). Our results highlight the activation of membrane receptors (IFN-δ, TNF-α, toll-like) in phagocytes, especially macrophages, during early wound healing. The STAT1, IP3, and NF-kβ pathways are positively regulated, while Ca2+ mobilization correlates with ROS production and NLRP3 inflammasome activation. This pathway activation leads to the proteolytic cleavage of caspase-1, releasing IL-1β and IL-18, which are responsible for immune modulation and vasodilation. Mediators such as IL-1, iNOS, TNF-α, and TGF-β are released, influencing pro- and anti-inflammatory cascades, increasing ROS levels, and inducing the oxidation of lipids, proteins, and DNA. During healing, the respiratory burst depletes antioxidant defenses (SOD, CAT, GST), creating a pro-oxidative environment. The IFN-δ pathway, ROS production, and inflammatory markers establish a positive feedback loop, recruiting more polymorphonuclear cells and reinforcing the positive interaction between oxidative stress and inflammation. This process is crucial because, in the immune system, the vicious positive cycle between ROS, the oxidative environment, and, above all, the activation of the NLRP3 inflammasome inappropriately triggers hypoxia, increases ROS levels, activates pro-inflammatory cytokines and inhibits the antioxidant action and resolution of anti-inflammatory cytokines, contributing to the evolution of chronic inflammation and tissue damage.
Collapse
Affiliation(s)
- Fernanda Barbosa Lopes
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Mariáurea Matias Sarandy
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Reggiani Vilela Gonçalves
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
4
|
Salem A, Abdelhedi O, Ben Taheur F, Mansour C, Safta Skhiri S, Sebai H, Jridi M, Zouari N, Fakhfakh N. Novel garden cress-fish gelatin based ointment: Improvement of skin wound healing in rats through modulation of anti-inflammatory and antioxidant states. Heliyon 2024; 10:e33048. [PMID: 39022005 PMCID: PMC11253254 DOI: 10.1016/j.heliyon.2024.e33048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
This study aimed to investigate the ability of aqueous extract of Lepidium sativum seeds (LSE) to improve the wound healing process in rat models. The gelatin, extracted from the skin of smooth-hound shark using citric acid, was used as a support material for ointment. Animals were divided into four groups of six rats each: an untreated control group, a control group treated with Moist Exposed Burn Ointment (MEBO), a treated group with gelatin gel, and a treated group with gelatin gel fortified with 20 mg/mL LSE. Phenolics profile analysis showed that the major compounds in LSE were catechin (125 μg/g) and quinic acid (105 μg/g). In vitro antioxidant tests showed that LSE has interesting activities to scavenge ABTS•+ radicals (IC50 = 0.22 mg/mL) and inhibit the oxidation of linoleic acid. A significant decline in the antioxidant enzymes activities and an increase in the level of thiobarbituric acid reactive substances (TBARS) and inflammatory markers was observed within the injured tissues of the untreated rats compared to rats treated with MEBO. Interestingly, when the wounded tissue was treated with gelatin gel a remarkable reversal of this trend occurred. Further, by enrichment of gelatin gel with LSE, the levels of CAT, GPx and SOD activities significantly increased by 35, 126, and 212 %, respectively, whereas the TBARS level was reduced by 31 %. These results were consistent with the wound contraction percentage and histological analysis, which suggest the potential effect of LSE-enriched gelatin gels to regenerate damaged tissues.
Collapse
Affiliation(s)
- Ali Salem
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Ola Abdelhedi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Fadia Ben Taheur
- High Institute of Applied Biology of Medenine, University of Gabes, 4119, Medenine, Tunisia
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Chalbia Mansour
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Sihem Safta Skhiri
- University of Monastir, ABCDF Laboratory, Faculty of Dental Medicine, Monastir, 5000, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Mourad Jridi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Nacim Zouari
- High Institute of Applied Biology of Medenine, University of Gabes, 4119, Medenine, Tunisia
| | - Nahed Fakhfakh
- High Institute of Applied Biology of Medenine, University of Gabes, 4119, Medenine, Tunisia
| |
Collapse
|
5
|
