1
|
Li Q, Zhu J, Liu S, Liu H, Zhang T, Ye T, Lou B, Liu F. QTL Mapping-Based Identification of Visceral White-Nodules Disease Resistance Genes in Larimichthys polyactis. Int J Mol Sci 2024; 25:10872. [PMID: 39456653 PMCID: PMC11507142 DOI: 10.3390/ijms252010872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Disease outbreaks in aquaculture have recently intensified. In particular, visceral white-nodules disease, caused by Pseudomonas plecoglossicida, has severely hindered the small yellow croaker (Larimichthys polyactis) aquaculture industry. However, research on this disease is limited. To address this gap, the present study employed a 100K SNP chip to genotype individuals from an F1 full-sib family, identify single nucleotide polymorphisms (SNPs), and construct a genetic linkage map for this species. A high-density genetic linkage map spanning a total length of 1395.72 cM with an average interval of 0.08 cM distributed across 24 linkage groups was obtained. Employing post-infection survival time as an indicator of disease resistance, 13 disease resistance-related quantitative trait loci (QTLs) were detected, and these regions included 169 genes. Functional enrichment analyses pinpointed 11 candidate disease resistance-related genes. RT-qPCR analysis revealed that the genes of chmp1a and arg1 are significantly differentially expressed in response to P. plecoglossicida infection in spleen and liver tissues, indicating their pivotal functions in disease resistance. In summary, in addition to successfully constructing a high-density genetic linkage map, this study reports the first QTL mapping for visceral white-nodules disease resistance. These results provide insight into the intricate molecular mechanisms underlying disease resistance in the small yellow croaker.
Collapse
Affiliation(s)
- Qian Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China;
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
| | - Jiajie Zhu
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Sifang Liu
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Haowen Liu
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Tianle Zhang
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
| | - Ting Ye
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
| | - Bao Lou
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
| | - Feng Liu
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (S.L.); (H.L.); (T.Z.); (T.Y.)
| |
Collapse
|
2
|
Xu J, Zhi X, Zhang Y, Ding R. Tanshinone IIA alleviates IL-1β-induced chondrocyte apoptosis and inflammation by regulating FBXO11 expression. Clinics (Sao Paulo) 2024; 79:100365. [PMID: 38677194 PMCID: PMC11061256 DOI: 10.1016/j.clinsp.2024.100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE This study explored the pharmacological mechanism of Tanshinone IIA (TAN IIA) in the treatment of Osteoarthritis (OA), which provided a certain reference for further research and clinical application of Tan IIA in OA. METHODS CHON-001 cells were stimulated with 10 μg/mL IL-1β for 48 h and treated with 10 μM TAN IIA for 48 h. Cellular viability and apoptosis were evaluated by CCK-8 assay and flow cytometry, and Cleaved caspase-3 was measured by Immunoblot assay and RT-qPCR. TNF-α, IL-6, and iNOS in CHON-001 cells were determined by RT-qPCR and ELISA. To further verify the effect of TAN IIA on OA, a rat model of OA in vivo was established by right anterior cruciate ligament transection. TAN IIA was administered at 50 mg/kg or 150 mg/kg for 7 weeks. The degree of cartilage destruction in OA rats was observed by TUNEL and HE staining. Cleaved caspase-3 and FBXO11 were measured by immunohistochemical staining, RT-qPCR, and Immunoblot. TNF-α, IL-6, and iNOS in chondrocytes of OA rats were detected by ELISA. RESULTS IL-1β stimulated CHON-001 cell apoptosis and inflammation, and TAN IIA had anti-apoptosis and anti-inflammatory effects on IL-1β-regulated CHON-001 cells. TAN IIA down-regulated FBXO11 and inhibited PI3K/AKT and NF-κB pathways, thereby alleviating apoptotic and inflammatory reactions in CHON-001 cells under IL-1β treatment. Moreover, TAN IIA treatment improved chondrocyte apoptosis and inflammations in OA rats. CONCLUSION TAN IIA inhibits PI3K/Akt and NF-κB pathways by down-regulating FBXO11 expression, alleviates chondrocyte apoptosis and inflammation, and delays the progression of OA.
Collapse
Affiliation(s)
- Jin Xu
- Department of Orthopaedics, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai City, China
| | - XiaoCheng Zhi
- Department of Orthopaedics, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai City, China
| | - YunHui Zhang
- Department of Orthopaedics, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai City, China
| | - Ren Ding
- Department of Orthopaedics, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai City, China.
