Tao H, Song ZY, Ding XS, Yang JJ, Shi KH, Li J. LncRNAs and miRs as epigenetic signatures in diabetic cardiac fibrosis: new advances and perspectives.
Endocrine 2018;
62:281-291. [PMID:
30054866 DOI:
10.1007/s12020-018-1688-z]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE
Diabetic cardiomyopathy (DCM) is a serious cardiac complication of diabetes, which further lead to heartfailure. It is known that diabetes-induced cardiac fibrosis is a key pathogenic factor contributing topathological changes in DCM. However, pathogenetic mechanisms underlying diabetes cardiac fibrosis arestill elusive. Recent studies have indicated that noncoding RNAs (ncRNAs) play a key role in diabetescardiac fibrosis. The increasing complexity of epigenetic regulator poses great challenges to ourconventional conceptions regarding how ncRNAs regulate diabetes cardiac fibrosis.
METHODS
We searched PubMed, Web of Science, and Scopus for manuscripts published prior to April 2018 using keywords "Diabetic cardiomyopathy" AND " diabetes cardiac fibrosis " OR " noncoding RNAs " OR " longnoncoding RNAs " OR " microRNAs " OR "epigenetic". Manuscripts were collated, studied and carriedforward for discussion where appropriate.
RESULTS
Based on the view that during diabetic cardiac fibrosis, ncRNAs are able to regulate diabetic cardiac fibrosisby targeting genes involved in epigenetic pathways. Many studies have focused on ncRNAs, an epigeneticregulator deregulating protein-coding genes in diabetic cardiac fibrosis, to identify potential therapeutictargets. Recent advances and new perspectives have found that long noncoding RNAs and microRNAs,exert their own effects on the progression of diabetic cardiac fibrosis.
CONCLUSION
We firstly examine the growing role of ncRNAs characteristics and ncRNAs-regulated genes involved indiabetic cardiac fibrosis. Then, we provide several possible therapeutic strategies and highlight the potentialof molecular mechanisms in which targeting epigenetic regulators are considered as an effective means of treating diabetic cardiac fibrosis.
Collapse