Marinho BM, Guimarães VHD, Moraes DS, Ribeiro GHM, da Silva RM, Lopes NP, Guimarães ALS, de Paula AMB, Santos SHS. Lychnophora ericoides Mart. (Brazilian arnica) ethanol extract accelerates the skin wound healing process: Evidence for its mechanism of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155000. [PMID: 37541071 DOI: 10.1016/j.phymed.2023.155000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Lychnophora ericoides Mart, also known as the Brazilian arnica or fake arnica, belongs to the Asteraceae family. Leaves and roots are used in alcoholic and hydroalcoholic preparations for the treatment of wounds, inflammation, and pain. PURPOSE The present study aimed to investigate the effects of L. ericoides ethanolic extract (EELE) on cutaneous wound healing and the mechanisms of action involved. METHODS A total of 72 C57BL/6 mice were randomly divided into four groups of six animals each. An excisional wound was made in the dorsal region of each mouse. The test groups were topically treated with the vehicle, a positive control commercial reference drug, EELE ointment (5%), and EELE ointment (10%). The treatments were applied over 14 days. The wound area was measured every two days to verify the wound closure kinetics. On days 3, 7, and 14 the wound tissue samples were processed for Hematoxylin and Eosin, Masson-Trichrome, and Toluidine blue staining. The expression of renin-angiotensin system (RAS) components, the vascular growth factor-A (VEGF-A), the basic fibroblast growth factor (FGF-2), and type I collagen genes were evaluated. Phytochemical analyses were performed using HPLC-DAD and HPLC-MS/MS. RESULTS The EELE (10%) significantly reduced the wound area compared to the treatments used for the other groups. Histological analysis demonstrated that wounds treated with L. ericoides for 14 days developed improved anatomical skin features, healed with hair follicles and sebaceous glands, increased collagen production and angiogenesis, and decreased the number of mast cells at the injury site. Real-time PCR data demonstrated that groups treated with EELE (10%) showed increased Type I collagen, VEGF-A, FGF-2, and AT1R and decreased ACE II and receptor MAS. The healing action of L. ericoides may be related to the presence of phenolic compounds, such as phenolic acids, chlorogenic acid derivatives, and C-glycoside flavonoids. CONCLUSION Topical treatment with EELE increases important factors for wound healing: FGF, VEGF, collagen formation, and the expression of the proliferative axis of the renin-angiotensin system. For the first time, the present study shows the healing action of L. ericoides at the molecular level in an animal model. This process can be used as an alternative therapy for wound healing and the development of herbal therapy.
Collapse
Affiliation(s)
- Barbhara Mota Marinho
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Daniel Silva Moraes
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Guilherme Henrique Mendes Ribeiro
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Moreira da Silva
- Research Center for Natural and Synthetic Products, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Peporine Lopes
- Research Center for Natural and Synthetic Products, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Alfredo Maurício Batista de Paula
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Shalini R, Moola Joghee Nanjan C, Nanjan MJ, Madhunapantula SV, Karnik M, Selvaraj J, Ganesh GNK. 1-Tetracosanol isolated from the leaves of Eupatorium glandulosum, accelerates wound healing by expressing inflammatory cytokines and matrix metalloproteinase. JOURNAL OF ETHNOPHARMACOLOGY 2023:116654. [PMID: 37225028 DOI: 10.1016/j.jep.2023.116654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leave paste of the plant, Eupatorium glandulosum H. B & K, has been traditionally used to treat cuts and wounds by the tribal community of the Nilgiris district of Tamilnadu, India. AIM OF THE STUDY The present study was carried out to investigate the wound healing potential of this plant extract and the compound, 1-Tetracosanol, isolated from the ethyl acetate fraction. MATERIALS AND METHODS An in vitro study was designed to compare the viability, migration and apoptosis of the fresh methanolic extract fractions and 1-Tetracosanol using mouse fibroblast NIH3T3 cell lines and human keratinocytes HaCaT cell lines, respectively. 1-Tetracosanol was evaluated for its viability, migration, qPCR analysis, in silico, in vitro and in vivo. RESULTS 1-Tetracosanol at the concentration of 800, 1600, 3200 μM has significant wound closure of 99% at 24 h. The compound when screened in silico against various wound healing markers, TNF-α, IL-12, IL-18, GM-CSF and MMP-9, revealed high binding energy of -5, 4.9 and -6.4 kcal/mol for TNF-α, IL-18 and MMP-9, respectively. Gene expression and the release of cytokines increased at an early stage of the wound repair. 1-Tetracosanol, at 2% gel showed 97.35 ± 2.06% wound closure at 21st day. CONCLUSION 1-Tetracosanol is a good lead for drug development targeted towards wound healing activity and work in this direction is in progress.
Collapse
Affiliation(s)
- R Shalini
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, 643001, Tamil Nadu, India
| | - Chandrasekar Moola Joghee Nanjan
- School of Life Sciences, JSS Academy of Higher Education & Research (Ooty Campus), Longwood, Mysuru Road, Ooty, The Nilgiris, 643001, Tamilnadu, India.
| | | | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education & Research, Mysore, 570015, Karnataka, India
| | - Medha Karnik
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education & Research, Mysore, 570015, Karnataka, India
| | - Jubi Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, 643001, Tamil Nadu, India
| | - G N K Ganesh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, 643001, Tamil Nadu, India
| |
Collapse
|
7
|
Lakkim V, Reddy MC, Lekkala VVV, Lebaka VR, Korivi M, Lomada D. Antioxidant Efficacy of Green-Synthesized Silver Nanoparticles Promotes Wound Healing in Mice. Pharmaceutics 2023; 15:pharmaceutics15051517. [PMID: 37242759 DOI: 10.3390/pharmaceutics15051517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Developing an efficient and cost-effective wound-healing substance to treat wounds and regenerate skin is desperately needed in the current world. Antioxidant substances are gaining interest in wound healing, and green-synthesized silver nanoparticles have drawn considerable attention in biomedical applications due to their efficient, cost-effective, and non-toxic nature. The present study evaluated in vivo wound healing and antioxidant activities of silver nanoparticles from Azadirachta indica (AAgNPs) and Catharanthus roseus (CAgNPs) leaf extracts in BALB/c mice. We found rapid wound healing, higher collagen deposition, and increased DNA and protein content in AAgNPs- and CAgNPs (1% w/w)-treated wounds than in control and vehicle control wounds. Skin antioxidant enzyme activities (SOD, catalase, GPx, GR) were significantly (p < 0.05) increased after 11 days CAgNPs and AAgNPs treatment. Furthermore, the topical application of CAgNPs and AAgNPs tends to suppress lipid peroxidation in wounded skin samples. Histopathological images evidenced decreased scar width, epithelium restoration, fine collagen deposition, and fewer inflammatory cells in CAgNPs and AAgNPs applied wounds. In vitro, the free radical scavenging activity of CAgNPs and AAgNPs was demonstrated by DPPH and ABTS radical scavenging assays. Our findings suggest that silver nanoparticles prepared from C. roseus and A. indica leaf extracts increased antioxidant status and improved the wound-healing process in mice. Therefore, these silver nanoparticles could be potential natural antioxidants to treat wounds.
Collapse
Affiliation(s)
- Vajravathi Lakkim
- Department of Genetics, Yogi Vemana University, Kadapa 516005, AP, India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa 516005, AP, India
| | | | | | - Mallikarjuna Korivi
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Dakshayani Lomada
- Department of Genetics, Yogi Vemana University, Kadapa 516005, AP, India
| |
Collapse
|
8
|
Yadav E, Singh D, Yadav P, Verma A. Expression of concern: Ameliorative effect of biofabricated ZnO nanoparticles of Trianthema portulacastrum Linn. on dermal wounds via removal of oxidative stress and inflammation. RSC Adv 2023; 13:4564. [PMID: 36760317 PMCID: PMC9896510 DOI: 10.1039/d3ra90011h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Expression of concern for 'Ameliorative effect of biofabricated ZnO nanoparticles of Trianthema portulacastrum Linn. on dermal wounds via removal of oxidative stress and inflammation' by Ekta Yadav et al., RSC Adv., 2018, 8, 21621-21635, https://doi.org/10.1039/C8RA03500H.
Collapse
Affiliation(s)
- Ekta Yadav
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS) Allahabad 211007 India
| | - Deepika Singh
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS) Allahabad 211007 India
| | - Pankajkumar Yadav
- Pharmaceutics Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS) Allahabad-211007 India
| | - Amita Verma
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS) Allahabad 211007 India
| |
Collapse
|
9
|
Wound Healing and Antioxidant Properties of Launaea procumbens Supported by Metabolomic Profiling and Molecular Docking. Antioxidants (Basel) 2022; 11:antiox11112258. [PMID: 36421445 PMCID: PMC9687060 DOI: 10.3390/antiox11112258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Wounds adversely affect people’s quality of life and have psychological, social, and economic impacts. Herbal remedies of Launaea procumbens (LP) are used to treat wounds. In an excision wound model, topical application of LP significantly promoted wound closure (on day 14, LP-treated animals had the highest percentages of wound closure in comparison with the other groups, as the wound was entirely closed with a closure percentage of 100%, p < 0.05). Histological analysis revealed a considerable rise in the number of fibroblasts, the amount of collagen, and its cross-linking in LP-treated wounds. Gene expression patterns showed significant elevation of TGF-β levels (2.1-fold change after 7 days treatment and 2.7-fold change in 14 days treatment) and downregulation of the inflammatory TNF-α and IL-1β levels in LP-treated wounds. Regarding in vitro antioxidant activity, LP extract significantly diminished the formation of H2O2 radical (IC50 = 171.6 μg/mL) and scavenged the superoxide radical (IC50 of 286.7 µg/mL), indicating antioxidant potential in a dose-dependent manner. Dereplication of the secondary metabolites using LC-HRMS resulted in the annotation of 16 metabolites. The identified compounds were docked against important wound-healing targets, including vascular endothelial growth factor (VEGF), collagen α-1, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and transforming growth factor-β (TGF-β). Among dereplicated compounds, luteolin 8-C-glucoside (orientin) demonstrated binding potential to four investigated targets (VEGF, interleukin 1β, TNF-α, and collagen α-1). To conclude, Launaea procumbens extract could be regarded as a promising topical therapy to promote wound healing in excisional wounds, and luteolin 8-C-glucoside (orientin), one of its constituents, is a potential wound-healing drug lead.