| |
Collapse
|
3
|
Zhang C, Pan G, Qin JJ. Role of F-box proteins in human upper gastrointestinal tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189035. [PMID: 38049014 DOI: 10.1016/j.bbcan.2023.189035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Protein ubiquitination and degradation is an essential physiological process in almost all organisms. As the key participants in this process, the E3 ubiquitin ligases have been widely studied and recognized. F-box proteins, a crucial component of E3 ubiquitin ligases that regulates diverse biological functions, including cell differentiation, proliferation, migration, and apoptosis by facilitating the degradation of substrate proteins. Currently, there is an increasing focus on studying the role of F-box proteins in cancer. In this review, we present a comprehensive overview of the significant contributions of F-box proteins to the development of upper gastrointestinal tumors, highlighting their dual roles as both carcinogens and tumor suppressors. We delve into the molecular mechanisms underlying the involvement of F-box proteins in upper gastrointestinal tumors, exploring their interactions with specific substrates and their cross-talks with other key signaling pathways. Furthermore, we discuss the implications of F-box proteins in radiotherapy resistance in the upper gastrointestinal tract, emphasizing their potential as clinical therapeutic and prognostic targets. Overall, this review provides an up-to-date understanding of the intricate involvement of F-box proteins in human upper gastrointestinal tumors, offering valuable insights for the identification of prognostic markers and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Che Zhang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiang-Jiang Qin
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
4
|
Yang H, Ai H, Zhang J, Ma J, Liu K, Li Z. UPS: Opportunities and challenges for gastric cancer treatment. Front Oncol 2023; 13:1140452. [PMID: 37077823 PMCID: PMC10106573 DOI: 10.3389/fonc.2023.1140452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Gastric cancer remains the fourth most frequently diagnosed malignancy and the fifth leading cause of cancer-related mortality worldwide owning to the lack of efficient drugs and targets for therapy. Accumulating evidence indicates that UPS, which consists of E1, E2, and E3 enzymes and proteasome, plays an important role in the GC tumorigenesis. The imbalance of UPS impairs the protein homeostasis network during development of GC. Therefore, modulating these enzymes and proteasome may be a promising strategy for GC target therapy. Besides, PROTAC, a strategy using UPS to degrade the target protein, is an emerging tool for drug development. Thus far, more and more PROTAC drugs enter clinical trials for cancer therapy. Here, we will analyze the abnormal expression enzymes in UPS and summarize the E3 enzymes which can be developed in PROTAC so that it can contribute to the development of UPS modulator and PROTAC technology for GC therapy.
Collapse
Affiliation(s)
- Hang Yang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Huihan Ai
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jialin Zhang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jie Ma
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Zhi Li, ; Kangdong Liu,
| | - Zhi Li
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Zhi Li, ; Kangdong Liu,
| |
Collapse
|
5
|
Zeng X, Xiao J, Bai X, Liu Y, Zhang M, Liu J, Lin Z, Zhang Z. Research progress on the circRNA/lncRNA-miRNA-mRNA axis in gastric cancer. Pathol Res Pract 2022; 238:154030. [PMID: 36116329 DOI: 10.1016/j.prp.2022.154030] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 01/19/2023]
Abstract
Gastric cancer is one of the most common malignant tumours worldwide. Genetic and epigenetic alterations are key factors in gastric carcinogenesis and drug resistance to chemotherapy. Competing endogenous RNA (ceRNA) regulation models have defined circRNA/lncRNA as miRNA sponges that indirectly regulate miRNA downstream target genes. The ceRNA regulatory network is related to the malignant biological behaviour of gastric cancer. The circRNA/lncRNA-miRNA-mRNA axis may be a marker for the early diagnosis and prognosis of gastric cancer and a potential therapeutic target for gastric cancer. Exosomal ncRNAs play an important role in gastric cancer and are expected to be ideal biomarkers for the diagnosis, prognosis, and treatment of gastric cancer. This review summarizes the specific ceRNA regulatory network (circRNA/lncRNA-miRNA-mRNA) discovered in gastric cancer in recent years, which may provide new ideas or strategies for early clinical diagnosis, further development, and application.
Collapse
Affiliation(s)
- Xuemei Zeng
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Juan Xiao
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang 421001, China
| | - Xue Bai
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Yiwen Liu
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Meilan Zhang
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Jiangrong Liu
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Zixuan Lin
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Zhu X, Wang X, Gong Y, Deng J. E-cadherin on epithelial-mesenchymal transition in thyroid cancer. Cancer Cell Int 2021; 21:695. [PMID: 34930256 PMCID: PMC8690896 DOI: 10.1186/s12935-021-02344-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid carcinoma is a common malignant tumor of endocrine system and head and neck. Recurrence, metastasis and high malignant expression after routine treatment are serious clinical problems, so it is of great significance to explore its mechanism and find action targets. Epithelial-mesenchymal transition (EMT) is associated with tumor malignancy and invasion. One key change in tumour EMT is low expression of E-cadherin. Therefore, this article reviews the expression of E-cadherin in thyroid cancers (TC), discuss the potential mechanisms involved, and outline opportunities to exploit E-cadherin on regulating the occurrence of EMT as a critical factor in cancer therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| | - Xiaoping Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China.
