1
|
Cui Y, Chen X, Li W, Li S, Jin N, Li X, Li Y, Yue Y. Ad-VT causes ovarian cancer A2780 cell death via mitochondrial apoptosis and autophagy pathways. Transl Oncol 2024; 48:102067. [PMID: 39094512 PMCID: PMC11334942 DOI: 10.1016/j.tranon.2024.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE The recombinant adenovirus Ad-apoptin-hTERTp-E1a (Ad-VT) to have a bi-specific oncolytic character in many tumor cells, but its action pathway in killing tumor cells has not been accurately elucidated. Here, we studied the mechanism of apoptosis and autophagy induced by Ad-VT and the interaction between autophagy and apoptosis. METHODS Crystal Violet staining and CCK-8 assays were used to detect the inhibitory effect of Ad-VT on ovarian cancer cells. The antitumor effect of Ad-VT in vivo was analyzed by tumor bearing nude mouse model. Subsequently, flow cytometry and fluorescence staining were used to analyze the main types of apoptosis and autophagy induced by Ad-VT. RESULTS In this study, through the in vitro cell inhibition assays, we found that Ad-VT has a significant inhibitory effect on ovarian cancer A2780 cells, but no significant inhibitory effect on normal ovarian epithelial cells. Then in vivo experiments showed that Ad-VT significantly inhibited tumor growth and extended the survival time of mice. Subsequent detection of the level of apoptosis found that Ad-VT can cause a strong apoptotic response and kill cells mainly through the endogenous apoptotic pathway. Through the staining analysis of LC3 and the analysis of autophagy-related proteins, it was found that Ad-VT could significantly increase the level of autophagy in A2780 cells, and this was a protective mechanism. CONCLUSIONS Ad-VT, which replicates under the control of the hTERT promoter and expresses apoptin protein, have significant inhibitory effect on ovarian cancer A2780 cells and promote their apoptosis and autophagy.
Collapse
Affiliation(s)
- Yingli Cui
- Department of Gynecologic Oncology, First Hospital of Jilin University, Changchun 130021, PR China
| | - Xin Chen
- Edmond H. Fischer Signal Transduction Laboratory, College of Life Sciences, Jilin University, Changchun, 130021, PR China
| | - Wenjie Li
- Institute of Virology, Wenzhou University, Wenzhou 325035, PR China
| | - Shanzhi Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, PR China; Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130177, PR China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, PR China; Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130177, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, PR China; Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130177, PR China.
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130177, PR China.
| | - Ying Yue
- Department of Gynecologic Oncology, First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
2
|
Chen R, Zhu S, Zhao R, Liu W, Jin L, Ren X, He H. Targeting ferroptosis as a potential strategy to overcome the resistance of cisplatin in oral squamous cell carcinoma. Front Pharmacol 2024; 15:1402514. [PMID: 38711989 PMCID: PMC11071065 DOI: 10.3389/fphar.2024.1402514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a crucial public health problem, accounting for approximately 2% of all cancers globally and 90% of oral malignancies over the world. Unfortunately, despite the achievements in surgery, radiotherapy, and chemotherapy techniques over the past decades, OSCC patients still low 5-year survival rate. Cisplatin, a platinum-containing drug, serves as one of the first-line chemotherapeutic agents of OSCC. However, the resistance to cisplatin significantly limits the clinical practice and is a crucial factor in tumor recurrence and metastasis after conventional treatments. Ferroptosis is an iron-based form of cell death, which is initiated by the intracellular accumulation of lipid peroxidation and reactive oxygen species (ROS). Interestingly, cisplatin-resistant OSCC cells exhibit lower level of ROS and lipid peroxidation compared to sensitive cells. The reduced ferroptosis in cisplatin resistance cells indicates the potential relationship between cisplatin resistance and ferroptosis, which is proved by recent studies showing that in colorectal cancer cells. However, the modulation pathway of ferroptosis reversing cisplatin resistance in OSCC cells still remains unclear. This article aims to concisely summarize the molecular mechanisms and evaluate the relationship between ferroptosis and cisplatin resistance OSCC cells, thereby providing novel strategies for overcoming cisplatin resistance and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Rongkun Chen
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Shuyu Zhu
- Department of Oral Implantology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Ruoyu Zhao
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Wang Liu
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Luxin Jin
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Xiaobin Ren
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Hongbing He
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Fan Y, Pan Y, Jia L, Gu S, Liu B, Mei Z, Lv C, Huang H, Zhu G, Deng Q. BIRC5 facilitates cisplatin-chemoresistance in a m 6A-dependent manner in ovarian cancer. Cancer Med 2024; 13:e6811. [PMID: 38112021 PMCID: PMC10807614 DOI: 10.1002/cam4.6811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/26/2023] [Accepted: 09/26/2023] [Indexed: 12/20/2023] Open
Abstract
Cisplatin-based chemotherapy is the standard treatment for metastatic ovarian cancer (OC). However, chemoresistance continues to pose significant clinical challenges. Recent research has highlighted the baculoviral inhibitor of the apoptosis protein repeat-containing 5 (BIRC5) as a member of the inhibitor of the apoptosis protein (IAP) family. Notably, BIRC5, which has robust anti-apoptotic capabilities, is overexpressed in numerous cancers. Its dysfunction has been linked to challenges in cancer treatment. Yet, the role of BIRC5 in the chemoresistance of OC remains elusive. In our present study, we observed an upregulation of BIRC5 in cisplatin-resistant cell lines. This upregulation was associated with enhanced chemoresistance, which was diminished when the expression of BIRC5 was silenced. Intriguingly, BIRC5 exhibited a high number of N6-methyladenosine (m6A) binding sites. The modification of m6A was found to enhance the expression of BIRC5 by recognizing and binding to the 3'-UTR of mRNA. Additionally, the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was shown to stabilize BIRC5 mRNA, synergizing with METTL3 and intensifying chemoresistance. Supporting these in vitro findings, our in vivo experiments revealed that tumors were significantly smaller in size and volume when BIRC5 was silenced. This reduction was notably counteracted by co-silencing BIRC5 and overexpressing IGF2BP1. Our results underscored the pivotal role of BIRC5 in chemoresistance. The regulation of its expression and the stability of its mRNA were influenced by m6A modifications involving both METTL3 and IGF2BP1. These insights presented BIRC5 as a promising potential therapeutic target for addressing cisplatin resistance in OC.