Collapse
|
10
|
Bhat P, Upadhya V, Hegde GR, Hegde HV, Roy S. Attenuation of dermal wounds through topical application of ointment containing phenol enriched fraction of Caesalpinia mimosoides Lam. Front Pharmacol 2022; 13:1025848. [PMID: 36313327 PMCID: PMC9608657 DOI: 10.3389/fphar.2022.1025848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 03/06/2024] Open
Abstract
Caesalpinia mimosoides Lam. is one of the important medicinal plants used by the traditional healers of Uttara Kannada district, Karnataka (India) for treating wounds. In our previous study ethanol extract of the plant was evaluated for its wound healing activity. In continuation, the present study was aimed to evaluate the phenol enriched fraction (PEF) of ethanol extract for wound healing activity along with its antioxidant, anti-inflammatory and antimicrobial properties. The potent wound healing activity of PEF was evidenced by observation of increased rate of cell migration in L929, 3T3L1 and L6 cells (92.59 ± 1.53%, 98.42 ± 0.82% and 96.63 ± 0.61% respectively) at 7.81 μg/ml doses in assays carried out in vitro. Significantly enhanced rate of wound contraction (97.92 ± 0.41%), tensile strength (973.67 ± 4.43 g/mm2), hydroxyproline (31.31 ± 0.64 mg/g) and hexosamine (8.30 ± 0.47 mg/g) contents were observed on 15th post wounding day in 5% PEF treated animals. The enzymatic and non-enzymatic cellular antioxidants (superoxide dismutase, catalase and reduced glutathione) were upregulated (15.89 ± 0.17 U/mg, 48.30 ± 4.60 U/mg and 4.04 ± 0.12 μg/g respectively) with the administration of 5% PEF. The significant antimicrobial, antioxidant and anti-inflammatory activities support the positive correlation of PEF with its enhanced wound healing activity. PEF contains expressive amounts of total phenolic and total flavonoid contents (578.28 ± 2.30 mg GAE/g and 270.76 ± 2.52 mg QE/g). Of the various chemicals displayed in RP-UFLC-DAD analysis of PEF, gallic acid (68.08 μg/mg) and ethyl gallate (255.91 μg/mg) were predominant. The results indicate that PEF has great potential for the topical management of open wounds.
Collapse
Affiliation(s)
- Pradeep Bhat
- National Institute of Traditional Medicine, Indian Council of Medical Research, Belagavi, India
- Department of Studies in Botany, Karnatak University, Dharwad, India
| | - Vinayak Upadhya
- Department of Forest Products and Utilization, College of Forestry, University of Agricultural Sciences, Sirsi, India
| | - Ganesh R. Hegde
- Department of Studies in Botany, Karnatak University, Dharwad, India
| | - Harsha V. Hegde
- National Institute of Traditional Medicine, Indian Council of Medical Research, Belagavi, India
| | - Subarna Roy
- National Institute of Traditional Medicine, Indian Council of Medical Research, Belagavi, India
| |
Collapse
|
11
|
Albarakati AJA. Protocatechuic acid counteracts oxidative stress and inflammation in carrageenan-induced paw edema in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56393-56402. [PMID: 35332456 DOI: 10.1007/s11356-022-19688-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Protocatechuic acid (PCA), a phenolic compound found in teas, fruits, and vegetables, is widely recognized with its antioxidant and anti-inflammatory activities. Here, we verified the protective role of PCA on carrageenan (CGN)-induced paw edema in mice. Forty-five male Swiss albino mice were assigned into five groups: control group, CGN-injected group (1% w/v), PCA (25 mg/kg) + CGN group. PCA (50 mg/kg) + CGN group and diclofenac sodium (20 mg/kg) + CGN group. PCA and diclofenac sodium were administered orally for 5 consecutive days prior to the CGN injection. PCA pretreatment notably decreased the volume of the developed edema and alleviated the histopathological alterations induced by carrageenan. Additionally, PCA administration enhanced the cellular antioxidant capacity as demonstrated by the increased levels of catalase, superoxide dismutase, and reduced glutathione, in addition to the decreased malondialdehyde level in the edematous tissue. Interestingly, PCA administration was able significantly to suppress the developed inflammatory response upon carrageenan injection as indicated by the decreased levels and expression of pro-inflammatory cytokines and mediators including tumor necrosis factor alpha, interleukin-1 beta, interleukin-6, inducible nitric oxide synthase, nitric oxide, cyclooxygenase-II, prostaglandin E2, monocyte chemoattractant protein-1, myeloperoxidase and nuclear factor kappa B. These results collectively confirm the protective effect of PCA against carrageenan-induced paw edema owing to its antioxidant and anti-inflammatory characteristics.