| | - Yifei Gong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| | - Junlin Deng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| |
Collapse
|
7
|
Qiao D, Hu C, Li Q, Fan J. Circ-RBMS1 Knockdown Alleviates CSE-Induced Apoptosis, Inflammation and Oxidative Stress via Up-Regulating FBXO11 Through miR-197-3p in 16HBE Cells. Int J Chron Obstruct Pulmon Dis 2021; 16:2105-2118. [PMID: 34295155 PMCID: PMC8291609 DOI: 10.2147/copd.s311222] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/19/2021] [Indexed: 01/04/2023] Open
Abstract
Background Emerging evidence has reported that circular RNAs (circRNAs) are aberrantly expressed and act as significant regulators in pathological processes of chronic obstructive pulmonary disease (COPD). Here, the purpose of this article was to evaluate and clarify the biological functions and mechanism of circRNA single stranded interacting protein 1 (circ-RBMS1) in cigarette smoke (CS)-induced COPD. Methods Human bronchial epithelial cells 16HBE treated with or without cigarette smoke extract (CSE) were used in the experimental group in vitro. Levels of circ-RBMS1, microRNA (miR)-197-3p, and F-box only protein 11 (FBXO11) were detected using quantitative real-time polymerase chain reaction and Western blot. The present study used cell counting kit-8 (CCK-8), 5-ethynyl-2ʹ-deoxyuridine (EDU), flow cytometry and Western blot assays to determine the survival of 16HBE cells. The activity of interleukin (IL)-1β, tumor necrosis factor (TNF-α), malondialdehyde (MDA) and superoxide dismutase (SOD) was evaluated using the relative commercial kits. Dual-luciferase activity and RIP assays were used to identify the target relationship between miR-197-3p and circ-RBMS1 or FBXO11. Results Circ-RBMS1 was highly expressed in COPD patients, and CSE induced an increased expression of circ-RBMS1 in a dose-dependent manner. Functionally, knockdown of circ-RBMS1 attenuated CSE-induced apoptosis, inflammation and oxidative stress in 16HBE cells. Circ-RBMS1 directly targeted miR-197-3p, and miR-197-3p inhibition reversed the effects of circ-RBMS1 knockdown on CSE-induced 16HBE cells. FBXO11 was a target of miR-197-3p. MiR-197-3p overexpression or FBXO11 silencing reduced the apoptosis, inflammation and oxidative stress in CSE-induced 16HBE cells. Moreover, miR-197-3p exerted its effects by targeting FBXO11. Additionally, circ-RBMS1 acted as a sponge for miR-197-3p to positively regulate FBXO11 expression in 16HBE cells. Conclusion Circ-RBMS1 knockdown alleviated CSE-induced apoptosis, inflammation and oxidative stress in 16HBE cells via miR-197-3p/FBXO11 axis, suggesting a new insight into the pathogenesis of CS-induced COPD.
Collapse
Affiliation(s)
- Di Qiao
- Department of Respiratory Medicine, Kunming Tongren Hospital, Kunming City, Yunnan Province, People's Republic of China
| | - Chi Hu
- Department of Respiratory Medicine, Kunming Tongren Hospital, Kunming City, Yunnan Province, People's Republic of China
| | - Qiuyan Li
- Department of Respiratory Medicine, Kunming Tongren Hospital, Kunming City, Yunnan Province, People's Republic of China
| | - Jun Fan
- Department of Cardiovascular Medicine, Chinese People's Liberation Army Joint Service Support Unit 920 Hospital, Kunming City, Yunnan Province, People's Republic of China
| |
Collapse
|
8
|
Cheng J, He J, Wang S, Zhao Z, Yan H, Guan Q, Li J, Guo Z, Ao L. Biased Influences of Low Tumor Purity on Mutation Detection in Cancer. Front Mol Biosci 2021; 7:533196. [PMID: 33425983 PMCID: PMC7785586 DOI: 10.3389/fmolb.2020.533196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/22/2020] [Indexed: 01/21/2023] Open
Abstract
The non-cancerous components in tumor tissues, e.g., infiltrating stromal cells and immune cells, dilute tumor purity and might confound genomic mutation profile analyses and the identification of pathological biomarkers. It is necessary to systematically evaluate the influence of tumor purity. Here, using public gastric cancer samples from The Cancer Genome Atlas (TCGA), we firstly showed that numbers of mutation, separately called by four algorithms, were significant positively correlated with tumor purities (all p < 0.05, Spearman rank correlation). Similar results were also observed in other nine cancers from TCGA. Notably, the result was further confirmed by six in-house samples from two gastric cancer patients and five in-house samples from two colorectal cancer patients with different tumor purities. Furthermore, the metastasis mechanism of gastric cancer may be incorrectly characterized as numbers of mutation and tumor purities of 248 lymph node metastatic (N + M0) samples were both significantly lower than those of 121 non-metastatic (N0M0) samples (p < 0.05, Wilcoxon rank-sum test). Similar phenomena were also observed that tumor purities could confound the analysis of histological subtypes of cancer and the identification of microsatellite instability status (MSI) in both gastric and colon cancer. Finally, we suggested that the higher tumor purity, such as above 70%, rather than 60%, could be better to meet the requirement of mutation calling. In conclusion, the influence of tumor purity on the genomic mutation profile and pathological analyses should be fully considered in the further study.