Collapse
Affiliation(s)
- Yadan Fan
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Yinglian Pan
- Department of OncologyThe First Affiliated Hospital of Hainan Medical CollegeHaikouChina
| | - Liping Jia
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Shuzhen Gu
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Binxin Liu
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Ziman Mei
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Chunyan Lv
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Haohao Huang
- Department of NeurosurgeryGeneral Hospital of Central Theater Command of Chinese People's Liberation ArmyWuhanChina
| | - Genhai Zhu
- Department of GynecologyHainan General Hospital, Hainan Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Qingchun Deng
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| |
Collapse
|
4
|
Li W, Zhao X, Zhang R, Xie J, Zhang G. Silencing of NLRP3 Sensitizes Chemoresistant Ovarian Cancer Cells to Cisplatin. Mediators Inflamm 2023; 2023:7700673. [PMID: 37304662 PMCID: PMC10256449 DOI: 10.1155/2023/7700673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/16/2023] [Accepted: 03/25/2023] [Indexed: 06/13/2023] Open
Abstract
Background Ovarian cancer is a fatal gynecological malignancy. The resistance to chemotherapy in ovarian cancer treatment has been a thorny issue. This study is aimed at probing the molecular mechanism of cisplatin (DDP) resistance in ovarian cancer. Methods Bioinformatics analysis was conducted to examine the role of Nod-like receptor protein 3 (NLRP3) in ovarian cancer. The NLRP3 level in DDP-resistant ovarian cancer tumors and cell lines (SKOV3/DDP and A2780/DDP) was evaluated by applying immunohistochemical staining, western blot, and qRT-PCR. Cell transfection was conducted to regulate the NLRP3 level. Cell abilities to proliferate, migrate, invade, and apoptosis were measured employing colony formation, CCK-8, wound healing, transwell, and TUNEL assays, respectively. Cell cycle analysis was completed via flow cytometry. Corresponding protein expression was measured by western blot. Results NLRP3 was overexpressed in ovarian cancer, correlated with poor survival, and upregulated in DDP-resistant ovarian cancer tumors and cells. NLRP3 silencing exerted antiproliferative, antimigrative, anti-invasive, and proapoptotic effects in A2780/DDP and SKOV3/DDP cells. Additionally, NLRP3 silencing inactivated NLRPL3 inflammasome and blocked epithelial-mesenchymal transition via enhancing E-cadherin and lowering vimentin, N-cadherin, and fibronectin. Conclusion NLRP3 was overexpressed in DDP-resistant ovarian cancer. NLRP3 knockdown hindered the malignant process of DDP-resistant ovarian cancer cells, providing a potential target for DPP-based ovarian cancer chemotherapy.
Collapse
Affiliation(s)
- Weijia Li
- Department of Gynecology, Harbin Medical University, Harbin, 150081 Heilongjiang, China
| | - Xibo Zhao
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang, China
| | - Rujian Zhang
- Department of Gynecology, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, 528000 Guangdong, China
| | - Jiabin Xie
- Department of Gynecology, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, 528000 Guangdong, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang, China
| |
Collapse
|
5
|
Liu X, Qi M, Li X, Wang J, Wang M. Curcumin: a natural organic component that plays a multi-faceted role in ovarian cancer. J Ovarian Res 2023; 16:47. [PMID: 36859398 PMCID: PMC9976389 DOI: 10.1186/s13048-023-01120-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Curcumin, a natural organic component obtained from Curcuma longa's rhizomes, shows abundant anti-tumor, antioxidant and anti-inflammatory pharmacological activities, among others. Notably the anti-tumor activity has aroused widespread attention from scholars worldwide. Numerous studies have reported that curcumin can delay ovarian cancer (OC), increase its sensitivity to chemotherapy, and reduce chemotherapy drugs' side effects. It has been shown considerable anticancer potential by promoting cell apoptosis, suppressing cell cycle progression, inducing autophagy, inhibiting tumor metastasis, and regulating enzyme activity. With an in-depth study of curcumin's anti-OC mechanism, its clinical application will have broader prospects. This review summarizes the latest studies on curcumin's anti-OC activities, and discusses the specific mechanism, hoping to provide references for further research and applications.