Collapse
Affiliation(s)
- Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
12
|
Fabrication and evaluation of nanoencapsulated quercetin for wound healing application. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04094-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Younis NS, Mohamed ME, El Semary NA. Green Synthesis of Silver Nanoparticles by the Cyanobacteria Synechocystis sp.: Characterization, Antimicrobial and Diabetic Wound-Healing Actions. Mar Drugs 2022; 20:56. [PMID: 35049911 PMCID: PMC8781738 DOI: 10.3390/md20010056] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Green nanotechnology is now accepted as an environmentally friendly and cost-effective advance with various biomedical applications. The cyanobacterium Synechocystis sp. is a unicellular spherical cyanobacterium with photo- and hetero-trophic capabilities. This study investigates the ability of this cyanobacterial species to produce silver nanoparticles (AgNPs) and the wound-healing properties of the produced nanoparticles in diabetic animals. METHODS UV-visible and FT-IR spectroscopy and and electron microscopy techniques investigated AgNPs' producibility by Synechocystis sp. when supplemented with silver ion source. The produced AgNPs were evaluated for their antimicrobial, anti-oxidative, anti-inflammatory, and diabetic wound healing along with their angiogenesis potential. RESULTS The cyanobacterium biosynthesized spherical AgNPs with a diameter range of 10 to 35 nm. The produced AgNPs exhibited wound-healing properties verified with increased contraction percentage, tensile strength and hydroxyproline level in incision diabetic wounded animals. AgNPs treatment decreased epithelialization period, amplified the wound closure percentage, and elevated collagen, hydroxyproline and hexosamine contents, which improved angiogenesis factors' contents (HIF-1α, TGF-β1 and VEGF) in excision wound models. AgNPs intensified catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities, and glutathione (GSH) and nitric oxide content and reduced malondialdehyde (MDA) level. IL-1β, IL-6, TNF-α, and NF-κB (the inflammatory mediators) were decreased with AgNPs' topical application. CONCLUSION Biosynthesized AgNPs via Synechocystis sp. exhibited antimicrobial, anti-oxidative, anti-inflammatory, and angiogenesis promoting effects in diabetic wounded animals.
Collapse
Affiliation(s)
- Nancy S. Younis
- Pharmaceutical Sciences Department, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Maged E. Mohamed
- Pharmaceutical Sciences Department, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Pharmacognosy Department, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Nermin A. El Semary
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt
| |
Collapse
|
14
|
Ramalingam S, Chandrasekar MJN, Nanjan MJ. Plant-based Natural Products for Wound Healing: A Critical Review. Curr Drug Res Rev 2022; 14:37-60. [PMID: 35549848 DOI: 10.2174/2589977513666211005095613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 06/15/2023]
Abstract
Wound healing is an intricate process consisting of four overlapping phases, namely hemostasis, inflammation, proliferation, and remodelling. Effective treatment of wounds depends upon the interaction of appropriate cell types, cell surface receptors, and the extracellular matrix with the therapeutic agents. Several approaches currently used for treating wounds, such as advanced wound dressing, growth factor therapy, stem cell therapy, and gene therapy, are not very effective and lead to impaired healing. Further, repeated use of antibiotics to treat open wounds leads to multi- drug resistance. Today there is considerable interest in plant-based drugs as they are believed to be safe, inexpensive, and more suitable for chronic wounds. For example, a large number of plant- based extracts and their bioactive compounds have been investigated for wound healing. In recent years the structural and mechanistic diversity of natural products have become central players in the search for newer therapeutic agents. In the present review, a thorough critical survey of the traditionally used plant-based drugs used worldwide for wound healing with special reference to the natural products/bioactive compounds isolated and screened is presented. It is hoped that this review will attract the attention of the research community involved in newer drug design and development for wound healing.
Collapse
Affiliation(s)
- Shalini Ramalingam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris-643001, Tamil Nadu, India
| | - Moola Joghee Nanjan Chandrasekar
- School of Life Science, JSS Academy of Higher Education & Research (Ooty Campus), Longwood, Mysuru Road, Ooty, The Nilgiris-643001, Nilgiris-643001, Tamilnadu, India
| | | |
Collapse
|
15
|
Yadav E, Yadav P, Verma A. Amelioration of full thickness dermal wounds by topical application of biofabricated zinc oxide and iron oxide nano-ointment in albino Wistar rats. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Zhang S, Gai Z, Gui T, Chen J, Chen Q, Li Y. Antioxidant Effects of Protocatechuic Acid and Protocatechuic Aldehyde: Old Wine in a New Bottle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6139308. [PMID: 34790246 PMCID: PMC8592717 DOI: 10.1155/2021/6139308] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Phenolic compounds are naturally present as secondary metabolites in plant-based sources such as fruits, vegetables, and spices. They have received considerable attention for their antioxidant, anti-inflammatory, and anti-carcinogenic properties for protection against many chronic disorders such as neurodegenerative diseases, diabetes, cardiovascular diseases, and cancer. They are categorized into various groups based on their chemical structure and include phenolic acids, flavonoids, curcumins, tannins, and quinolones. Their structural variations contribute to their specific beneficial effects on human health. The antioxidant property of phenolic compounds protects against oxidative stress by up-regulation of endogenous antioxidants, scavenging free radicals, and anti-apoptotic activity. Protocatechuic acid (PCA; 3,4-dihydroxy benzoic acid) and protocatechuic aldehyde (PAL; 3,4-dihydroxybenzaldehyde) are naturally occurring polyphenols found in vegetables, fruits, and herbs. PCA and PAL are the primary metabolites of anthocyanins and proanthocyanidins, which have been shown to possess pharmacological actions including antioxidant activity in vitro and in vivo. This review aims to explore the therapeutic potential of PCA and PAL by comprehensively summarizing their pharmacological properties reported to date, with an emphasis on their mechanisms of action and biological properties.