Collapse
Affiliation(s)
- Jun Cheng
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jun He
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shanshan Wang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhangxiang Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haidan Yan
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qingzhou Guan
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jing Li
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zheng Guo
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lu Ao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Jiang Y, Liu X, Shen R, Gu X, Qian W. Fbxo21 regulates the epithelial-to-mesenchymal transition through ubiquitination of Nr2f2 in gastric cancer. J Cancer 2021; 12:1421-1430. [PMID: 33531987 PMCID: PMC7847638 DOI: 10.7150/jca.49674] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
F-box protein 21 (Fbxo21), a member of the F-box family proteins, constitutes one of the four subunits of an E3 ubiquitin ligase complex called SCFs (SKP1-Cullin-F-box). Despite the effect on antivirus immune response and ubiquitination regulation of a few oncoproteins, such as EID1 and P-gp, little is known about the Fbxo21 function in tumors, including gastric cancer. In our study, we confirmed that Fbxo21 expression was decreased in gastric cancer tissues. Decreased expression of Fbxo21 was significantly associated with poor prognosis in gastric cancer. Fbxo21 inhibited gastric cancer progression by inducing growth arrest and inhibiting migration and invasion. The expression of various EMT markers, such as E-cadherin, N-cadherin and Vimentin were altered after Fbxo21 knockdown or overexpression. Moreover, we demonstrated that Fbxo21 inhibited the EMT via the down-regulation of Nr2f2. Fbxo21 expression was negatively correlated with Nr2f2 protein expression in gastric cancer tissues and cell lines. And the Nr2f2 protein abundance was regulated by Fbxo21 via ubiquitination and proteasomal degradation. At last, we demonstrated the effects of Nr2f2 re-expression and inhibition on stable Fbxo21-overexpression or Fbxo21-silenced cell lines. These results suggested that Fbxo21 inhibited the proliferation and EMT in part through down-regulating the Nr2f2.
Collapse
Affiliation(s)
- Yannan Jiang
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University
| | - Xinyu Liu
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University
| | - Renbin Shen
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University
| | - Xinhua Gu
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University
| | - Weifeng Qian
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University
| |
Collapse
|
10
|
Li F, Wang S, Niu M. Scutellarin Inhibits the Growth and EMT of Gastric Cancer Cells through Regulating PTEN/PI3K Pathway. Biol Pharm Bull 2021; 44:780-788. [PMID: 34078809 DOI: 10.1248/bpb.b20-00822] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gastric cancer is one of the most common malignancies with a high mortality rate world. This study intends to make clear the role and mechanism of the Scutellarin (Scu), a flavonoid isolated from Erigeron breviscapus (Vant.) Hand.-Mazz, in regulating the evolvement of gastric cancer. We selected different doses of Scu to treat gastric cancer cells (MGC-803 and AGS). Then, cell counting kit-8 (CCK8) assay was conducted to verify the proliferation of tumor cells, while flow cytometry was adopted to test the apoptosis rate. Meanwhile, Western blot was conducted to examine epithelial-mesenchymal transition (EMT) markers and the expression of phosphatase and tensin homolog (PTEN)/phosphatidylinositol 3-kinase (PI3K) and apoptosis-related proteins (Bax, Bcl2 and Caspase3). Moreover, xenograft tumor experiment in nude mice was established to verify the effect of Scu on tumor growth. Furthermore, the knockdown model of PTEN was constructed, and the influence of PTEN on the anti-tumor effect of Scu was investigated. As a result, Scu inhibited cell proliferation, EMT and promoted the apoptosis in gastric cancer dose-dependently. Additionally, Scu attenuated tumor cell growth in vivo. Besides, Scu enhanced the expression of PTEN while reduced the phosphorylated level of PI3K. Moreover, the mechanistic study proved that Scu inactivated PI3K by up-regulating PTEN, thus dampening tumor progression. In conclusion, Scu dampened the growth and EMT of gastric cancer by regulating the PTEN/PI3K pathway.
Collapse
Affiliation(s)
- Fu Li
- Department of Gastroenterology, Shanxian Dongda Hospital
| | - Suping Wang
- Department of Gastroenterology, Shanxian Dongda Hospital
| | - Manxiang Niu
- Department of General Surgery, Shanxian Dongda Hospital
| |
Collapse
|
11
|
Xu E, Xia X, Jiang C, Li Z, Yang Z, Zheng C, Wang X, Du S, Miao J, Wang F, Wang Y, Lu X, Guan W. GPER1 Silencing Suppresses the Proliferation, Migration, and Invasion of Gastric Cancer Cells by Inhibiting PI3K/AKT-Mediated EMT. Front Cell Dev Biol 2020; 8:591239. [PMID: 33425895 PMCID: PMC7793665 DOI: 10.3389/fcell.2020.591239] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/27/2020] [Indexed: 01/06/2023] Open
Abstract
G protein coupled estrogen receptor (GPER1) is a membrane estrogen receptor, belonging to the seven-transmembrane G protein-coupled receptors family, and has important biological functions in cancer. However, the functional role of GPER1 in gastric cancer (GC) remain incompletely understood. In the present study, we employed gene set enrichment analysis and discovered that GPER1 expression was concomitant with EMT process and was positively correlated with activation of the PI3K/AKT pathway in GC. Knockdown of GPER1 with siRNA suppressed the proliferation, migration, and invasion of AGS and MGC-803 GC cells. Knockdown of GPER1 also downregulated the mesenchymal markers N-cadherin and vimentin, upregulated E-cadherin, an epithelial marker, and suppressed expression of the Snail, Slug and Twist1 transcription factors, indicating that knockdown of GPER1 inhibited EMT. Moreover, 740Y-P, a PI3K activator, reversed the effects of GPER1 knockdown on EMT processes. Overexpression of GPER1 with plasmid can further prove these findings. In summary, these data demonstrate that GPER1 inhibition suppresses the proliferation, migration, and invasion of gastric cancer cells by inhibiting PI3K/AKT-mediated EMT. Our study elucidated the function of GPER1 in gastric cancer, and we identified PI3K/AKT-mediated EMT as a novel mechanism by which GPER1 contributes to proliferation, migration, and invasion of gastric cancer. These data suggest that combining inhibition of GPER1 and PI3K may be a potential therapeutic approach to inhibit gastric cancer metastasis.