Collapse
Affiliation(s)
- Xiaoping Liu
- grid.216417.70000 0001 0379 7164Department of gynaecology and obstetrics, the Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, 412000 Zhuzhou, Hunan China
| | - Mingming Qi
- grid.216417.70000 0001 0379 7164Department of gynaecology and obstetrics, the Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, 412000 Zhuzhou, Hunan China
| | - Xidie Li
- grid.216417.70000 0001 0379 7164Department of gynaecology and obstetrics, the Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, 412000 Zhuzhou, Hunan China
| | - Jingjin Wang
- Department of gynaecology and obstetrics, the Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan, China.
| | - Mingyuan Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China. .,Department of Geriatric Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
6
|
Zhao S, Liu H, Fan M. SPOCK2 Promotes the Malignant Behavior of Ovarian Cancer via Regulation of the Wnt/ β-Catenin Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9223954. [PMID: 36193300 PMCID: PMC9525767 DOI: 10.1155/2022/9223954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
Background Ovarian cancer (OC) is a common clinical gynecological disease, which seriously threatens women's health and life. We investigated the roles of SPOCK2 in OC and its associated molecular mechanism in the current study. Methods The expressions and prognostic value of SPOCK2 in OC were identified using the clinical data and data from the GEPIA database. Then, SPOCK2 silence was implemented to search functions of SPOCK2 in OC cells. CCK-8 was used to examine cell proliferation. Cell apoptosis was detected by flow cytometry. The OC cell invasion and migration were evaluated by transwell assays. Results Overexpressed SPOCK2 was identified in OC, which was correlated with poor prognosis and a shorter survival rate. SPOCK2 downregulation significantly suppressed OC cell proliferation, migration, and invasion, and cell apoptosis was markedly promoted by SPOCK2 silence. Meanwhile, SPOCK2 knockdown could effectively suppress Wnt/β-catenin. Conclusion SPOCK2 exerted crucial functions in OC progression and could serve as a promising candidate for OC targeted therapy.
Collapse
Affiliation(s)
- Shanshan Zhao
- Obstetrical Department, Taian City Central Hospital, Taian, China
| | - Haiyan Liu
- Ultrasonic Diagnosis and Treatment Center, Taian City Central Hospital, Taian, China
| | - Mingying Fan
- Gynecology Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
7
|
Zhou J, Wang X, Han Y, Chu Q, Zheng Y. lncRNA-CCAT2 Reduces the Drug Resistance of Ovarian Cancer Cells. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assesses lncRNA-CCAT2’s role in reducing the drug resistance of ovarian cancer cell lines. Cisplatin-resistant SKOV-3/DDP cells were established and assigned into CC group (transfected with lncRNA CCAT2 siRNA-NC) and CA group (transfected with lncRNA CCAT2 siRNA) followed
by analysis of cell proliferation, apoptosis, expression of CCAT2, ERK1/2, Sp1 and relationship between CCAT2 and ERK1/2 and Sp1. CCAT2 expression in SKOV-3/DDP was higher than IOSE80 and SKOV-3 (P < 0.001). ERK1/2 expression in SKOV-3 and SKOV-3/DDP was 0.67±0.09, 1.97±0.40
(t = 14.18, P < 0.001). Sp1 level in SKOV-3 and SKOV-3/DDP was 0.49±0.05, 1.07±0.11 (P = 21.47, P < 0.001). Transfection of CCAT2 reduced cell fluorescence activity of ERK1/2 and Sp1 (P < 0.001). Cell proliferation in CC group and CA
group had no difference at 0 h (P > 0.001) and the inhibition of cell proliferation was found at 24 h (P < 0.001). CC group (5.13±0.51) had lower cell apoptosis rate than CA group (20.52±2.24) (t = 29.96, P < 0.001) but higher ERK1/2 and Sp1
protein level CC group than CA group (P < 0.001). In conclusion, transfection of lncRNA-CCAT2 inhibits SKOV-3/DDP proliferation by targeting ERK1/2-Sp1 signaling pathway, promotes apoptosis and reduces drug resistance.
Collapse
Affiliation(s)
- Jianyun Zhou
- Department of Gynecology, Haian People’s Hospital Affiliated to Nantong University, Nantong, Jiangsu, 226600, China
| | - Xiumei Wang
- Department of Gynecology, Haian People’s Hospital Affiliated to Nantong University, Nantong, Jiangsu, 226600, China
| | - Yun Han
- Department of Gynecology, The Second Affiliated Hospital of Nantong University (Nantong First People’s Hospital), Nantong, Jiangsu, 226006, China
| | - Qiaoxiang Chu
- Department of Gynecology, Haian People’s Hospital Affiliated to Nantong University, Nantong, Jiangsu, 226600, China
| | - Yanli Zheng
- Department of Gynecology, The Second Affiliated Hospital of Nantong University (Nantong First People’s Hospital), Nantong, Jiangsu, 226006, China
| |
Collapse
|
8
|
Ke Y, Chen X, Su Y, Chen C, Lei S, Xia L, Wei D, Zhang H, Dong C, Liu X, Yin F. Low Expression of SLC7A11 Confers Drug Resistance and Worse Survival in Ovarian Cancer via Inhibition of Cell Autophagy as a Competing Endogenous RNA. Front Oncol 2021; 11:744940. [PMID: 34790572 PMCID: PMC8591223 DOI: 10.3389/fonc.2021.744940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 01/17/2023] Open
Abstract
Drug resistance is the main cause of chemotherapy failure in ovarian cancer (OC), and identifying potential druggable targets of autophagy is a novel and promising approach to overcoming drug resistance. In this study, 131 genes associated with autophagy were identified from three autophagy-related databases, and of these, 14 were differentially expressed in 90 drug-resistant OC tissues versus 197 sensitive tissues according to the Cancer Genome Atlas ovarian cancer cohort. Among these 14 genes, SLC7A11 was significantly decreased in two paclitaxel-resistant OC cells (HeyA8-R and SKOV3-R) and in 90 drug-resistant tissues compared with their controls. In vitro overexpression of SLC7A11 significantly increased the sensitivity of HeyA8-R cells to paclitaxel, inhibited colony formation, induced apoptosis, and arrested cell cycle. Further, low SLC7A11 expression was correlated with poor overall survival (OS), progression-free survival (PFS), and post-progression survival (PPS) in 1815 OC patients. Mechanistically, SLC7A11 strongly regulated cell autophagy as a competing endogenous RNA (ceRNA) based on pan-cancer analyses of 32 tumor types. Specifically, as a ceRNA for autophagy genes STX17, RAB33B, and UVRAG, SLC7A11 was strongly and positively co-expressed with these three genes in 20, 12, and 12 different tumors, respectively, in 379 OC tissues and in 90 drug-resistant OC tissues, and the former two were significantly upregulated in SLC7A11-overexpressed HeyA8-R cells. Further, SLC7A11 induced the protein expression of other autophagy genes, such as LC3, Atg16L1, and Atg7, and the expression of the respective proteins was further increased when the cells were treated with paclitaxel. The results strongly suggest that SLC7A11 regulates autophagy via ceRNA interactions with the three abovementioned genes in pan-cancer and in drug-resistant OC. Moreover, low expression of STX17 and UVRAG also significantly predicted low OS, PFS, and PPS. The combination of SLC7A11 with STX17 was more predictive of OS and PFS than either individually, and the combination of SLC7A11 with UVRAG was highly predictive of OS and PPS. The above results indicated that decreased SLC7A11 resulted in drug resistance and effected low rates of survival in OC patients, probably via ceRNA interactions with autophagy genes, and thus the gene could serve as a therapeutic target and potential biomarker in OC.