Collapse
Affiliation(s)
- Shijun Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Juanli Chen
- The Institute for Tissue Engineering and Regenerative Medicine, The Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Qingfa Chen
- The Institute for Tissue Engineering and Regenerative Medicine, The Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- The Third Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
17
|
Saoudi M, Badraoui R, Chira A, Saeed M, Bouali N, Elkahoui S, Alam JM, Kallel C, El Feki A. The Role of Allium subhirsutum L. in the Attenuation of Dermal Wounds by Modulating Oxidative Stress and Inflammation in Wistar Albino Rats. Molecules 2021; 26:4875. [PMID: 34443463 PMCID: PMC8398921 DOI: 10.3390/molecules26164875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 01/24/2023] Open
Abstract
In our study, Allium subhirsutum L. (AS) was investigated to assess its phenolic profile and bioactive molecules including flavonoids and organosulfur compounds. The antioxidant potential of AS and wound healing activity were addressed using skin wound healing and oxidative stress and inflammation marker estimation in rat models. Phytochemical and antiradical activities of AS extract (ASE) and oil (ASO) were studied. The rats were randomly assigned to four groups: group I served as a control and was treated with simple ointment base, group II was treated with ASE ointment, group III was treated with ASO ointment and group IV (reference group; Ref) was treated with a reference drug "Cytolcentella® cream". Phytochemical screening showed that total phenols (215 ± 3.5 mg GAE/g) and flavonoids (172.4 ± 3.1 mg QE/g) were higher in the ASO than the ASE group. The results of the antioxidant properties showed that ASO exhibited the highest DPPH free radical scavenging potential (IC50 = 0.136 ± 0.07 mg/mL), FRAP test (IC50 = 0.013 ± 0.006 mg/mL), ABTS test (IC50 = 0.52 ± 0.03 mg/mL) and total antioxidant capacity (IC50 = 0.34 ± 0.06 mg/mL). In the wound healing study, topical application of ASO performed the fastest wound-repairing process estimated by a chromatic study, percentage wound closure, fibrinogen level and oxidative damage status, as compared to ASE, the Cytolcentella reference drug and the untreated rats. The use of AS extract and oil were also associated with the attenuation of oxidative stress damage in the wound-healing treated rats. Overall, the results provided that AS, particularly ASO, has a potential medicinal value to act as effective skin wound healing agent.
Collapse
Affiliation(s)
- Mongi Saoudi
- Animal Ecophysiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax 3054, Tunisia; (A.C.); (A.E.F.)
| | - Riadh Badraoui
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
- Section of Histology and Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta, Tunis 1007, Tunisia
| | - Ahlem Chira
- Animal Ecophysiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax 3054, Tunisia; (A.C.); (A.E.F.)
| | - Mohd Saeed
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
| | - Nouha Bouali
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
| | - Salem Elkahoui
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
| | - Jahoor M. Alam
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
| | - Choumous Kallel
- Hematology Laboratory, Hospital Habib Bourguiba, Sfax 3029, Tunisia;
| | - Abdelfattah El Feki
- Animal Ecophysiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax 3054, Tunisia; (A.C.); (A.E.F.)
| |
Collapse
|
18
|
Yadav E, Yadav P, Verma A. In silico Study of Trianthema portulacastrum Embedded Iron Oxide Nanoparticles on Glycogen Synthase Kinase-3β: A Possible Contributor to its Enhanced in vivo Wound Healing Potential. Front Pharmacol 2021; 12:664075. [PMID: 34079461 PMCID: PMC8165444 DOI: 10.3389/fphar.2021.664075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/04/2021] [Indexed: 01/12/2023] Open
Abstract
Rich amount of phenolic compounds are available in Trianthema portulacastrum L. (TP) leaves and are traditionally utilized as a wound dressing material. Oxidative stress and inflammation affect the Wnt/β-catenin pathway by modulating the glycogen synthase kinase-3β (GSK) activity subjected to delay in wound healing. The objective of the current study was to explore the wound healing effect of ferric oxide nanoparticles biosynthesized with fractionated TP extract (FeTP). The ability of TP active components (polyphenols) to inhibit the GSK was explored by using molecular docking studies. FeTP were synthesized, characterized, utilized to prepare an ointment and its efficacy was investigated against full-thickness dermal wounds. Different wound healing parameters, level of enzymatic antioxidants, hydroxyproline content and tissue cytokines level were analyzed. Histopathology was performed to confirm the healing by newly formed tissue architecture. Rats treated with FeTP showed significantly swift healing with faster wound contraction rate, high tensile strength and hydroxyproline content along with the utilization of less time for epithelialization. Histopathological study also validated the potential wound healing effect of FeTP with complete re-epithelialization. The results of the present study cumulatively revealed that the green synthesized FeTP ointment approach may serve as a potential tool for dermal wound healing.
