1
|
Al-Ansari M, Al-Dahmash ND, Angulo-Bejarano PI, Ha HA, Nguyen-Thi TH. Phytochemical, bactericidal, antioxidant and anti-inflammatory properties of various extracts from Pongamia pinnata and functional groups characterization by FTIR and HPLC analyses. ENVIRONMENTAL RESEARCH 2024; 245:118044. [PMID: 38157963 DOI: 10.1016/j.envres.2023.118044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The present research looked into possible biomedical applications of Pongamia pinnata leaf extract. The first screening of the phytochemical profile showed that the acetone extract had more phytochemicals than the other solvent extracts. These included more saponins, proteins, phenolic compounds, tannins, glycosides, flavonoids, steroids, and sugar. The P. pinnata acetone extract exhibited highest antibacterial activity against C. diphtheriae. The bactericidal activity was found in the following order: C. diphtheria (14 mm) > P. aeruginosa (10 mm) > S. flexneri (9 mm) > S. marcescens (7 mm) > S. typhi (7 mm) > S. epidermidis (7 mm) > S. boydii (6 mm) > S. aureus (3 mm) at 10 mg mL-1 concentration. MIC value of 240 mg mL-1 and MBC is 300 mg mL-1 of concentration with 7 colonies against C. diphtheriae was noticed in acetone extract. Acetone extract of P. pinnata was showed highest percentage of inhibition (87.5 %) at 625 mg mL-1 concentrations by DPPH method. Furthermore, the anti-inflammatory activity showed the fine albumin denaturation as 76% as well as anti-lipoxygenase was found as 61% at 900 mg mL-1 concentrations correspondingly. FT-IR analysis was used to determine the functional groups of compounds with bioactive properties. The qualitative examination of selected plants through HPLC yielded significant peak values determined by intervals through the peak value. In an acetone extract of P. pinnata, 9 functional groups were identified. These findings concluded that the acetone extract has high pharmaceutical value, but more in-vivo research is needed to assess its potential.
Collapse
Affiliation(s)
- Mysoon Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nora Dahmash Al-Dahmash
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Paola Isabel Angulo-Bejarano
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro, 76130, Mexico
| | - Hai-Anh Ha
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam
| | | |
Collapse
|
2
|
Yang M, Li H, Qiao H, Guo K, Xu R, Wei H, Wei J, Liu S, Xu C. Integrated Transcriptome and Metabolome Dynamic Analysis of Galls Induced by the Gall Mite Aceria pallida on Lycium barbarum Reveals the Molecular Mechanism Underlying Gall Formation and Development. Int J Mol Sci 2023; 24:9839. [PMID: 37372986 DOI: 10.3390/ijms24129839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Galls have become the best model for exploring plant-gall inducer relationships, with most studies focusing on gall-inducing insects but few on gall mites. The gall mite Aceria pallida is a major pest of wolfberry, usually inducing galls on its leaves. For a better understanding of gall mite growth and development, the dynamics of the morphological and molecular characteristics and phytohormones of galls induced by A. pallida were studied by histological observation, transcriptomics and metabolomics. The galls developed from cell elongation of the epidermis and cell hyperplasia of mesophylls. The galls grew quickly, within 9 days, and the mite population increased rapidly within 18 days. The genes involved in chlorophyll biosynthesis, photosynthesis and phytohormone synthesis were significantly downregulated in galled tissues, but the genes associated with mitochondrial energy metabolism, transmembrane transport, carbohydrates and amino acid synthesis were distinctly upregulated. The levels of carbohydrates, amino acids and their derivatives, and indole-3-acetic acid (IAA) and cytokinins (CKs), were markedly enhanced in galled tissues. Interestingly, much higher contents of IAA and CKs were detected in gall mites than in plant tissues. These results suggest that galls act as nutrient sinks and favor increased accumulation of nutrients for mites, and that gall mites may contribute IAA and CKs during gall formation.
