1
|
Szilveszter RM, Muntean M, Florea A. Molecular Mechanisms in Tumorigenesis of Hepatocellular Carcinoma and in Target Treatments-An Overview. Biomolecules 2024; 14:656. [PMID: 38927059 PMCID: PMC11201617 DOI: 10.3390/biom14060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatocellular carcinoma is the most common primary malignancy of the liver, with hepatocellular differentiation. It is ranked sixth among the most common cancers worldwide and is the third leading cause of cancer-related deaths. The most important etiological factors discussed here are viral infection (HBV, HCV), exposure to aflatoxin B1, metabolic syndrome, and obesity (as an independent factor). Directly or indirectly, they induce chromosomal aberrations, mutations, and epigenetic changes in specific genes involved in intracellular signaling pathways, responsible for synthesis of growth factors, cell proliferation, differentiation, survival, the metastasis process (including the epithelial-mesenchymal transition and the expression of adhesion molecules), and angiogenesis. All these disrupted molecular mechanisms contribute to hepatocarcinogenesis. Furthermore, equally important is the interaction between tumor cells and the components of the tumor microenvironment: inflammatory cells and macrophages-predominantly with a pro-tumoral role-hepatic stellate cells, tumor-associated fibroblasts, cancer stem cells, extracellular vesicles, and the extracellular matrix. In this paper, we reviewed the molecular biology of hepatocellular carcinoma and the intricate mechanisms involved in hepatocarcinogenesis, and we highlighted how certain signaling pathways can be pharmacologically influenced at various levels with specific molecules. Additionally, we mentioned several examples of recent clinical trials and briefly described the current treatment protocol according to the NCCN guidelines.
Collapse
Affiliation(s)
- Raluca-Margit Szilveszter
- Department of Pathology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400340 Cluj-Napoca, Romania
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
- Cluj County Emergency Clinical Hospital, 400340 Cluj-Napoca, Romania
| | - Mara Muntean
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
| |
Collapse
|
2
|
Hussain MS, Moglad E, Afzal M, Gupta G, Hassan Almalki W, Kazmi I, Alzarea SI, Kukreti N, Gupta S, Kumar D, Chellappan DK, Singh SK, Dua K. Non-coding RNA mediated regulation of PI3K/Akt pathway in hepatocellular carcinoma: Therapeutic perspectives. Pathol Res Pract 2024; 258:155303. [PMID: 38728793 DOI: 10.1016/j.prp.2024.155303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is among the primary reasons for fatalities caused by cancer globally, highlighting the need for comprehensive knowledge of its molecular aetiology to develop successful treatment approaches. The PI3K/Akt system is essential in the course of HCC, rendering it an intriguing candidate for treatment. Non-coding RNAs (ncRNAs), such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are important mediators of the PI3K/Akt network in HCC. The article delves into the complex regulatory functions of ncRNAs in influencing the PI3K/Akt system in HCC. The study explores how lncRNAs, miRNAs, and circRNAs impact the expression as well as the function of the PI3K/Akt network, either supporting or preventing HCC growth. Additionally, treatment strategies focusing on ncRNAs in HCC are examined, such as antisense oligonucleotide-based methods, RNA interference, and small molecule inhibitor technologies. Emphasizing the necessity of ensuring safety and effectiveness in clinical settings, limitations, and future approaches in using ncRNAs as therapies for HCC are underlined. The present study offers useful insights into the complex regulation system of ncRNAs and the PI3K/Akt cascade in HCC, suggesting possible opportunities for developing innovative treatment approaches to address this lethal tumor.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Khandwa Road, Village Umrikheda, Near Toll Booth, Indore, Madhya Pradesh 452020, India
| | - Dinesh Kumar
- School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
3
|
Balcerak A, Szafron LA, Rubel T, Swiderska B, Bonna AM, Konarzewska M, Sołtyszewski I, Kupryjanczyk J, Szafron LM. A Multi-Faceted Analysis Showing CRNDE Transcripts and a Recently Confirmed Micropeptide as Important Players in Ovarian Carcinogenesis. Int J Mol Sci 2024; 25:4381. [PMID: 38673965 PMCID: PMC11050281 DOI: 10.3390/ijms25084381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
CRNDE is considered an oncogene expressed as long non-coding RNA. Our previous paper is the only one reporting CRNDE as a micropeptide-coding gene. The amino acid sequence of this micropeptide (CRNDEP) has recently been confirmed by other researchers. This study aimed at providing a mass spectrometry (MS)-based validation of the CRNDEP sequence and an investigation of how the differential expression of CRNDE(P) influences the metabolism and chemoresistance of ovarian cancer (OvCa) cells. We also assessed cellular localization changes of CRNDEP, looked for its protein partners, and bioinformatically evaluated its RNA-binding capacities. Herein, we detected most of the CRNDEP sequence by MS. Moreover, our results corroborated the oncogenic role of CRNDE, portraying it as the gene impacting carcinogenesis at the stages of DNA transcription and replication, affecting the RNA metabolism, and stimulating the cell cycle progression and proliferation, with CRNDEP being detected in the centrosomes of dividing cells. We also showed that CRNDEP is located in nucleoli and revealed interactions of this micropeptide with p54, an RNA helicase. Additionally, we proved that high CRNDE(P) expression increases the resistance of OvCa cells to treatment with microtubule-targeted cytostatics. Furthermore, altered CRNDE(P) expression affected the activity of the microtubular cytoskeleton and the formation of focal adhesion plaques. Finally, according to our in silico analyses, CRNDEP is likely capable of RNA binding. All these results contribute to a better understanding of the CRNDE(P) role in OvCa biology, which may potentially improve the screening, diagnosis, and treatment of this disease.