Collapse
Affiliation(s)
- En Xu
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xuefeng Xia
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chaoyu Jiang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zijian Li
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhi Yang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Chang Zheng
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shangce Du
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ji Miao
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yizhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaofeng Lu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Shao L, Zhang X, Yao Q. The F-box protein FBXO11 restrains hepatocellular carcinoma stemness via promotion of ubiquitin-mediated degradation of Snail. FEBS Open Bio 2020; 10:1810-1820. [PMID: 32657545 PMCID: PMC7459411 DOI: 10.1002/2211-5463.12933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/07/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
Expression of the F‐box protein FBXO11 has been shown to be down‐regulated in various tumors, but its role in hepatocellular carcinoma (HCC) progression remains unclear. Here, we examined the role of FBXO11 in HCC cell stemness. We report that FBXO11 expression is significantly decreased in HCC cells, and overexpression of FBXO11 decreased the expression of HCC stemness markers, ALDH1 activity and sphere‐forming ability. In addition, overexpression of FBXO11 reduced the migration ability and epithelial‐mesenchymal transition of HCC cells. Mechanistically, overexpression of FBXO11 decreased the protein level, but not mRNA level, of Snail by directly interacting with Snail and promoting Snail degradation through the ubiquitin‐proteasome system. Overexpression of Snail rescued the inhibitory effect of FBXO11 overexpression on HCC cell stemness. This study reveals the existence of a novel FBXO11/Snail regulatory axis that is necessary for HCC cell stemness.
Collapse
Affiliation(s)
- Lijiang Shao
- Department of Emergency, Ningbo First Hospital, Ningbo, China
| | - Xuehui Zhang
- Department of Emergency, Ningbo First Hospital, Ningbo, China
| | - Qi Yao
- Department of Geriatric Medicine, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
13
|
Long non-coding RNA NNT-AS1 regulates proliferation, apoptosis, inflammation and airway remodeling of chronic obstructive pulmonary disease via targeting miR-582-5p/FBXO11 axis. Biomed Pharmacother 2020; 129:110326. [PMID: 32768929 DOI: 10.1016/j.biopha.2020.110326] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a kind of chronic lung disease that mainly induced by smoking-caused inflammation. Long non-coding RNAs (lncRNAs) have been reported to play a part in the course of pulmonary diseases. Here, we studied the role of lncRNA NNT-AS1 in the development of COPD. MATERIALS qRT-PCR analysis and ELISA assay were applied to evaluate the expression of genes and inflammatory cytokines, respectively. CCK8 and EdU assays were utilized to assess proliferation, while flow cytometry assay was conducted to evaluate apoptosis. Luciferase reporter, RNA pull down and RIP assays were combined to explore relationships between genes. RESULTS NNT-AS1 was observed to be up-regulated in cigarette smoke extract (CSE)-treated 16HBE cells. Knockdown of NNT-AS1 abolished CSE-caused suppressive effects on cell proliferation, apoptosis, inflammation and airway remodeling. Mechanistically, NNT-AS1 up-regulated FBXO11 expression via sponging miR-582-5p. Moreover, miR-582-5p inhibitor or FBXO11 overexpression counteracted NNT-AS1 silence-elicited effects on proliferation, apoptosis, inflammation and airway remodeling. CONCLUSION Our data revealed that NNT-AS1 played a promoting role in smoking-induced COPD via modulating miR-582-5p/FBXO11 signaling, suggesting a novel potential target for COPD treatment.
Collapse
|
14
|
Zhang Y, Yang G, He X, Chen S, Zhang F, Fang X. LINC01436, regulating miR-585 and FBXO11, is an oncogenic lncRNA in the progression of gastric cancer. Cell Biol Int 2020; 44:882-893. [PMID: 31829474 DOI: 10.1002/cbin.11287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022]
Abstract
Accumulating studies have indicated that long non-coding RNAs (lncRNAs) are crucial modulators in cancer biology. In this work, we investigated the function and related mechanisms of LINC01436 in the progression of gastric cancer (GC). We demonstrated that LINC01436 was significantly up-regulated in cancerous tissues of GC samples, and its overexpression was correlated with a worse prognosis for the patients. In the GC cell line BGC823 cells, LINC01436 knockdown repressed the proliferation and metastasis of cancer cells; conversely, in GC cell line AGS cells, overexpression of LINC01436 showed the opposite effects. We then demonstrated that miR-585, a tumor suppressor, could bind to both LINC01436 and the 3'-UTR of F-box protein 11 (FBOX11), and LINC01436 was proved to sponge miR-585 and repress it, and indirectly promoted the expression of FBOX11. Collectively, these results suggested that LINC01436 was an oncogenic lncRNA in GC and promoted proliferation and metastasis of GC cell via regulating miR-585 and FBOX11.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Gastroenterology, Puren Hospital of Wuhan, Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Guangyong Yang
- Department of Healthcare, Puren Hospital of Wuhan, Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Xiaogu He
- Department of Gastroenterology, Puren Hospital of Wuhan, Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Shi Chen
- Department of Gastroenterology, Puren Hospital of Wuhan, Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Fan Zhang
- Department of Gastroenterology, Puren Hospital of Wuhan, Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Xiangming Fang
- Department of Gastroenterology, Puren Hospital of Wuhan, Wuhan University of Science and Technology, 430081, Wuhan, China
| |
Collapse
|
15
|
Gâtel P, Piechaczyk M, Bossis G. Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:29-54. [PMID: 32274752 DOI: 10.1007/978-3-030-38266-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3), and Nedd8 are the best-characterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin, SUMO, and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer.