Collapse
Affiliation(s)
- Mengke Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Huanle Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Kun Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Rong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hongshuang Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Sai Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Changqing Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
3
|
Villagrán Z, Martínez-Reyes M, Gómez-Rodríguez H, Ríos-García U, Montalvo-González E, Ortiz-Basurto RI, Anaya-Esparza LM, Pérez-Moreno J. Huitlacoche ( Ustilago maydis), an Iconic Mexican Fungal Resource: Biocultural Importance, Nutritional Content, Bioactive Compounds, and Potential Biotechnological Applications. Molecules 2023; 28:molecules28114415. [PMID: 37298890 DOI: 10.3390/molecules28114415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Worldwide, the fungus known as huitlacoche (Ustilago maydis (DC.) Corda) is a phytopathogen of maize plants that causes important economic losses in different countries. Conversely, it is an iconic edible fungus of Mexican culture and cuisine, and it has high commercial value in the domestic market, though recently there has been a growing interest in the international market. Huitlacoche is an excellent source of nutritional compounds such as protein, dietary fiber, fatty acids, minerals, and vitamins. It is also an important source of bioactive compounds with health-enhancing properties. Furthermore, scientific evidence shows that extracts or compounds isolated from huitlacoche have antioxidant, antimicrobial, anti-inflammatory, antimutagenic, antiplatelet, and dopaminergic properties. Additionally, the technological uses of huitlacoche include stabilizing and capping agents for inorganic nanoparticle synthesis, removing heavy metals from aqueous media, having biocontrol properties for wine production, and containing biosurfactant compounds and enzymes with potential industrial applications. Furthermore, huitlacoche has been used as a functional ingredient to develop foods with potential health-promoting benefits. The present review focuses on the biocultural importance, nutritional content, and phytochemical profile of huitlacoche and its related biological properties as a strategy to contribute to global food security through food diversification; moreover, the biotechnological uses of huitlacoche are also discussed with the aim of contributing to the use, propagation, and conservation of this valuable but overlooked fungal resource.
Collapse
Affiliation(s)
- Zuamí Villagrán
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | | | - Horacio Gómez-Rodríguez
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | - Uzziel Ríos-García
- Edafología, Campus Montecillo, Colegio de Postgraduados, Texcoco 56230, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico
| | - Rosa Isela Ortiz-Basurto
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico
| | | | - Jesús Pérez-Moreno
- Edafología, Campus Montecillo, Colegio de Postgraduados, Texcoco 56230, Mexico
| |
Collapse
|
4
|
Meyer-Rochow VB. Can Molecularly Engineered Plant Galls Help to Ease the Problem of World Food Shortage (and Our Dependence on Pollinating Insects)? Foods 2022; 11:foods11244014. [PMID: 36553755 PMCID: PMC9777877 DOI: 10.3390/foods11244014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The world faces numerous problems and two of them are global food shortages and the dwindling number of pollinating insects. Plant products that do not arise from pollination are plant galls, which as in the case of oak apples, can resemble fruits and be the size of a cherry. It is suggested that once research has understood how chemical signals from gall-inducing insects program a plant to produce a gall, it should be possible to mimic and to improve nature and "bioengineer" designer galls of different sizes, colorations and specific contents to serve as food or a source of medicinally useful compounds. To achieve this objective, the genes involved in the formation of the galls need to be identified by RNA-sequencing and confirmed by gene expression analyses and gene slicing. Ultimately the relevant genes need to be transferred to naïve plants, possibly with the aid of plasmids or viruses as practiced in crop productivity increases. There is then even the prospect of engineered plant galls to be produced by plant tissue culture via genetic manipulation without the involvement of insects altogether.
Collapse
|
5
|
In Vitro α-Glycosidase Inhibition and In Silico Studies of Flavonoids Isolated from Pistacia integerrima Stew ex Brandis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9636436. [PMID: 36119934 PMCID: PMC9481312 DOI: 10.1155/2022/9636436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/21/2022]
Abstract
The galls of Pistacia integerrima are used in folk medicine for curing diabetes. The main aim of this study was the purification of flavonoids from galls of P. integerrima. The methanolic extract was subjected to column chromatographic analysis which afforded six flavonoids, namely, 3,5,7,4′-tetrahydroxy-flavanone (1), naringenin (2), 3,5,4′-trihydroxy,7-methoxy-flavanone (3), sakuranetin (4), spinacetin (5), and patuletin (6). These isolated compounds (1–6) were tested against α-glycosidase. The maximum antagonistic effect was noted against compound 6 (97.65%) followed by compound 5 (90.42%) and compound 1 (90.01%) at the same concentration (0.2 μg). The inhibitory potential of all tested compounds was significant with a degree of variation from each other. Docking studies showed that all studied compounds interact with the active site residues via hydrogen bond interactions with hydroxyl groups, and thus, inhibition was enhanced. Hence, this finding would be the first screening of isolated flavonoids for α-glycosidase activity and with the mechanism of action. These flavonoids should be further investigated as candidate drugs for combating diabetes mellitus.