Collapse
Affiliation(s)
- Yao Ke
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Xiaoying Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Yuting Su
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Cuilan Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Shunmei Lei
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Lianping Xia
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Dan Wei
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Han Zhang
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Caihua Dong
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| |
Collapse
|
9
|
Geraniin inhibits proliferation and induces apoptosis through inhibition of phosphatidylinositol 3-kinase/Akt pathway in human colorectal cancer in vitro and in vivo. Anticancer Drugs 2021; 31:575-582. [PMID: 32427739 DOI: 10.1097/cad.0000000000000929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Geraniin, a polyphenolic component isolated from Phyllanthus amarus, has been reported to possess diverse biological activities, including antitumor, antiinflammatory, antihyperglycemic, antihypertensive, and antioxidant. However, the role and underlying mechanisms of geraniin in colorectal cancer still remain unclear. In the present study, we found that geraniin notably inhibited cell proliferation and clonogenic formation of colorectal cancer cell SW480 and HT-29 in a dose-dependent manner by Cell Counting Kit 8, EdU, and colony formation assays, respectively. Additionally, geraniin remarkably induced apoptosis of SW480 and HT-29 cells in a dose-dependent way by Hoechst 33342 staining, flow cytometric analysis, and TdT-mediated dUTP nick-end labeling assays and increased the expressions of Bax, caspase-3, and caspase-9, while decreased the level of Bcl-2. Besides, wound healing, transwell migration, and invasion assays demonstrated that geraniin obviously inhibited the migration and invasion of SW480 and HT-29 cells. Moreover, it also inhibited the levels of phospho (p)-phosphatidylinositol 3-kinase and p-Akt. Furthermore, in-vivo animal study revealed that geraniin had the significant inhibitory effects on tumor growth and promoted cancer cell apoptosis remarkably, which further confirmed the antitumor effect of geraniin. Taken together, the present study exhibited the positive role of geraniin in inhibiting proliferation and inducing apoptosis through suppression of phosphatidylinositol 3-kinase/Akt pathway in colorectal cancer cells in vitro and in vivo, which might provide new insights in searching for new drug candidates of anticolorectal cancer.
Collapse
|
10
|
Wang Y, Wang X, Han L, Hu D. LncRNA MALAT1 Regulates the Progression and Cisplatin Resistance of Ovarian Cancer Cells via Modulating miR-1271-5p/E2F5 Axis. Cancer Manag Res 2020; 12:9999-10010. [PMID: 33116856 PMCID: PMC7567574 DOI: 10.2147/cmar.s261979] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) were reported to be related to the development of ovarian cancer (OC). In this study, the functional mechanisms of lncRNA metastasis associated with lung adenocarcinoma transcript 1 (MALAT1) and microRNA-1271-5p (miR-1271-5p) were explored in OC. Methods The level of MALAT1, miR-1271-5p, or E2F transcription factor 5 (E2F5) was detected by qRT-PCR. MTT assay, flow cytometry analysis and transwell migration and invasion assays were performed to determine cell proliferation, apoptosis, migration and invasion, respectively. E2F5 protein expression was detected by Western blot. The interaction between miR-1271-5p and MALAT1 or E2F transcription factor 5 (E2F5) was confirmed by the dual-luciferase reporter assay. Results MALAT1 and E2F5 level were increased, while miR-1271-5p level was decreased in cisplatin (DDP)-resistant OC tissues and cells. MALAT1 knockdown or miR-1271-5p upregulation decreased IC50 of cisplatin, and inhibited cell proliferation, migration, invasion, and facilitated cell apoptosis in DDP-resistant OC cells. Moreover, MALAT1 sponged miR-1271-5p to upregulate E2F5 expression. Besides, MALAT1 knockdown decreased DDP resistance, inhibited cell proliferation, migration, invasion, and promoted cell apoptosis by sponging miR-1271-5p to downregulate E2F5 expression in DDP-resistant OC cell. Conclusion We demonstrated that MALAT1 mediated DDP-resistant OC development through miR-1271-5p/E2F5 axis, providing the theoretical basis for OC therapy.