Collapse
Affiliation(s)
- Pierre Gâtel
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Guillaume Bossis
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
16
|
Fan B, Wang W, Zhang X, Sun M, Wang X, Chen Z, Liu W, Wang Q, Yu N, Li X. Prevalence and prognostic value of FBXO11 expression in patients with clear cell renal cell carcinoma. BMC Cancer 2019; 19:534. [PMID: 31159774 PMCID: PMC6547552 DOI: 10.1186/s12885-019-5736-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/21/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND FBXO11, a member of the F-box protein family, regulates the cell-cycle by promoting the degradation of Bcl-6 and p53. This protein has been implicated in the progression of several cancers, including renal cell carcinoma (RCC). The aim of this study was to determine the prognostic role of FBXO11 in the clinical outcome of RCC patients. METHODS FBXO11 mRNA expression was analysed in normal and RCC tissue microarrays of the Oncomine database. In addition, the in situ expression levels of stromal FBXO11 protein were assessed in primary RCC tissues from 227 patients (training and validation cohorts) using immunohistochemistry (IHC). Kaplan Meier and Cox regression analyses were used to determine the association between FBXO11 expression and cliniopathological factors. A nomogram was established using the significant prognostic factors to predict overall survival (OS) of RCC patients after one, three and 5 years. RESULTS In the Oncomine database, FBXO11 mRNA levels were lower in normal tissues than in cancer tissues, including clear cell renal cell carcinoma (ccRCC), papillary renal cell carcinoma (pRCC), hereditary ccRCC, non-hereditary ccRCC, VHL mutant ccRCC and VHL wild-type ccRCC. In addition, FBXO11 expression was also significantly higher in metastatic kidney cancer than in primary cancer. Immunohistochemical analysis reported that 57.3% (86 of 150) of the training cohort and 57.1% (44 of 77) of the validation cohort were scored as having high FBXO11 staining density. FBXO11 expression was significantly associated with Fuhrman grade (p = 0.003), UISS score (p = 0.021) and age (p = 0.048) in the training cohort. Furthermore, Kaplan-Meier survival analysis showed that higher FBXO11 levels, T stage, UISS scores and SSIGN score were associated with poor OS in ccRCC patients. Multivariate Cox analysis demonstrated that higher FBXO11 levels and higher UISS score were independent prognostic indicators for OS. Nomogram, calibration plots, AUC values and the C-index showed that the predictive accuracy of conventional prognostic models, including UISS score and SSIGN score, was improved when FBXO11 expression was added. CONCLUSIONS FBXO11 expression was closely related to RCC malignancy and poor prognosis, indicating its potential as a prognostic marker as well as a therapeutic target for RCC.
Collapse
Affiliation(s)
- Bo Fan
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Wei Wang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Xianping Zhang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Min Sun
- Department of General Surgery, Taihe Hospital of Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Xiaogang Wang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Zhiqi Chen
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Wankai Liu
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Qun Wang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Na Yu
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Xiancheng Li
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China.
| |
Collapse
|
17
|
Jiang S, Wang H, Guo Y, Liu Z, Song W. Acetylshikonin inhibits the migration and invasion of A375 cells by reversing EMT process via the PI3K/Akt/mTOR pathway. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1612277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Shuang Jiang
- Department of Preventive Medicine, School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, PR China
| | - Haotian Wang
- Department of Biological Engineering, School of Pharmacy, Jilin University, Changchun, Jilin, PR China
| | - Yan Guo
- Department of Preventive Medicine, School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, PR China
| | - Zhi Liu
- Department of Preventive Medicine, School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, PR China
| | - Wu Song
- Department of Preventive Medicine, School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, PR China
| |
Collapse
|
18
|
Orthotopic Patient-Derived Xenografts of Gastric Cancer to Decipher Drugs Effects on Cancer Stem Cells and Metastatic Dissemination. Cancers (Basel) 2019; 11:cancers11040560. [PMID: 31010193 PMCID: PMC6520896 DOI: 10.3390/cancers11040560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is the third leading cause of cancer mortality worldwide. Cancer stem cells (CSC) are at the origin of tumor initiation, chemoresistance, and the formation of metastases. However, there is a lack of mouse models enabling the study of the metastatic process in gastric adenocarcinoma (GC). The aims of this study were to develop original mouse models of patient-derived primary GC orthotopic xenografts (PDOX) allowing the development of distant metastases as preclinical models to study the anti-metastatic efficiency of drugs such as the phosphatidylinositol 3-kinase (PI3K) inhibitor Buparlisib (BKM120). Luciferase-encoding cells generated from primary GC were injected into the stomach wall of immunocompromised mice; gastric tumor and metastases development were followed by bioluminescence imaging. The anti-CSC properties of BKM120 were evaluated on the GC cells’ phenotype (CD44 expression) and tumorigenic properties in vitro and in vivo on BKM120-treated mice. After eight weeks, PDOX mice formed tumors in the stomach as well as distant metastases, that were enriched in CSC, in the liver, the lung, and the peritoneal cavity. BKM120 treatment significantly inhibited the CSC properties in vitro and reduced the number of distant metastases in mice. These new preclinical models offer the opportunity to study the anti-metastatic efficiency of new CSC-based therapeutic strategies.
