1
|
Shi A, Liu L, Li S, Qi B. Natural products targeting the MAPK-signaling pathway in cancer: overview. J Cancer Res Clin Oncol 2024; 150:6. [PMID: 38193944 PMCID: PMC10776710 DOI: 10.1007/s00432-023-05572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE This article summarizes natural products that target the MAPK-signaling pathway in cancer therapy. The classification, chemical structures, and anti-cancer mechanisms of these natural products are elucidated, and comprehensive information is provided on their potential use in cancer therapy. METHODS Using the PubMed database, we searched for keywords, including "tumor", "cancer", "natural product", "phytochemistry", "plant chemical components", and "MAPK-signaling pathway". We also screened for compounds with well-defined structures that targeting the MAPK-signaling pathway and have anti-cancer effects. We used Kingdraw software and Adobe Photoshop software to draw the chemical compound structural diagrams. RESULTS A total of 131 papers were searched, from which 85 compounds with well-defined structures were selected. These compounds have clear mechanisms for targeting cancer treatment and are mainly related to the MAPK-signaling pathway. Examples include eupatilin, carvacrol, oridonin, sophoridine, diosgenin, and juglone. These chemical components are classified as flavonoids, phenols, terpenoids, alkaloids, steroidal saponins, and quinones. CONCLUSIONS Certain MAPK pathway inhibitors have been used for clinical treatment. However, the clinical feedback has not been promising because of genomic instability, drug resistance, and side effects. Natural products have few side effects, good medicinal efficacy, a wide range of sources, individual heterogeneity of biological activity, and are capable of treating disease from multiple targets. These characteristics make natural products promising drugs for cancer treatment.
Collapse
Affiliation(s)
- Aiwen Shi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Li Liu
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| | - Shuang Li
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Bin Qi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
2
|
Al Amin M, Emran TB, Khan J, Zehravi M, Sharma I, Patil A, Gupta JK, Jeslin D, Krishnan K, Das R, Nainu F, Ahmad I, Wilairatana P. Research Progress of Indole Alkaloids: Targeting MAP Kinase Signaling Pathways in Cancer Treatment. Cancers (Basel) 2023; 15:5311. [PMID: 38001572 PMCID: PMC10670446 DOI: 10.3390/cancers15225311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is the leading cause of morbidity and mortality in people throughout the world. There are many signaling pathways associated with cancerous diseases, from which the Mitogen-activated protein kinase (MAPK) pathway performs a significant role in this regard. Apoptosis and proliferation are correlated with MAPK signaling pathways. Plenty of experimental investigations were carried out to assess the role of indole alkaloids in MAPK-mediated cancerous diseases. Previous reports established that indole alkaloids, such as vincristine and evodiamine are useful small molecules in cancer treatment via the MAPK signaling system. Indole alkaloids have the anticancer potential through different pathways. Vincristine and evodiamine are naturally occurring indole alkaloids that have strong anticancer properties. Additionally, much research is ongoing or completed with molecules belonging to this group. The current review aims to evaluate how indole alkaloids affect the MAPK signaling pathway in cancer treatment. Additionally, we focused on the advancement in the role of indole alkaloids, with the intention of modifying the MAPK signaling pathways to investigate potential new anticancer small molecules. Furthermore, clinical trials with indole alkaloids in cancer treatment are also highlighted.