Collapse
|
6
|
Gall Nuts Cynips quercusfolii (Linnaeus) and Andricus infectorius (Hartig) as Tannin Raw Materials. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The study included gall nuts caused by Cynips quercusfolii collected from Quercus robur and Andricus infectorius, harvested from Quercus infectoria. The evaluation of the percentage content of tannins expressed as a pyrogallol was performed using the analytical methodology recommended by the current “European Pharmacopoeia 10”. In order to compare the chemical composition of the tested samples, chromatographic profiles and ion mass distribution spectra were made using high-performance liquid chromatography techniques coupled with two types of detection: spectrophotometry and mass spectrometry. The average content of tannins expressed as pyrogallol for C. quercusfolii ranged from 13.36% to 14.74%, while for A. infectorius it was from 34.77% to 39.95%. The comparison of both the mass spectra and the chromatographic profiles shows a high similarity of all samples of C. quercusfolii and large differences in the chemical composition compared to A. infectorius. The tested C. quercusfolii should be considered a much poorer tannin source than A. infectorius. It cannot be simultaneously treated as its substitute raw material due to the lower tannins percentage content and different chemical composition. However, compared to other Central European herbal raw materials, C. quercusfolii gall nuts are an alternative tannin source with potential use in herbal medicine and the pharmaceutical industry.
Collapse
|
7
|
Alhumaydhi F, Rauf A, Rashid U, Bawazeer S, Khan K, Mubarak MS, Aljohani ASM, Khan H, El-Saber Batiha G, El-Esawi MA, Mishra AP. In Vivo and In Silico Studies of Flavonoids Isolated from Pistacia integerrima as Potential Antidiarrheal Agents. ACS OMEGA 2021; 6:15617-15624. [PMID: 34179606 PMCID: PMC8223227 DOI: 10.1021/acsomega.1c00298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/21/2021] [Indexed: 06/10/2023]
Abstract
Pistacia integerrima leaf galls are used in several traditional medicines to cure many diseases such as diarrhea, asthma, fever, cough, vomiting, and hepatitis. The main goal of the present investigation was to assess the antidiarrheal effect of the Pistacia integerrima extracts/fractions and four isolated flavonoid compounds (1-4) on mice. An in vivo assay involving castor-oil-induced diarrhea was used to evaluate the antidiarrheal potential of extracts/fractions at 100, 200, and 400 mg/kg p.o., as well as isolated compounds at 5, 10, and 20 mg/kg p.o. Pretreatment of mice with extracts/fractions significantly attenuated castor-oil-induced diarrhea in a dose-dependent manner. Among all crude extracts and fractions, the ethyl acetate extract was the most effective with 100% protection against diarrhea followed by chloroform (75% protection) at 400 mg/kg p.o. Although all the isolated compounds exhibited strong antidiarrheal activity, isolated compounds 1 and 4 demonstrated 100% protection against diarrhea. Moreover, docking models were performed using the Molecular Operating Environment (MOE) and AutoDock software and suggested that the extracts and isolated compounds exert antidiarrheal activity by inhibiting mu-opioid and delta-opioid receptors. Therefore, our finding affords a strong pharmacological basis for the traditional use of P. integerrima galls in the treatment of diarrhea.