Collapse
Affiliation(s)
- Yuqin Wang
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang 222000, Peoples' Republic of China
| | - Xiuying Wang
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang 222000, Peoples' Republic of China
| | - Liwei Han
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang 222000, Peoples' Republic of China
| | - Dongdong Hu
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang 222000, Peoples' Republic of China
| |
Collapse
|
11
|
Ngoi NYL, Heong V, Tang JI, Choo BA, Kumarakulasinghe NB, Lim D, Low M, Lim SE, Lim YW, Leong YH, Tseng M, Tong PSY, Ilancheran A, Low JJH, Ng J, Thian YL, Koh V, Tan DSP. Phase 1 Study of Low-Dose Fractionated Whole Abdominal Radiation Therapy in Combination With Weekly Paclitaxel for Platinum-Resistant Ovarian Cancer (GCGS-01). Int J Radiat Oncol Biol Phys 2020; 109:701-711. [PMID: 33045316 DOI: 10.1016/j.ijrobp.2020.09.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Low-dose fractionated whole abdominal radiation therapy (LDFWART) has synergistic activity with paclitaxel in preclinical models. The aim of this phase 1 trial was to determine the recommended phase 2 dose and preliminary activity of weekly paclitaxel (wP) concurrent with LDFWART in patients with platinum-resistant ovarian cancer (PROC). METHODS AND MATERIALS Patients were enrolled at de-escalating dose levels of wP (part A), starting at 80 mg/m2, concurrent with fixed-dose LDFWART delivered in 60 cGy fractions twice-daily, 2 days per week, for 6 continuous weeks. After completing the 6-week course of wP + LDFWART, patients received wP until disease progression. Dose-limiting toxicity was evaluated during the first 3 weeks of wP + LDFWART. At wP (80 mg/m2) + LDFWART, no dose-limiting toxicities were observed; this was the established maximum tolerated dose. The trial was expanded (part B) with 7 additional patients with platinum-resistant, high-grade serous ovarian cancer to confirm toxicity and activity. RESULTS A total of 10 heavily pretreated patients were recruited (3 patients to part A, 7 patients to part B). They had received a median of 5 prior lines of therapy, and 70% of patients had received prior wP; 60% of patients completed 6 weeks of wP + LDFWART. Common related grade ≥3 adverse events were neutropenia (60%) and anemia (30%). Median progression-free survival was 3.2 months, and overall survival was 13.5 months. Of patients evaluable for response, 33% (3 of 9) achieved confirmed biochemical response (CA125 decrease >50% from baseline), 11% (1) achieved a partial response, and 5 patients had stable disease, giving a disease control rate of 66.7% (6 of 9). Four patients had durable disease control of ≥12 weeks, completing 12 to 21 weeks of wP. CONCLUSIONS The recommended phase 2 dose of wP + LDFWART for 6 weeks is 80 mg/m2. Encouraging efficacy in heavily pretreated PROC patients was observed, suggesting that further development of this therapeutic strategy in PROC should be considered.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Valerie Heong
- Department of Medical Oncology, Tan Tock Seng Hospital, Singapore
| | - Johann I Tang
- Department of Radiation Oncology, National University Cancer Institute, Singapore
| | - Bok Ai Choo
- Department of Radiation Oncology, National University Cancer Institute, Singapore
| | | | - Diana Lim
- Department of Pathology, National University Health System, Singapore
| | - Mellisa Low
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Siew Eng Lim
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Yi Wan Lim
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Yiat Horng Leong
- Department of Radiation Oncology, National University Cancer Institute, Singapore
| | - Michelle Tseng
- Department of Radiation Oncology, National University Cancer Institute, Singapore
| | - Pearl S Y Tong
- Division of Gynaecologic-Oncology, Department of Obstetrics and Gynaecology, National University Health System, Singapore
| | - Arunachalam Ilancheran
- Division of Gynaecologic-Oncology, Department of Obstetrics and Gynaecology, National University Health System, Singapore
| | - Jeffrey J H Low
- Division of Gynaecologic-Oncology, Department of Obstetrics and Gynaecology, National University Health System, Singapore
| | - Joseph Ng
- Division of Gynaecologic-Oncology, Department of Obstetrics and Gynaecology, National University Health System, Singapore
| | - Yee Liang Thian
- Department of Diagnostic Imaging, National University Health System, Singapore
| | - Vicky Koh
- Department of Radiation Oncology, National University Cancer Institute, Singapore
| | - David S P Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore; Cancer Science Institute, National University of Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
12
|
Xue BZ, Xiang W, Zhang Q, Wang YH, Wang HF, Yi DY, Xiong NX, Jiang XB, Zhao HY, Fu P. Roles of long non-coding RNAs in the hallmarks of glioma. Oncol Lett 2020; 20:83. [PMID: 32863916 PMCID: PMC7436925 DOI: 10.3892/ol.2020.11944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Glioma is one of the most common types of tumor of the central nervous system. Due to the aggressiveness and invasiveness of high-level gliomas, the survival time of patients with these tumors is short, at ~15 months, even after combined treatment with surgery, radiotherapy and/or chemotherapy. Recently, a number of studies have demonstrated that long non-coding RNA (lncRNAs) serve crucial roles in the multistep development of human gliomas. Gliomas acquire numerous biological abilities during multistep development that collectively constitute the hallmarks of glioma. Thus, in this review, the roles of lncRNAs associated with glioma hallmarks and the current and future prospects for their development are summarized.