Collapse
Affiliation(s)
- Md. Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia;
| | - Indu Sharma
- Department of Physics, Career Point University, Hamirpur 176041, Himachal Pradesh, India
| | - Anasuya Patil
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru 560010, Karnataka, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India;
| | - D. Jeslin
- Department of Pharmaceutics, Sree Balaji Medical College and Hospital Campus, Bharath Institute of Higher Education and Research, Chromepet, Chennai 600044, Tamil Nadu, India
| | - Karthickeyan Krishnan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai 600117, Tamil Nadu, India;
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia;
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61411, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
3
|
Anjum J, Mitra S, Das R, Alam R, Mojumder A, Emran TB, Islam F, Rauf A, Hossain MJ, Aljohani ASM, Abdulmonem WA, Alsharif KF, Alzahrani KJ, Khan H. A renewed concept on the MAPK signaling pathway in cancers: Polyphenols as a choice of therapeutics. Pharmacol Res 2022; 184:106398. [PMID: 35988867 DOI: 10.1016/j.phrs.2022.106398] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 01/15/2023]
Abstract
Abnormalities in the mitogen-activated protein kinase (MAPK) signaling pathway are a key contributor to the carcinogenesis process and have therefore been implicated in several aspects of tumorigenesis, including cell differentiation, proliferation, invasion, angiogenesis, apoptosis, and metastasis. This pathway offers multiple molecular targets that may be modulated for anticancer activity and is of great interest for several malignancies. Polyphenols from various dietary sources have been observed to interfere with certain aspects of this pathway and consequently play a substantial role in the development and progression of cancer by suppressing cell growth, inactivating carcinogens, blocking angiogenesis, causing cell death, and changing immunity. A good number of polyphenolic compounds have shown promising outcomes in numerous pieces of research and are currently being investigated clinically to treat cancer patients. The current study concentrates on the role of the MAPK pathway in the development and metastasis of cancer, with particular emphasis on dietary polyphenolic compounds that influence the different MAPK sub-pathways to obtain an anticancer effect. This study aims to convey an overview of the various aspects of the MAPK pathway in cancer development and invasion, as well as a review of the advances achieved in the development of polyphenols to modulate the MAPK signaling pathway for better treatment of cancer.
Collapse
Affiliation(s)
- Juhaer Anjum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Roksana Alam
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anik Mojumder
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, KPK, Pakistan
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
4
|
Bioactive Phenolic Compounds from Peperomia obtusifolia. Molecules 2022; 27:molecules27144363. [PMID: 35889234 PMCID: PMC9315869 DOI: 10.3390/molecules27144363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Peperomia obtusifolia (L.) A. Dietr., native to Middle America, is an ornamental plant also traditionally used for its mild antimicrobial properties. Chemical investigation on the leaves of P. obtusifolia resulted in the isolation of two previously undescribed compounds, named peperomic ester (1) and peperoside (2), together with five known compounds, viz. N-[2-(3,4-dihydroxyphenyl)ethyl]-3,4-dihydroxybenzamide (3), becatamide (4), peperobtusin A (5), peperomin B (6), and arabinothalictoside (7). The structures of these compounds were elucidated by 1D and 2D NMR techniques and HREIMS analyses. Compounds 1–7 were evaluated for their anthelmintic (against Caenorhabditis elegans), antifungal (against Botrytis cinerea, Septoria tritici and Phytophthora infestans), antibacterial (against Bacillus subtilis and Aliivibrio fischeri), and antiproliferative (against PC-3 and HT-29 human cancer cell lines) activities. The known peperobtusin A (5) was the most active compound against the PC-3 cancer cell line with IC50 values of 25.6 µM and 36.0 µM in MTT and CV assays, respectively. This compound also induced 90% inhibition of bacterial growth of the Gram-positive B. subtilis at a concentration of 100 µM. In addition, compound 3 showed anti-oomycotic activity against P. infestans with an inhibition value of 56% by using a concentration of 125 µM. However, no anthelmintic activity was observed.