Collapse
Affiliation(s)
- Fahad
A. Alhumaydhi
- Department
of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Swabi, Anbar, 23561 Khyber Pakhtunkhwa, Pakistan
| | - Umer Rashid
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Islamabad 22060, Pakistan
| | - Saud Bawazeer
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21421, P.O. Box 42, Saudi Arabia
| | - Khalid Khan
- Directroate
of Science and Technology, Peshawar, University
of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | | | - Abdullah S. M. Aljohani
- Department
of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi
Arabia
| | - Haroon Khan
- Department
of Pharmacy, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Gaber El-Saber Batiha
- Department
of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhou 22511, Al Beheira, Egypt
| | | | - Abhay P. Mishra
- Department of Pharmacology, Faculty of
Health Science, University of Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
8
|
Taib M, Rezzak Y, Bouyazza L, Lyoussi B. Medicinal Uses, Phytochemistry, and Pharmacological Activities of Quercus Species. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:1920683. [PMID: 32802116 PMCID: PMC7415107 DOI: 10.1155/2020/1920683] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023]
Abstract
Quercus species, also known as oak, represent an important genus of the Fagaceae family. It is widely distributed in temperate forests of the northern hemisphere and tropical climatic areas. Many of its members have been used in traditional medicine to treat and prevent various human disorders such as asthma, hemorrhoid, diarrhea, gastric ulcers, and wound healing. The multiple biological activities including anti-inflammatory, antibacterial, hepatoprotective, antidiabetic, anticancer, gastroprotective, antioxidant, and cytotoxic activities have been ascribed to the presence of bioactive compounds such as triterpenoids, phenolic acids, and flavonoids. This paper aimed to provide available information on the medicinal uses, phytochemicals, and pharmacology of species from Quercus. However, further investigation is needed to fully clarify the mode of action of its bioactive compounds and to evaluate in vivo chronic toxicity, before exploring their potential use as a supplement in functional foods and natural pharmaceutics.
Collapse
Affiliation(s)
- Mehdi Taib
- Laboratory of Renewable Energy, Environment and Development, Hassan 1st University Faculty of Science and Technology, P.O. Box 577, Settat, Morocco
| | - Yassine Rezzak
- Laboratory of Renewable Energy, Environment and Development, Hassan 1st University Faculty of Science and Technology, P.O. Box 577, Settat, Morocco
| | - Lahboub Bouyazza
- Laboratory of Renewable Energy, Environment and Development, Hassan 1st University Faculty of Science and Technology, P.O. Box 577, Settat, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), University of Sidi Mohamed Ben Abdellah, Fez 30 000, Morocco
| |
Collapse
|
9
|
Hachim MY, Hachim IY, Elemam NM, Hamoudi RA. Toxicogenomic analysis of publicly available transcriptomic data can predict food, drugs, and chemical-induced asthma. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:181-199. [PMID: 31692590 PMCID: PMC6717055 DOI: 10.2147/pgpm.s217535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/30/2019] [Indexed: 02/04/2023]
Abstract
Background : With the increasing incidence of asthma, more attention is focused on the diverse and complex nutritional and environmental triggers of asthma exacerbations. Currently, there are no established risk assessment tools to evaluate asthma triggering potentials of most of the nutritional and environmental triggers encountered by asthmatic patients. Purpose The objective of this study is to devise a reliable workflow, capable of estimating the toxicogenomic effect of such factors on key player genes in asthma pathogenesis. Methods Gene expression extracted from publicly available datasets of asthmatic bronchial epithelium were subjected to a comprehensive analysis of differential gene expression to identify significant genes involved in asthma development and progression. The identified genes were subjected to Gene Set Enrichment Analysis using a total of 31,826 gene sets related to chemical, toxins, and drugs to identify common agents that share similar asthma-related targets genes and signaling pathways. Results Our analysis identified 225 differentially expressed genes between severe asthmatic and healthy bronchial epithelium. Gene Set Enrichment Analysis of the identified genes showed that they are involved in response to toxic substances and organic cyclic compounds and are targeted by 41 specific diets, plants products, and plants related toxins (eg adenine, arachidonic acid, baicalein, caffeic acid, corilagin, curcumin, ellagic acid, luteolin, microcystin-RR, phytoestrogens, protoporphyrin IX, purpurogallin, rottlerin, and salazinic acid). Moreover, the identified chemicals share interesting inflammation-related pathways like NF-κB. Conclusion Our analysis was able to explain and predict the toxicity in terms of stimulating the differentially expressed genes between severe asthmatic and healthy epithelium. Such an approach can pave the way to generate a cost-effective and reliable source for asthma-specific toxigenic reports thus allowing the asthmatic patients, physicians, and medical researchers to be aware of the potential triggering factors with fatal consequences.
Collapse
Affiliation(s)
- Mahmood Yaseen Hachim
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ibrahim Yaseen Hachim
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Noha M Elemam
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rifat A Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.,Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|