Collapse
Affiliation(s)
- Anna Balcerak
- Department of Pathology and Anatomical Sciences, State University of New York, Buffalo, NY 14203, USA
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | | | - Tymon Rubel
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, 00-665 Warsaw, Poland
| | - Bianka Swiderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | | | | | - Jolanta Kupryjanczyk
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Lukasz Michal Szafron
- Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
4
|
Jasim SA, Al-Hawary SIS, Hjazi A, Ahmad I, Kaur I, Kadhum WR, Alkhafaji AT, Ghildiyal P, Jawad MA, Alsaadi SB. A comprehensive review of lncRNA CRNDE in cancer progression and pathology, with a specific glance at the epithelial-mesenchymal transition (EMT) process. Pathol Res Pract 2024; 256:155229. [PMID: 38484655 DOI: 10.1016/j.prp.2024.155229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 04/14/2024]
Abstract
It has been suggested that the long non-coding RNAs (lncRNAs), such as colorectal neoplasia differentially expressed (CRNDE), may contribute to the formation of human cancer. It is yet unknown, though, what therapeutic significance CRNDE expression has for different forms of cancer. CRNDE has recently been proposed as a possible diagnostic biomarker and prognostic pred for excellent specificity and sensitivity in cancer tissues and plasma. To provide the groundwork for potential future therapeutic uses of CRNDE, we briefly overview its biological action and related cancer-related pathways. Next, we mainly address the impact of CRNDE on the epithelial-mesenchymal transition (EMT). The epithelial-mesenchymal transition, or EMT, is an essential biological mechanism involved in the spread of cancer.
Collapse
Affiliation(s)
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut, Wasit 52001, Iraq; Advanced research center, Kut University College, Kut, Wasit 52001, Iraq
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad 10011, Iraq
| |
Collapse
|
5
|
Yarahmadi G, Tavakoli Ataabadi S, Dashti Z, Dehghanian M. A review on expression and regulatory mechanisms of miR-337-3p in cancer. J Biomol Struct Dyn 2024:1-10. [PMID: 38500239 DOI: 10.1080/07391102.2024.2329294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
A group of diseases generally referred to as cancer represents a serious threat to people's health all over the world and has a significant negative influence on every aspect of the lives of patients. The development of cancer is influenced by several environmental, genetic, and epigenetic factors. MicroRNAs (miRNAs), a class of non-coding RNAs, can alter the expression of genes involved in cell proliferation, migration, metastasis, and apoptosis, lead to the pathogenesis of cancer. Additionally, several effectors modify miRNAs directly, including methylation, circular RNAs, and long non-coding RNAs (lncRNAs). In this review, we have explained the role of mir-337-3p in the pathways related to the pathogenesis of different cancers. Studying the functional role of miR-337-3p is necessary for detecting novel molecules as tumor markers and discovering novel targets for cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ghafour Yarahmadi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sadegh Tavakoli Ataabadi
- Department of Medical Genetics School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Dashti
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences Campus, Yazd, Iran