Collapse
|
5
|
Kumar A, Kaur S, Dhiman S, Singh PP, Bhatia G, Thakur S, Tuli HS, Sharma U, Kumar S, Almutary AG, Alnuqaydan AM, Hussain A, Haque S, Dhama K, Kaur S. Targeting Akt/NF-κB/p53 Pathway and Apoptosis Inducing Potential of 1,2-Benzenedicarboxylic Acid, Bis (2-Methyl Propyl) Ester Isolated from Onosma bracteata Wall. against Human Osteosarcoma (MG-63) Cells. Molecules 2022; 27:molecules27113478. [PMID: 35684419 PMCID: PMC9182111 DOI: 10.3390/molecules27113478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Onosma bracteata Wall. is an important medicinal and immunity-enhancing herbs. This plant is commonly used in the preparation of traditional Ayurvedic drugs to treat numerous diseases. Inspired by the medicinal properties of this plant, the present study aimed to investigate the antiproliferative potential and the primary molecular mechanisms of the apoptotic induction against human osteosarcoma (MG-63) cells. Among all the fractions isolated from O. bracteata, ethyl acetate fraction (Obea) showed good antioxidant activity in superoxide radical scavenging assay and lipid peroxidation assay with an EC50 value of 95.12 and 80.67 µg/mL, respectively. Silica gel column chromatography of ethyl acetate (Obea) fraction of O. bracteata yielded a pure compound, which was characterized by NMR, FTIR, and HR-MS analysis and was identified as 1,2-benzene dicarboxylic acid, bis (2-methyl propyl) ester (BDCe fraction). BDCe fraction was evaluated for the antiproliferative potential against human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung carcinoma A549 cell lines by MTT assay and exhibited GI50 values of 37.53 μM, 56.05 μM, and 47.12 μM, respectively. In Mg-63 cells, the BDCe fraction increased the level of ROS and simultaneously decreased the mitochondria membrane potential (MMP) potential by arresting cells at the G0/G1 phase, suggesting the initiation of apoptosis. Western blotting analysis revealed the upregulation of p53, caspase3, and caspase9 while the expressions of p-NF-κB, p-Akt and Bcl-xl were decreased. RT-qPCR studies also showed upregulation in the expression of p53 and caspase3 and downregulation in the expression of CDK2, Bcl-2 and Cyclin E genes. Molecular docking analysis displayed the interaction between BDCe fraction with p53 (−151.13 kcal/mol) and CDK1 (−133.96 kcal/mol). The results of the present work suggest that the BDCe fraction has chemopreventive properties against osteosarcoma (MG-63) cells through the induction of cell cycle arrest and apoptosis via Akt/NF-κB/p53 pathways. This study contributes to the understanding of the utilization of BDCe fraction in osteosarcoma treatment.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (A.K.); (S.K.)
| | - Sandeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (A.K.); (S.K.)
| | - Sukhvinder Dhiman
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India; (S.D.); (S.K.)
| | - Prithvi Pal Singh
- Chemical Technology Division, CSIR-IHBT, Palampur 176061, India; (P.P.S.); (U.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gaurav Bhatia
- Department of Biochemistry, Pt. Jawaharlal Nehru Government Medical College and Hospital Chamba, Chamba 176310, India;
| | - Sharad Thakur
- Biotechnology Division, COVID-19 Project, CSIR-IHBT, Palampur 176061, India;
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur 176061, India; (P.P.S.); (U.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subodh Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India; (S.D.); (S.K.)
| | - Abdulmajeed G. Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52266, Saudi Arabia;
- Correspondence: (A.G.A.); or (S.K.)
| | - Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52266, Saudi Arabia;
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, Dubai 345050, United Arab Emirates;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059 Nilüfer, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India;
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (A.K.); (S.K.)
- Correspondence: (A.G.A.); or (S.K.)