Collapse
Affiliation(s)
- Ekta Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, India
| | - Pankajkumar Yadav
- Pharmaceutics Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, India
| |
Collapse
|
19
|
Yadav E, Yadav P. Biofabricated zinc oxide nanoparticles impair cognitive function via modulating oxidative stress and acetylcholinesterase level in mice. ENVIRONMENTAL TOXICOLOGY 2021; 36:572-585. [PMID: 33247493 DOI: 10.1002/tox.23062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Current work was designed to explore the effect of ZnO nanoparticles (ZnONP) biofabricated by using Trianthema portulacastrum (TP) leaves extract on mice brain hippocampus. ZnO nanoparticles of TP leaves (ZnOTP) were synthesized by co-precipitation method and further characterized by using various techniques such as UV-Vis spectrophotometer, Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared (FTIR), and Energy Dispersive X-ray (EDX). ZnOTP were evaluated for in vitro antioxidant activity, in vivo behavior models (for assessment of cognitive ability), acetylcholinesterase (AChE) activity along with other neurotransmitters content determination, estimation of various oxidative stress parameters and analysis of zinc content in the brain as well as plasma. Histopathological evaluation of the brain hippocampus of each group was performed to corroborate the statistical results. Spherical ZnOTP of 10 to 20 nm size embedded with different phytoconstituents of TP was confirmed. Results of our study revealed a significant memory deficit in mice treated with ZnOTP. Neuronal degeneration was also observed via a significant increase in AChE activity and oxidative stress levels in the brain of mice administered with ZnOTP. Exposure of ZnOTP was also found responsible for modulation of neurotransmission in hippocampus area. Further, ZnOTP disturbed the zinc homeostasis in hippocampus via elevation of zinc content in brain as well as plasma. Histopathology of hippocampus supported the damaging impact of ZnOTP by an increase in vacuolated cytoplasm and focal gliosis in groups treated with ZnOTP. Results demonstrated the neurotoxic effect of ZnOTP on brain hippocampus via cognitive impairment by alteration of neurotransmitter level, zinc content and oxidative stress.
Collapse
Affiliation(s)
- Ekta Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Prayagraj, India
| | - Pankajkumar Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Prayagraj, India
| |
Collapse
|
20
|
Characteristics of Sunsik, a Cereal-Based Ready-to-Drink Korean Beverage, with Added Germinated Wheat and Herbal Plant Extract. Foods 2020; 9:foods9111654. [PMID: 33198231 PMCID: PMC7696171 DOI: 10.3390/foods9111654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to develop a formulation of Sunsik with improved health benefits by adding germinated wheat (GW) and herbal plant extract (HPE) using a response surface methodology (RSM). The central composite experimental design (CCD) was used to evaluate the effects of Sunsik with added HPE (2–4%) and GW (10–20%) on total phenolic content (TPC), total flavonoid content (TFC), Trolox equivalent antioxidant capacity (TEAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, gamma butyric acid (GABA) content, total color changes (△E), browning index (BI), water absorption index (WAI), and water solubility index (WSI). As a result of the CCD, the independent and dependent variables were fitted by the second-order polynomial equation, and the lack of fit for response surface models was not significant except in relation to WSI. The GABA content, TPC, and TEAC were more adequate for a linear model than for a quadratic model, and they might be affected by GW rather than HPE. Alternatively, the TFC, DPPH radical scavenging capacity, WAI, WSI, △E, and BI were fitted with quadratic models. The optimum formulation that could improve antioxidant and physicochemical properties was Sunsik with 3.5% and 20% added HPE and GW, respectively.