| | - Mehran Dehghanian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Gajos-Michniewicz A, Czyz M. WNT/β-catenin signaling in hepatocellular carcinoma: The aberrant activation, pathogenic roles, and therapeutic opportunities. Genes Dis 2024; 11:727-746. [PMID: 37692481 PMCID: PMC10491942 DOI: 10.1016/j.gendis.2023.02.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/28/2022] [Accepted: 02/14/2023] [Indexed: 09/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a liver cancer, highly heterogeneous both at the histopathological and molecular levels. It arises from hepatocytes as the result of the accumulation of numerous genomic alterations in various signaling pathways, including canonical WNT/β-catenin, AKT/mTOR, MAPK pathways as well as signaling associated with telomere maintenance, p53/cell cycle regulation, epigenetic modifiers, and oxidative stress. The role of WNT/β-catenin signaling in liver homeostasis and regeneration is well established, whereas in development and progression of HCC is extensively studied. Herein, we review recent advances in our understanding of how WNT/β-catenin signaling facilitates the HCC development, acquisition of stemness features, metastasis, and resistance to treatment. We outline genetic and epigenetic alterations that lead to activated WNT/β-catenin signaling in HCC. We discuss the pivotal roles of CTNNB1 mutations, aberrantly expressed non-coding RNAs and complexity of crosstalk between WNT/β-catenin signaling and other signaling pathways as challenging or advantageous aspects of therapy development and molecular stratification of HCC patients for treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| |
Collapse
|
7
|
Afra F, Mahboobipour AA, Salehi Farid A, Ala M. Recent progress in the immunotherapy of hepatocellular carcinoma: Non-coding RNA-based immunotherapy may improve the outcome. Biomed Pharmacother 2023; 165:115104. [PMID: 37393866 DOI: 10.1016/j.biopha.2023.115104] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most lethal cancer and a leading cause of cancer-related mortality worldwide. Immune checkpoint inhibitors (ICIs) significantly improved the prognosis of HCC; however, the therapeutic response remains unsatisfactory in a substantial proportion of patients or needs to be further improved in responders. Herein, other methods of immunotherapy, including vaccine-based immunotherapy, adoptive cell therapy, cytokine delivery, kynurenine pathway inhibition, and gene delivery, have been adopted in clinical trials. Although the results were not encouraging enough to expedite their marketing. A major proportion of human genome is transcribed into non-coding RNAs (ncRNAs). Preclinical studies have extensively investigated the roles of ncRNAs in different aspects of HCC biology. HCC cells reprogram the expression pattern of numerous ncRNAs to decrease the immunogenicity of HCC, exhaust the cytotoxic and anti-cancer function of CD8 + T cells, natural killer (NK) cells, dendritic cells (DCs), and M1 macrophages, and promote the immunosuppressive function of T Reg cells, M2 macrophages, and myeloid-derived suppressor cells (MDSCs). Mechanistically, cancer cells recruit ncRNAs to interact with immune cells, thereby regulating the expression of immune checkpoints, functional receptors of immune cells, cytotoxic enzymes, and inflammatory and anti-inflammatory cytokines. Interestingly, prediction models based on the tissue expression or even serum levels of ncRNAs could predict response to immunotherapy in HCC. Moreover, ncRNAs markedly potentiated the efficacy of ICIs in murine models of HCC. This review article first discusses recent advances in the immunotherapy of HCC, then dissects the involvement and potential application of ncRNAs in the immunotherapy of HCC.