| |
Collapse
|
6
|
Wu MD, Zhang YY, Yi SY, Sun BB, Lan J, Jiang HM, Hao GP. Acetylshikonin induces autophagy-dependent apoptosis through the key LKB1-AMPK and PI3K/Akt-regulated mTOR signalling pathways in HL-60 cells. J Cell Mol Med 2022; 26:1606-1620. [PMID: 35106915 PMCID: PMC8899184 DOI: 10.1111/jcmm.17202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
Acetylshikonin (ASK) is a natural naphthoquinone derivative of traditional Chinese medicine Lithospermum erythrorhyzon. It has been reported that ASK has bactericidal, anti‐inflammatory and antitumour effects. However, whether ASK induces apoptosis and autophagy in acute myeloid leukaemia (AML) cells and the underlying mechanism are still unclear. Here, we explored the roles of apoptosis and autophagy in ASK‐induced cell death and the potential molecular mechanisms in human AML HL‐60 cells. The results demonstrated that ASK remarkably inhibited the cell proliferation, viability and induced apoptosis in HL‐60 cells through the mitochondrial pathway, and ASK promoted cell cycle arrest in the S‐phase. In addition, the increased formation of autophagosomes, the turnover from light chain 3B (LC3B) I to LC3B II and decrease of P62 suggested the induction of autophagy by ASK. Furthermore, ASK significantly decreased PI3K, phospho‐Akt and p‐p70S6K expression, while enhanced phospho‐AMP‐activated protein kinase (AMPK) and phospho‐liver kinase B1(LKB1) expression. The suppression of ASK‐induced the conversion from LC3B I to LC3B II caused by the application of inhibitors of AMPK (compound C) demonstrated that ASK‐induced autophagy depends on the LKB1/AMPK pathway. These data suggested that the autophagy induced by ASK were dependent on the activation of LKB1/AMPK signalling and suppression of PI3K/Akt/mTOR pathways. The cleavage of the apoptosis‐related markers caspase‐3 and caspase‐9 and the activity of caspase‐3 induced by ASK were markedly reduced by inhibitor of AMPK (compound C), an autophagy inhibitor 3‐methyladenine (3‐MA) and another autophagy inhibitor chloroquine (CQ). Taken together, our data reveal that ASK‐induced HL‐60 cell apoptosis is dependent on the activation of autophagy via the LKB1/AMPK and PI3K/Akt‐regulated mTOR signalling pathways.
Collapse
Affiliation(s)
- Meng-Di Wu
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Yuan-Ying Zhang
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Shu-Ying Yi
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Bei-Bei Sun
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Lan
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Han-Ming Jiang
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Gang-Ping Hao
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
7
|
Wang L, Wang S, Yao Q, Wang B, Duan W, Zhou H, Duan K. Chemical constituents of Peperomia tetraphylla (Forst. F.) Hooker et Arnott. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Cao L, Zhang J, Du Y, Sun M, Xiang Y, Sheng Y, Ren X, Shao J. Selenite induced breast cancer MCF7 cells apoptosis through endoplasmic reticulum stress and oxidative stress pathway. Chem Biol Interact 2021; 349:109651. [PMID: 34520753 DOI: 10.1016/j.cbi.2021.109651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Selenium is an essential trace element for human, and has anti-tumor effects. In this study, we investigated the anti-tumor activity of sodium selenite (Na2SeO3) and explored its possible mechanisms involved in a breast cancer cell line. We found that Na2SeO3 could inhibit the cell viability of MCF7 cells, yet with minimal damage to human umbilical vein endothelial cells (HUVECs). The results of Hoechst staining and Western Blot showed that Na2SeO3 induced apoptosis of MCF7 cells. Na2SeO3 activated endoplasmic reticulum stress (ERS), as evidenced by the up-regulation of ERS-related proteins, including ATF6, p-eIF2α, ATF4, and CHOP, and the down-regulation of PERK. ATF6, p-eIF2α and apoptosis were decreased by pre-treatment with an ERS inhibitor (4-PBA). Na2SeO3 activated oxidative stress (OS) through increasing ROS generation and decreasing mitochondrial membrane potential (MMP) which induced apoptosis. Pre-treatment with an antioxidant (NAC) attenuated Na2SeO3-induced OS and cell apoptosis. Furthermore, ERS and OS had mutual effects. Pre-treatment with 4-PBA could act against the up-regulation of ROS and the down-regulation of MMP. Pre-treatment with NAC attenuated the expression of ATF6. At the same time, we found that treatment with Na2SeO3 promoted the phosphorylation of p38 and JNK, while inhibiting the phosphorylation of ERK. However, the up-regulation was inhibited after pre-treatment of NAC, and pre-treatment with 4-PBA inhibited the increase only of p38. Based on these results, our study provides a mechanistic understanding of how Na2SeO3 has antitumor effects against MCF7 cells through the OS and ERS pathway. OS and ERS interact with each other, and p38 is regulated by them.