Collapse
|
19
|
Emerging role of F-box proteins in the regulation of epithelial-mesenchymal transition and stem cells in human cancers. Stem Cell Res Ther 2019; 10:124. [PMID: 30999935 PMCID: PMC6472071 DOI: 10.1186/s13287-019-1222-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence shows that epithelial-mesenchymal transition (EMT) plays a crucial role in tumor invasion, metastasis, cancer stem cells, and drug resistance. Data obtained thus far have revealed that F-box proteins are critically involved in the regulation of the EMT process and stem cell differentiation in human cancers. In this review, we will briefly describe the role of EMT and stem cells in cell metastasis and drug resistance. We will also highlight how numerous F-box proteins govern the EMT process and stem cell survival by controlling their downstream targets. Additionally, we will discuss whether F-box proteins involved in drug resistance are associated with EMT and cancer stem cells. Targeting these F-box proteins might be a potential therapeutic strategy to reverse EMT and inhibit cancer stem cells and thus overcome drug resistance in human cancers.
Collapse
|
20
|
Zhang G, Zhang G. Upregulation of FoxP4 in HCC promotes migration and invasion through regulation of EMT. Oncol Lett 2019; 17:3944-3951. [PMID: 30930991 DOI: 10.3892/ol.2019.10049] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Previous studies have indicated that FoxP1, FoxP2 and FoxP3 play important roles in hepatocellular carcinoma (HCC). However, the effect of FoxP4 in HCC requires further elucidation. The aim of the present study was to explore the roles of FoxP4 in HCC and further decipher the detailed mechanism. In present study, it was found that FoxP4, which is overexpressed in HCC tissues and cell lines, facilitated EMT in HCC cell lines through regulation of Slug. First, increased expression of FoxP4 was identified in 110 pairs of human HCC tumor and their adjacent normal tissues. In addition, the association between FoxP4 expression and clinicopathological features of HCC patients indicated that FoxP4 played vital roles in HCC development. Subsequently, gain- and loss-of-function experiments indicated that FoxP4 promoted cellular proliferation, migration as well invasion. In addition, EMT, a key mechanism during cancer metastasis, was regulated by FoxP4. Furthermore, ChIP and qChIP as well as luciferase reporter assays indicated that Slug, an EMT-associated transcription factor, was transcriptionally regulated by FoxP4. In conclusion, FoxP4 functioned as a tumor promoter in HCC cells by transcriptionally regulating Slug, and the present study highlighted the potential effects of FoxP4 on the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Liver Diseases, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276800, P.R. China
| | - Guangye Zhang
- Department of Liver Diseases, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|
21
|
Wang H, Zhao Y, Cao L, Zhang J, Wang Y, Xu M. Metastasis suppressor protein 1 regulated by PTEN suppresses invasion, migration, and EMT of gastric carcinoma by inactivating PI3K/AKT signaling. J Cell Biochem 2018; 120:3447-3454. [PMID: 30246429 DOI: 10.1002/jcb.27618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial event for cancer progression and metastasis. Metastasis suppressor protein 1 (MTSS1) is a metastasis suppressor in several cancers. In this study, we elucidated the potential physiological function of MTSS1 in the invasion and migration of gastric cancer (GC), and its distinct role in EMT and subsequently determined the potential molecular mechanism. We observed that MTSS1 expression was downregulated in GC tissues and several GC cell lines (SGC-7901, MGC-803, MKN-28, MKN-45, and BGC-823). Importantly, forced expression of MTSS1 drastically diminished the cell viability in both SGC-7901 and MKN-45 cells. Moreover, overexpression of MTSS1 attenuated the invasion ability of these two cell lines. In addition to the invasive capability, introduction of MTSS1 led to a loss of migratory potential. Furthermore, augmentation of MTSS1 exhibited the typical EMT phenotype switch, accompanied by enhanced the expression of vimentin and N-cadherin and reduced E-cadherin expression. Interestingly, MTSS1 also repressed transforming growth factor beta 1 (TGF-β1)-induced EMT. Our mechanistic investigations revealed that MTSS1 was positively regulated by the phosphatase and tensin homolog (PTEN), and it functioned as a tumor suppressor, possibly by inactivating the phosphoinositide 3-kinase (PI3K)/v-akt murine thymoma viral oncogene (AKT) pathway in GC cells. Collectively, our data provide insight into an important role for MTSS1 in suppressing tumor cell invasion, migration and EMT, which indicates that MTSS1 may act as a prospective prognostic biological marker and a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Honglei Wang
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yongjie Zhao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Lei Cao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Judong Zhang
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yu Wang