Collapse
Affiliation(s)
- Bing-Zhou Xue
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qing Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yi-Hao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hao-Fei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dong-Ye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Nan-Xiang Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
13
|
Haider T, Pandey V, Banjare N, Gupta PN, Soni V. Drug resistance in cancer: mechanisms and tackling strategies. Pharmacol Rep 2020; 72:1125-1151. [PMID: 32700248 DOI: 10.1007/s43440-020-00138-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Drug resistance developed towards conventional therapy is one of the important reasons for chemotherapy failure in cancer. The various underlying mechanism for drug resistance development in tumor includes tumor heterogeneity, some cellular levels changes, genetic factors, and others novel mechanisms which have been highlighted in the past few years. In the present scenario, researchers have to focus on these novel mechanisms and their tackling strategies. The small molecules, peptides, and nanotherapeutics have emerged to overcome the drug resistance in cancer. The drug delivery systems with targeting moiety enhance the site-specificity, receptor-mediated endocytosis, and increase the drug concentration inside the cells, thus minimizing drug resistance and improve their therapeutic efficacy. These therapeutic approaches work by modulating the different pathways responsible for drug resistance. This review focuses on the different mechanisms of drug resistance and the recent advancements in therapeutic approaches to improve the sensitivity and effectiveness of chemotherapeutics.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, Madhya Pradesh, India
| | - Vikas Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, Madhya Pradesh, India
| | - Nagma Banjare
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, Madhya Pradesh, India.,Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, J&K, India
| | - Prem N Gupta
- Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, J&K, India.
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, Madhya Pradesh, India.
| |
Collapse
|
14
|
Chinese Herbal Formulas Miao-Yi-Ai-Tang Inhibits the Proliferation and Migration of Lung Cancer Cells through Targeting β-Catenin/AXIN and Presents Synergistic Effect with Cisplatin Suppressing Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2761850. [PMID: 32051824 PMCID: PMC6995313 DOI: 10.1155/2020/2761850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 02/08/2023]
Abstract
Objective Lung cancer is one of the major causes of cancer deaths worldwide, and the five-year survival still remains low despite the improvement of screening, prevention, and treatment methods. Chinese herbal medicines have been widely used for tumor prevention and treatment. Miao-Yi-Ai-Tang (Miao) is a novel herbal formulation and shows a potential anticancer effect. Materials and Methods. Human Small Cell Lung Cancer Cell was used for study in vitro. After treatments by Miao and Cisplatin (DDP), the invasion, migration, proliferation, and apoptosis of cells were detected by transwell, wound healing, CCK-8, and flow cytometry, respectively. The expression of β-catenin, AXIN, and c-myc was detected by qRT-PCR and immunohistochemistry staining. Western blotting was applied for measuring the protein expression of β-catenin, AXIN, and c-myc was detected by qRT-PCR and immunohistochemistry staining. Western blotting was applied for measuring the protein expression of Results We found that Miao could inhibit invasion, migration, and proliferation and promote apoptosis of human lung cancer cells. Meanwhile, Miao and DDP presented synergy regulating the proliferation and apoptosis of lung cancer cells. The percentage of lung cancer cells in S and G2 stages was increased markedly by Miao. Besides, the expression of c-myc, AXIN, and β-catenin, AXIN, and c-myc was detected by qRT-PCR and immunohistochemistry staining. Western blotting was applied for measuring the protein expression of Conclusions Chinese herbal formulas Miao could suppress lung cancer through targeting the β-catenin/AXIN signaling pathway. Therefore, our findings may provide a novel strategy for the prevention and treatment of lung cancer.β-catenin, AXIN, and c-myc was detected by qRT-PCR and immunohistochemistry staining. Western blotting was applied for measuring the protein expression of
Collapse
|
15
|
Zhao MD, Li JQ, Chen FY, Dong W, Wen LJ, Fei WD, Zhang X, Yang PL, Zhang XM, Zheng CH. Co-Delivery of Curcumin and Paclitaxel by "Core-Shell" Targeting Amphiphilic Copolymer to Reverse Resistance in the Treatment of Ovarian Cancer. Int J Nanomedicine 2019; 14:9453-9467. [PMID: 31819443 PMCID: PMC6898996 DOI: 10.2147/ijn.s224579] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022] Open
Abstract
Background Ovarian cancer is a common malignancy in the female reproductive system with a high mortality rate. The most important reason is multidrug resistance (MDR) of cancer chemotherapy. To reduce side effects, reverse resistance and improve efficacy for the treatment of ovarian cancer, a “core-shell” polymeric nanoparticle-mediated curcumin and paclitaxel co-delivery platform was designed. Methods Nuclear magnetic resonance confirmed the successful grafting of polyethylenimine (PEI) and stearic acid (SA) (PEI-SA), which is designed as a mother core for transport carrier. Then, PEI-SA was modified with hyaluronic acid (HA) and physicochemical properties were examined. To understand the regulatory mechanism of resistance and measure the anti-tumor efficacy of the treatments, cytotoxicity assay, cellular uptake, P-glycoprotein (P-gp) expression and migration experiment of ovarian cancer cells were performed. In addition, adverse reactions of nanoformulation to the reproductive system were examined. Results HA-modified drug-loaded PEI-SA had a narrow size of about 189 nm in diameters, and the particle size was suitable for endocytosis. The nanocarrier could target specifically to CD44 receptor on the ovarian cancer cell membrane. Co-delivery of curcumin and paclitaxel by the nanocarriers exerts synergistic anti-ovarian cancer effects on chemosensitive human ovarian cancer cells (SKOV3) and multi-drug resistant variant (SKOV3-TR30) in vitro, and it also shows a good anti-tumor effect in ovarian tumor-bearing nude mice. The mechanism of reversing drug resistance may be that the nanoparticles inhibit the efflux of P-gp, inhibit the migration of tumor cells, and curcumin synergistically reverses the resistance of PTX to increase antitumor activity. It is worth noting that the treatment did not cause significant toxicity to the uterus and ovaries with the observation of macroscopic and microscopic. Conclusion This special structure of targeting nanoparticles co-delivery with the curcumin and paclitaxel can increase the anti-tumor efficacy without increasing the adverse reactions as a promising strategy for therapy ovarian cancer.