Collapse
Affiliation(s)
- Lina Cao
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Jingjing Zhang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Yan Du
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Min Sun
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Yue Xiang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Yulu Sheng
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Xiangmei Ren
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Jihong Shao
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China.
| |
Collapse
|
9
|
Allicin Attenuated Advanced Oxidation Protein Product-Induced Oxidative Stress and Mitochondrial Apoptosis in Human Nucleus Pulposus Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6685043. [PMID: 33381267 PMCID: PMC7758128 DOI: 10.1155/2020/6685043] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Intervertebral disc degeneration (IDD) is one of the most common chronic degenerative musculoskeletal disorders. Oxidative stress-induced apoptosis of the nucleus pulposus (NP) cells plays a key role during IDD progression. Advanced oxidation protein products (AOPP), novel biomarkers of oxidative stress, have been reported to function in various diseases due to their potential for disrupting the redox balance. The current study is aimed at investigating the function of AOPP in the oxidative stress-induced apoptosis of human NP cells and the alleviative effects of allicin during this process which was known for its antioxidant properties. AOPP were demonstrated to hamper the viability and proliferation of NP cells in a time- and concentration-dependent manner and cause cell apoptosis markedly. High levels of reactive oxygen species (ROS) and lipid peroxidation product malondialdehyde (MDA) were detected in NP cells after AOPP stimulation, which resulted in depolarized mitochondrial transmembrane potential (MTP). Correspondingly, higher levels of AOPP were discovered in the human degenerative intervertebral discs (IVD). It was also found that allicin could protect NP cells against AOPP-mediated oxidative stress and mitochondrial dysfunction via suppressing the p38-MAPK pathway. These results disclosed a significant role of AOPP in the oxidative stress-induced apoptosis of NP cells, which could be involved in the primary pathogenesis of IDD. It was also revealed that allicin could be a promising therapeutic approach against AOPP-mediated oxidative stress during IDD progression.
Collapse
|
10
|
Molecular Insights into the Multifunctional Role of Natural Compounds: Autophagy Modulation and Cancer Prevention. Biomedicines 2020; 8:biomedicines8110517. [PMID: 33228222 PMCID: PMC7699596 DOI: 10.3390/biomedicines8110517] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a vacuolar, lysosomal degradation pathway for injured and damaged protein molecules and organelles in eukaryotic cells, which is controlled by nutrients and stress responses. Dysregulation of cellular autophagy may lead to various diseases such as neurodegenerative disease, obesity, cardiovascular disease, diabetes, and malignancies. Recently, natural compounds have come to attention for being able to modulate the autophagy pathway in cancer prevention, although the prospective role of autophagy in cancer treatment is very complex and not yet clearly elucidated. Numerous synthetic chemicals have been identified that modulate autophagy and are favorable candidates for cancer treatment, but they have adverse side effects. Therefore, different phytochemicals, which include natural compounds and their derivatives, have attracted significant attention for use as autophagy modulators in cancer treatment with minimal side effects. In the current review, we discuss the promising role of natural compounds in modulating the autophagy pathway to control and prevent cancer, and provide possible therapeutic options.
Collapse
|
11
|
Review of Natural Compounds for the Management and Prevention of Lymphoma. Processes (Basel) 2020. [DOI: 10.3390/pr8091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lymphoma is a type of blood cancer that can be categorized into two types-Hodgkin lymphoma (HL) and Non-Hodgkin lymphoma (NHL). A total of 509,590 and 79,990 cases of NHL and HL were newly diagnosed in 2018, respectively. Although conventional therapy has stridden forward over recent decades, its adverse effects are still a hurdle to be solved. Thus, to help researchers develop better lymphoma treatment, this study aims to review the systematic anticancer data for natural products and their compounds. A variety of natural products showed anticancerous effects on lymphoma by regulation of intracellular mechanisms including apoptosis as well as cell cycle arrest. As these results shed light on the potential to substitute conventional therapy with natural products, it may become a promising strategy for lymphoma treatment in the near future.