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Min Xu
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
22
|
Gregor A, Sadleir LG, Asadollahi R, Azzarello-Burri S, Battaglia A, Ousager LB, Boonsawat P, Bruel AL, Buchert R, Calpena E, Cogné B, Dallapiccola B, Distelmaier F, Elmslie F, Faivre L, Haack TB, Harrison V, Henderson A, Hunt D, Isidor B, Joset P, Kumada S, Lachmeijer AM, Lees M, Lynch SA, Martinez F, Matsumoto N, McDougall C, Mefford HC, Miyake N, Myers CT, Moutton S, Nesbitt A, Novelli A, Orellana C, Rauch A, Rosello M, Saida K, Santani AB, Sarkar A, Scheffer IE, Shinawi M, Steindl K, Symonds JD, Zackai EH, Reis A, Sticht H, Zweier C, Sticht H, Zweier C. De Novo Variants in the F-Box Protein FBXO11 in 20 Individuals with a Variable Neurodevelopmental Disorder. Am J Hum Genet 2018; 103:305-316. [PMID: 30057029 DOI: 10.1016/j.ajhg.2018.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022] Open
Abstract
Next-generation sequencing combined with international data sharing has enormously facilitated identification of new disease-associated genes and mutations. This is particularly true for genetically extremely heterogeneous entities such as neurodevelopmental disorders (NDDs). Through exome sequencing and world-wide collaborations, we identified and assembled 20 individuals with de novo variants in FBXO11. They present with mild to severe developmental delay associated with a range of features including short (4/20) or tall (2/20) stature, obesity (5/20), microcephaly (4/19) or macrocephaly (2/19), behavioral problems (17/20), seizures (5/20), cleft lip or palate or bifid uvula (3/20), and minor skeletal anomalies. FBXO11 encodes a member of the F-Box protein family, constituting a subunit of an E3-ubiquitin ligase complex. This complex is involved in ubiquitination and proteasomal degradation and thus in controlling critical biological processes by regulating protein turnover. The identified de novo aberrations comprise two large deletions, ten likely gene disrupting variants, and eight missense variants distributed throughout FBXO11. Structural modeling for missense variants located in the CASH or the Zinc-finger UBR domains suggests destabilization of the protein. This, in combination with the observed spectrum and localization of identified variants and the lack of apparent genotype-phenotype correlations, is compatible with loss of function or haploinsufficiency as an underlying mechanism. We implicate de novo missense and likely gene disrupting variants in FBXO11 in a neurodevelopmental disorder with variable intellectual disability and various other features.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Heinrich Sticht
- Institute of Biochemistry, Emil-Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
23
|
Zhou X, Xia E, Bhandari A, Zheng C, Xiang J, Guan Y, Zhang X. LRP4 promotes proliferation, migration, and invasion in papillary thyroid cancer. Biochem Biophys Res Commun 2018; 503:257-263. [PMID: 29885843 DOI: 10.1016/j.bbrc.2018.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/06/2018] [Indexed: 01/10/2023]
Abstract
Dysregulation of cell proliferation and death is considered the foundation of the malignant biological characteristics of cancer. In this study, we conducted a comprehensive analysis of a massively parallel whole transcriptome resequencing of paired papillary thyroid cancer and normal thyroid tissues from 19 patients. In addition, we found that LRP4, a member of the low-density lipoprotein receptor-related protein family, is significantly overexpressed in thyroid carcinoma. We demonstrated through quantitative real-time polymerase chain reaction (qRT-PCR) that LRP4 is upregulated in papillary thyroid cancer (PTC) tissues. This observation was also consistent with data analyzed from The Cancer Genome Atlas (TCGA) cohort. Thus, the biological role of LRP4 in the thyroid cancer in the present study was investigated using the PTC cell lines TPC1, BCPAP and KTC-1. In these cell lines, the mRNA level of LRP4 was higher than normal thyroid cancer cell named HTORI3. In vitro experiments demonstrated that LRP4 downregulation significantly inhibited the colony formation, proliferation, migration, and invasion of the three PTC cell lines. Knockdown of LRP4 by small interfering RNA (siRNA) in those cell lines decreased the protein expression of N-cadherin, Enhancer of zeste homolog 2 (EZH2), and Zinc finger E-box-binding home-box 1 (ZEB1). Furthermore, LRP4 knockdown significantly reduced the levels of phosphorylated PI3K in the PTC cell lines. In conclusion, the present study indicated that LRP4 is a gene associated with PTC and might become a potential therapeutic target.
Collapse
Affiliation(s)
- Xiaofen Zhou
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Erjie Xia
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Adheesh Bhandari
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chen Zheng
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jingjing Xiang
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yaoyao Guan
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiaohua Zhang
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|