Collapse
Affiliation(s)
- Meng-Dan Zhao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, People's Republic of China
| | - Jun-Qin Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, People's Republic of China
| | - Feng-Ying Chen
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, People's Republic of China
| | - Wei Dong
- Department of Neurology, The Affiliated Yangming Hospital of Ningbo University, Yuyao People's Hospital of Zhejiang Province, Yuyao 315400, Zhejiang, People's Republic of China
| | - Li-Juan Wen
- Institute of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Wei-Dong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, People's Republic of China
| | - Xiao Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, People's Republic of China
| | - Pei-Lei Yang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, People's Republic of China
| | - Xin-Mei Zhang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, People's Republic of China
| | - Cai-Hong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, People's Republic of China
| |
Collapse
|
16
|
Zhang Q, Li H, Mao Y, Wang X, Zhang X, Yu X, Tian J, Lei Z, Li C, Han Q, Suo L, Gao Y, Guo H, Irwin DM, Niu G, Tan H. Apoptotic SKOV3 cells stimulate M0 macrophages to differentiate into M2 macrophages and promote the proliferation and migration of ovarian cancer cells by activating the ERK signaling pathway. Int J Mol Med 2019; 45:10-22. [PMID: 31746376 PMCID: PMC6889918 DOI: 10.3892/ijmm.2019.4408] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/27/2019] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer has a high rate of recurrence, with M2 macrophages having been found to be involved in its progression and metastasis. To examine the relationship between macrophages and ovarian cancer in the present study, M0 macrophages were stimulated with apoptotic SKOV3 cells and it was found that these macrophages promoted tumor proliferation and migration. Subsequently, the mRNAs and proteins expressed at high levels in these M2 macrophages were examined by RNA-Seq and quantitative proteomics, respectively, which revealed that M0 macrophages stimulated by apoptotic SKOV3 cells also expressed M2 markers, including CD206, interleukin-10, C-C motif chemokine ligand 22, aminopeptidase-N, disabled homolog 2, matrix metalloproteinase 1 and 5′-nucleotidase. The abundance of phosphorylated Erk1/2 in these macrophages was increased. The results indicate that apoptotic SKOV3 cells stimulate M0 macrophages to differentiate into M2 macrophages by activating the ERK pathway. These results suggest possible treatments for patients with ovarian cancer who undergo chemotherapy; inhibiting M2 macrophage differentiation during chemotherapy may reduce the rate of tumor recurrence.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Hui Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Yiqing Mao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xuehui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xiuyan Yu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Junrui Tian
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Zhen Lei
- Beijing N&N Genetech Company, Beijing 100082, P.R. China
| | - Chang Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Qing Han
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Liping Suo
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Yan Gao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gang Niu
- Beijing N&N Genetech Company, Beijing 100082, P.R. China
| | - Huanran Tan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| |
Collapse
|
17
|
Yang F, Mu X, Bian C, Zhang H, Yi T, Zhao X, Lin X. Association of excision repair cross-complimentary group 1 gene polymorphisms with breast and ovarian cancer susceptibility. J Cell Biochem 2019; 120:15635-15647. [PMID: 31081240 DOI: 10.1002/jcb.28830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
The role of excision repair cross-complimentary group 1 (ERCC1) gene polymorphisms in breast and ovarian cancer development has long been controversial and existing data were inconsistent. Here, we conducted a comprehensive meta-analysis to better clarify the association. Case-control studies published from December 2008 to November 2018 were assessed. The statistical analyses of the pooled odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were calculated. Fifteen articles with 24 case-control studies and 3 ERCC1 polymorphisms were enrolled. A total of 20 923 participants including 9896 cases and 11 027 controls were analyzed. The results showed that C to T variation in the ERCC1 rs11615 (C/T) polymorphisms was correlated with breast cancer susceptibility (T vs C: OR = 1.19, 95% CI = 1.02-1.38; TT + CT vs CC: OR = 1.24, 95% CI = 1.12-1.36). ERCC1 rs3212986 (C/A) polymorphisms posed an increased risk for breast and ovarian cancer as whole (A vs C: OR = 1.12, 95% CI = 1.01-1.25; AA + CA vs CC: OR = 1.11, 95% CI = 1.02-1.22), and presented especially higher risk for ovarian cancer (A vs C: OR = 1.31, 95% CI = 1.05-1.63; AA vs CA + CC: OR = 1.66, 95% CI = 1.12-2.47; AA vs CC: OR = 1.72, 95% CI = 1.12-2.64). Meanwhile, neither overall group analyses nor stratified analyses displayed any association of ERCC1 rs2298881 (A/C) polymorphisms in breast and ovarian cancer susceptibility. This meta-analysis suggested that ERCC1 rs11615 (C/T) polymorphisms were associated with breast cancer susceptibility and rs3212986 (C/A) polymorphisms were especially correlated with ovarian cancer risk. More case-control studies with well-adjusted data and diverse populations are essential for validation of our conclusion.