Collapse
|
12
|
Hao G, Zhai J, Jiang H, Zhang Y, Wu M, Qiu Y, Fan C, Yu L, Bai S, Sun L, Yang Z. Acetylshikonin induces apoptosis of human leukemia cell line K562 by inducing S phase cell cycle arrest, modulating ROS accumulation, depleting Bcr-Abl and blocking NF-κB signaling. Biomed Pharmacother 2020; 122:109677. [PMID: 31810012 DOI: 10.1016/j.biopha.2019.109677] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Acetylshikonin, a natural naphthoquinone derivative compound from Lithospermum erythrorhyzon, has been reported to kill bacteria, suppress inflammation, and inhibit tumor growth. However, the effect of acetylshikonin on human chronic myelocytic leukemia (CML) cells apoptosis and its detailed mechanisms remains unknown. The purpose of the present study was to investigate whether acetylshikonin could inhibit proliferation or induce apoptosis of the K562 cells, and whether by regulating the NF-κB signaling pathway to suppress the development of CML. K562 cells were treated with serial diluted acetylshikonin at different concentrations. Our data showed that K562 cell growth was significantly inhibited by acetylshikonin with an IC50 of 2.03 μM at 24 h and 1.13 μM at 48 h, with increased cell cycle arrest in S-phase. The results of annexin V-FITC/PI and AO/EB staining showed that acetylshikonin induced cell apoptosis in a dose-dependent manner. K562 cells treated with acetylshikonin underwent massive apoptosis accompanied by a rapid generation of reactive oxygen species (ROS). Scavenging the ROS completely blocked the induction of apoptosis following acetylshikonin treatment. The levels of the pro-apoptotic proteins Bax, cleaved caspase-9, cleaved PARP and cleaved caspase-3 increased with increased concentrations of acetylshikonin, while the level of the anti-apoptotic protein Bcl-2 was downregulated. The levels of Cyt C and AIF, which are characteristic proteins of the mitochondria-regulated intrinsic apoptotic pathway, also increased in the cytosol after acetylshikonin treatment. However, the mitochondrial fraction of Cyt C and AIF were decreased under acetylshikonin treatment. In addition, acetylshikonin decreased Bcr-Abl expression and inhibited its downstream signaling. Acetylshikonin could lead to a blockage of the NF-κB signaling pathway via decreasing nuclear NF-κB P65 and increasing cytoplasmic NF-κB P65. Moreover, acetylshikonin significantly inhibited the phosphorylation of IkBα and IKKα/β in K562 cells. These results demonstrated that acetylshikonin significantly inhibited K562 cell growth and induced cell apoptosis through the mitochondria-regulated intrinsic apoptotic pathway. The mechanisms may involve the modulating ROS accumulation, inhibition of NF-κB and BCR-ABL expression. The inhibition of BCR-ABL expression and the inactivation of the NF-κB signaling pathway caused by acetylshikonin treatment resulted in K562 cell apoptosis. Together, our results indicate that acetylshikonin could serve as a potential therapeutic agent for the future treatment of CML.
Collapse
Affiliation(s)
- Gangping Hao
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China.