Collapse
|
21
|
Sánchez-Faure A, Calvo MM, Pérez-Jiménez J, Martín-Diana AB, Rico D, Montero MP, Gómez-Guillén MDC, López-Caballero ME, Martínez-Alvarez O. Exploring the potential of common iceplant, seaside arrowgrass and sea fennel as edible halophytic plants. Food Res Int 2020; 137:109613. [DOI: 10.1016/j.foodres.2020.109613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/16/2020] [Accepted: 08/01/2020] [Indexed: 01/26/2023]
|
22
|
Xian C, Gu Z, Liu G, Wu J. Whole wheat flour coating with antioxidant property accelerates tissue remodeling for enhanced wound healing. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Yadav E, Singh D, Debnath B, Rathee P, Yadav P, Verma A. Molecular Docking and Cognitive Impairment Attenuating Effect of Phenolic Compound Rich Fraction of Trianthema portulacastrum in Scopolamine Induced Alzheimer's Disease Like Condition. Neurochem Res 2019; 44:1665-1677. [PMID: 30949934 DOI: 10.1007/s11064-019-02792-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
Dementia is considered as the frequent cause of neurodegenerative mental disorder such as Alzheimer's disease (AD) amongst elderly people. Free radicals as well as cholinergic deficit neurons within nucleus basalis magnocellularis demonstrated to attribute with aggregation of β amyloid which further acts as an essential hallmark in AD. Various phenolic phytoconstituents exists in Trianthema portulastrum (TP) leaves have been reported as active against various neurological disorders. The current investigation was undertaken to evaluate the antiamnesic potential of butanol fraction of TP hydroethanolic extract (BFTP) by utilizing rodent models of elevated plus maze (EPM) and Hebbs William Maze (HWM) along with in vitro and in vivo antioxidant as well as acetylcholinesterase (AChE) inhibition studies. Molecular docking studies were also performed for evaluation of molecular interaction of existed phenolic compounds in BFTP. In vitro antioxidant study revealed concentration dependant strong ability of BFTP to inhibit free radicals. In vitro AChE inhibition study showed competitive type of inhibition kinetics. BFTP significantly reversed (p < 0.005 versus scopolamine) the damaging effect of scopolamine by reducing TL (Transfer Latency) and TRC (Time taken to recognize the reward chamber) in the EPM and HWM, respectively. BFTP also contributed towards increased (p < 0.005 versus scopolamine) enzymatic antioxidant as well as hippocampal acetylcholine (ACh) levels. Histological studies also supported the results as BFTP pretreated mice significantly reversed the scopolamine induced histological changes in hippocampal region. Docking studies confirmed chlorogenic acid has the most significant binding affinity towards AChE. This research finding concludes that BFTP could be a beneficial agent for management of cognition and behavioral disorders associated with AD.
Collapse
Affiliation(s)
- Ekta Yadav
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Allahabad, 211007, India
| | - Deepika Singh
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Allahabad, 211007, India
| | | | - Parth Rathee
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology (BIT), Mesra, Ranchi, 835215, India
| | - Pankajkumar Yadav
- Pharmaceuics Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Allahabad, 211007, India.
| | - Amita Verma
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Allahabad, 211007, India.
| |
Collapse
|
24
|
Antioxidant and anti-inflammatory properties of Prosopis cineraria based phenolic rich ointment in wound healing. Biomed Pharmacother 2018; 108:1572-1583. [DOI: 10.1016/j.biopha.2018.09.180] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/15/2018] [Accepted: 09/30/2018] [Indexed: 11/18/2022] Open
|
25
|
Yadav E, Singh D, Yadav P, Verma A. Ameliorative effect of biofabricated ZnO nanoparticles of Trianthema portulacastrum Linn. on dermal wounds via removal of oxidative stress and inflammation. RSC Adv 2018; 8:21621-21635. [PMID: 35539937 PMCID: PMC9080927 DOI: 10.1039/c8ra03500h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/21/2018] [Indexed: 12/18/2022] Open
Abstract
An impediment in the process of wound healing can be attributed to reactive oxygen species and inflammation. The curative efficacy of green synthesized Trianthema portulacastrum Linn. zinc oxide nanoparticles (ZnOTP) was investigated in the present study for evaluation of their wound healing potential in rodents. Total phenolic and flavonoid content of ZnOTP was determined, and antioxidant potential was evaluated by the DPPH method. In vitro anti-inflammatory activity of ZnOTP was evaluated by membrane stabilization and albumin denaturation, along with proteinase inhibitory assays. The synthesized ZnOTP were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR) studies, Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray (EDX) studies. The wound healing potential of ZnOTP was monitored by excision and incision wound models. Analyses confirmed the formation of spherical nanoparticles of 10-20 nm size along with strong signals of zinc and oxygen atoms. Significant results (p < 0.05) of wound contraction rate, epithelialization and histopathology of the healed tissues of rats confirmed the promising wound healing property of ZnOTP. In addition, inflammatory markers, biochemical estimation such as the hydroxyproline content of granulation tissue, and the profile of antioxidant enzymes also supported the wound healing potential of ZnOTP. The present study advocated the attenuation of wounds via antioxidant and anti-inflammatory activities of a green synthesized nano-ointment.
Collapse
Affiliation(s)
- Ekta Yadav
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS) Allahabad 211007 India
| | - Deepika Singh
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS) Allahabad 211007 India
| | - Pankajkumar Yadav
- Pharmaceutics Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS) Allahabad-211007 India
| | - Amita Verma
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS) Allahabad 211007 India
| |
Collapse
|