Collapse
Affiliation(s)
- Fan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| | - Xiyan Mu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| | - Ce Bian
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| | - Huan Zhang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P R China
| | - Tao Yi
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| | - Xia Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| | - Xiaojuan Lin
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| |
Collapse
|
18
|
Zhao L, Liu S, Liang D, Jiang T, Yan X, Zhao S, Liu Y, Zhao W, Yu H. Resensitization of cisplatin resistance ovarian cancer cells to cisplatin through pretreatment with low-dose fraction radiation. Cancer Med 2019; 8:2442-2448. [PMID: 30941896 PMCID: PMC6536942 DOI: 10.1002/cam4.2116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Cisplatin is the first‐line chemotherapy for ovarian cancer. However, cisplatin resistance is severely affecting the treatment efficacy. FOXO3a has been reported to be involved in reversing chemotherapy resistance. However, whether low‐dose fraction radiation therapy (LDFRT) can reverse cisplatin resistance remains unclear. This study aimed to explore the effect of LDFRT on cisplatin resistance and its relation with FOXO3a expression in vitro. Methods The toxicity of cisplatin on SKOV3/DDP cells was evaluated by CCK8 assay and cell apoptosis was measured by Annexin V‐FITC staining as well as Hoechst33342 staining. The expression of FOXO3a and other relative proteins was measured by western blot. Results Our study found that LDFRT enhanced cisplatin‐induced apoptosis of SKOV3/DDP cells and promoted the expression of FOXO3a and pro‐apoptotic protein PUMA. In addition, overexpression of FOXO3a promoted PUMA activity and toxicity of cisplatin on SKOV3/DDP cells. Conclusion LDFRT reverses cisplatin resistance of SKOV3/DDP cells possibly by upregulating the expression of FOXO3a and its downstream target PUMA, suggesting that LDFRT might be a potent chemosensitizer for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Shihai Liu
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Donghai Liang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Tao Jiang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaoyan Yan
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Shengnan Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yuanwei Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Wei Zhao
- Department of Oncology, Traditional Chinese medical hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Hongsheng Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
19
|
Dai W, Tian C, Jin S. Effect of lncRNA ANRIL silencing on anoikis and cell cycle in human glioma via microRNA-203a. Onco Targets Ther 2018; 11:5103-5109. [PMID: 30197521 PMCID: PMC6112811 DOI: 10.2147/ott.s169809] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glioma is a deadly nervous system tumor with a poor prognosis. Although there have been many efforts to overcome glioma, the molecular mechanism of its pathogenesis remains unclear. METHODS We used human glioma U251 cells silenced for the oncogenic lncRNA ANRIL or overexpressing the anti-oncogene miR-203a to examine the role of lncRNA ANRIL silencing on anoikis and cell cycle arrest by flow cytometry. Meanwhile, the activity of caspase-3/8/9 was measured by fluorometric assay, the expression of tumor-related genes and activity of AKT signaling pathway was measured by Western blotting, real-time PCR, and dual luciferase reporter gene assay. RESULTS lncRNA ANRIL was positively correlated with glioma grade and negatively correlated with miR-203a. lncRNA ANRIL silencing could induce anoikis and cell cycle arrest in G0/G1 phase, while regulating the activity of caspase-3/8/9 and the AKT signaling pathway, and the expression of tumor-related genes in the U251 cell line. miR-203a mimics could partially reverse these functions. CONCLUSION We consider that lncRNA ANRIL is a potential therapeutic and diagnostic target for glioma, and miR-203a plays an important role in the biological function of lncRNA ANRIL in glioma.
Collapse
Affiliation(s)
- Weiying Dai
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin 300350, People's Republic of China,
| | - Chao Tian
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin 300350, People's Republic of China,
| | - Song Jin
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin 300350, People's Republic of China,
| |
Collapse
|
20
|
Zhang C, Wang M, Shi C, Shi F, Pei C. Long non-coding RNA Linc00312 modulates the sensitivity of ovarian cancer to cisplatin via the Bcl-2/Caspase-3 signaling pathway. Biosci Trends 2018; 12:309-316. [PMID: 29952351 DOI: 10.5582/bst.2018.01052] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chemotherapy is one of the main treatments for ovarian cancer (OC). Cisplatin combined with paclitaxel is a commonly used chemotherapy regimen. However, effective cancer therapy is hindered by a patient's resistance to cisplatin. The mechanism that potentially leads to that resistance is unclear. The current study examined the mechanism by which Linc00312 is involved in resistance to cisplatin in OC. Quantitative real-time PCR (RT-qPCR) was used to test for expression of Linc00312 in freshly frozen tissue samples of OC and in SKOV3 and SKOV3/DDP cells. In situ hybridization was performed to examine the distribution of Linc00312 expression in paraffin-embedded histological sections that were sensitive or resistant to cisplatin. The cell counting kit-8 assay was used to detect cell viability. Flow cytometry was used to measure cell apoptosis. RT-qPCR was performed to confirm changes in expression of MDR1, MRP1, Bcl-2, Bax, Caspase-3, and Caspase-9 mRNA. Levels of MDR1, Bcl-2, Bax, Caspase-3, and Caspase-9 protein were detected with Western blotting. Experiments indicated that the expression of Linc00312 decreased significantly in SKOV3/DDP cells compared to that in SKOV3 cells. Upregulation of Linc00312 can considerably increase the sensitivity of SKOV3/DDP cells to cisplatin, while down-regulation of Linc00312 has the exact opposite effect in SKOV3 cells. Linc00312 enhanced the sensitivity of SKOV3/DDP cells to cisplatin by promoting cell apoptosis via the Bcl-2/Caspase-3 signaling pathway. These findings suggest that Linc00312 may be a promising clinical strategy for the treatment of drug-resistant OC.
Collapse
Affiliation(s)
- Chuanqi Zhang
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University
| | - Min Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University
| | - Cong Shi
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University
| | - Fanli Shi
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University
| | - Cheng Pei
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University
| |
Collapse
|