| | - Jing Zhai
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Hanming Jiang
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yuanying Zhang
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Mengdi Wu
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yuyu Qiu
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Cundong Fan
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lijuan Yu
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Suyun Bai
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lingyun Sun
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China; Institute of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
13
|
Liu J, Tian S, Fu M, He Y, Yu H, Cao X, Cao Y, Xu H. Protective Effects of Anthocyanins from
Coreopsis tinctoria
against Oxidative Stress Induced by Hydrogen Peroxide in MIN6 Cells. Chem Biodivers 2020; 17:e1900587. [DOI: 10.1002/cbdv.201900587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jianli Liu
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Siqi Tian
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Mingyang Fu
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Yin He
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Hui Yu
- Shenyang He Eye Hospital INC Shenyang 110034 P. R. China
| | - Xiangyu Cao
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Yiyang Cao
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Hanyuan Xu
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| |
Collapse
|
14
|
Barroso WA, Abreu IC, Ribeiro LS, da Rocha CQ, de Souza HP, de Lima TM. Chemical composition and cytotoxic screening of Musa cavendish green peels extract: Antiproliferative activity by activation of different cellular death types. Toxicol In Vitro 2019; 59:179-186. [PMID: 31018149 DOI: 10.1016/j.tiv.2019.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/12/2019] [Accepted: 04/17/2019] [Indexed: 12/26/2022]
Abstract
Musa cavendish, commonly known as banana, is a fruit with nutritional and therapeutic properties. We investigated the chemical composition and in vitro cytotoxic effect of M. cavendish green peel extract (MHE) on cancer cells for the first time. The compounds characterization was performed by HPLC-UV/Vis and FIA-ESI-IT-MSn. We investigated in vitro cytotoxic effect of Musa cavendish green peels extract (MHE) in HepG2, A-375, MCF-7 and Caco-2 cancer cells. We evaluated the effect of MHE on proliferation of different cell lines through apoptosis, necrosis, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) content determination. We identified 12 compounds from different classes in the extract, including derivatives of phenolic acids, aglycone flavonoids, glycoside flavonoids and catecholamines. Our results indicate that MHE exerts, after 48 h treatment, an accentuated antiproliferative effect from the dose of 100 μg/mL in all cell lines tested. In HepG2 cells, these effects were related to the induction of cell death, both necrotic and apoptotic, and remarkable changes in cell morphology. Depolarization of MMP and high ROS content were also observed in the cells in a dose-dependent manner. Our results show that MHE may be used as a source of new drugs with anticancer activity.
Collapse
Affiliation(s)
- Wermerson Assunção Barroso
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo CEP 01246-903, Brazil.
| | - Iracelle Carvalho Abreu
- Physiological Sciences Department, Laboratory of Research and Post-graduation in Pharmacology (LPPF), Federal University of Maranhão, São Luís - Maranhão. University City, Bacanga Campus, Av. dos Portugueses, 1966, Vila Bacanga, Maranhão CEP 65085-580, Brazil
| | - Larissa Sousa Ribeiro
- Physiological Sciences Department, Laboratory of Research and Post-graduation in Pharmacology (LPPF), Federal University of Maranhão, São Luís - Maranhão. University City, Bacanga Campus, Av. dos Portugueses, 1966, Vila Bacanga, Maranhão CEP 65085-580, Brazil
| | - Cláudia Quintino da Rocha
- Department of Chemistry, Laboratory of Advanced Studies in Phytomedications (LEAF), Federal University of Maranhão, São Luís - Maranhão. University City, Center for Exact Sciences and Technology, Bacanga Campus, Av. Dos Portugueses, 1966, Vsila Bacanga, Maranhão CEP 65085-580, Brazil
| | - Heraldo Possolo de Souza
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo CEP 01246-903, Brazil
| | - Thais Martins de Lima
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo CEP 01246-903, Brazil
| |
Collapse
|
15
|
Novel curcumin analogue hybrids: Synthesis and anticancer activity. Eur J Med Chem 2018; 156:493-509. [PMID: 30025345 DOI: 10.1016/j.ejmech.2018.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/21/2022]
Abstract
In this study, twenty curcumin analogue hybrids as potential anticancer agents through regulation protein of TrxR were designed and synthesized. Results of anticancer activity showed that 5,7-dimethoxy-3-(3-(2-((1E, 4E)-3-oxo-5-(pyridin-2-yl)penta-1,4-dien-1- yl)phenoxy)propoxy)-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (compound 7d) could induce gastric cancer cells apoptosis by arresting cell cycle, break mitochondria function and inhibit TrxR activity. Meanwhile, western blot revealed that this compound could dramatically up expression of Bax/Bcl-2 ratio and high expression of TrxR oxidation. These results preliminarily show that the important role of ROS mediated activation of ASK1/MAPK signaling pathways by this title compound.
Collapse
|