Collapse
Affiliation(s)
- Fatemeh Afra
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Mahboobipour
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Shi Z, Wu Y, Zhuo Q, Zuo Y, Lin J, Shi H, Zhou H, Xu Z. Comprehensive analysis of oxidative stress-related lncRNA signatures in glioma reveals the discrepancy of prognostic and immune infiltration. Sci Rep 2023; 13:7731. [PMID: 37173373 PMCID: PMC10182081 DOI: 10.1038/s41598-023-34909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
Oxidative stress refers to the process of reactive oxide species (ROS) increase in human body due to various factors, which leads to oxidative damage in human tissues. Current studies have confirmed that sustained oxidative stress is one of the distinctive features throughout the development of tumors. Numerous reports have shown that lncRNAs can regulate the process of oxidative stress through multiple pathways. However, the relationship between glioma-associated oxidative stress and lncRNAs is not clearly investigated. RNA sequencing data of GBM (glioblastoma) and LGG (low grade glioma) and corresponding clinical data were retrieved from the TCGA database. Oxidative stress related lncRNAs (ORLs) were identified by Pearson correlation analysis. Prognostic models for 6-ORLs were structured in the training cohort by univariate Cox regression analysis, multivariate Cox regression analysis and LASSO regression analysis. We constructed the nomogram and verified its predictive efficacy by Calibration curves and DCA decision curves. The biological functions and pathways of 6-ORLs-related mRNAs were inferred by Gene Set Enrichment Analysis. Immune cell abundance and immune function associated with risk score (RS) were estimated by ssGSEA, CIBERSORT and MCPcounter synthetically. External validation of the signature was completed using the CGGA-325 and CGGA-693 datasets. 6-ORLs signature-AC083864.2, AC107294.1, AL035446.1, CRNDE, LINC02600, and SNAI3-AS1-were identified through our analysis as being predictive of glioma prognosis. Kaplan-Meier and ROC curves indicated that the signature has a dependable predictive efficacy in the TCGA training cohort, validation cohort and CGGA-325/CGGA-693 test cohort. The 6-ORLs signature were verified to be independent prognostic predictors by multivariate cox regression and stratified survival analysis. Nomogram built with risk scores had strong predictive efficacy for patients' overall survival (OS). The outcomes of the functional enrichment analysis revealing potential molecular regulatory mechanisms for the 6-ORLs. Patients in the high-risk subgroup presented a significant immune microenvironment of macrophage M0 and cancer-associated fibroblast infiltration which was associated with a poorer prognosis. Finally, the expression levels of 6-ORLs in U87/U251/T98/U138 and HA1800 cell lines were verified by RT-qPCR. The nomogram in this study has been made available as a web version for clinicians. This 6-ORLs risk signature has the capabilities to predict the prognosis of glioma patients, assist in evaluating immune infiltration, and assess the efficacy of various anti-tumor systemic therapy regimens.
Collapse
Affiliation(s)
- Zhenyi Shi
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, People's Republic of China
| | - Yingying Wu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, People's Republic of China
| | - Qingchan Zhuo
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, People's Republic of China
| | - Yufang Zuo
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, People's Republic of China
| | - Jiong Lin
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, People's Republic of China
| | - Huadi Shi
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, People's Republic of China.
| | - Hechao Zhou
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, People's Republic of China.
| | - Zumin Xu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Verma S, Sahu BD, Mugale MN. Role of lncRNAs in hepatocellular carcinoma. Life Sci 2023; 325:121751. [PMID: 37169145 DOI: 10.1016/j.lfs.2023.121751] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is among the deadliest cancer in human malignancies. It is the most common and severe type of primary liver cancer. However, the molecular mechanisms underlying HCC pathogenesis remain poorly understood. Long non-coding RNAs (lncRNAs), a new kind of RNA and epigenetic factors, play a crucial role in tumorigenesis and the progression of HCC. LncRNAs are capable of promoting the autophagy, proliferation, and migration of tumor cells by targeting and modulating the expression of downstream genes in signaling pathways related to cancer; these transcripts modify the activity and expression of various tumor suppressors and oncogenes. LncRNAs could act as biomarkers for treatment approaches such as immunotherapy, chemotherapy, and surgery to effectively treat HCC patients. Improved knowledge regarding the aetiology of HCC may result from an advanced understanding of lncRNAs. Enhanced oxidative stress in the mitochondrial and Endoplasmic reticulum leads to the activation of unfolded protein response pathway that plays a crucial role in the pathophysiology of hepatocellular carcinoma. The mutual regulation between LncRNAs and Endoplasmic reticulum (ER) stress in cancer and simultaneous activation of the unfolded protein response (UPR) pathway determines the fate of tumor cells in HCC. Mitochondria-associated lncRNAs work as essential components of several gene regulatory networks; abnormal regulation of mitochondria-associated lncRNAs may lead to oncogenesis, which provides further insight into the understanding of tumorigenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bidhya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Gholizadeh O, Akbarzadeh S, Moein M, Yasamineh S, Hosseini P, Afkhami H, Amini P, Dadashpour M, Tahavvori A, Eslami M, Hossein Taherian M, Poortahmasebi V. The role of non-coding RNAs in the diagnosis of different stages (HCC, CHB, OBI) of hepatitis B infection. Microb Pathog 2023; 176:105995. [PMID: 36681203 DOI: 10.1016/j.micpath.2023.105995] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Despite the availability of an effective hepatitis B virus (HBV) vaccine and universal immunization schedules, HBV has remained a health problem in various stages such as occult hepatitis B infection (OBI), chronic hepatitis B (CHB), and hepatocellular carcinoma (HCC), which is considered one of the possible phases during chronic HBV infection. OBI is defined as the persistence of HBV genomes in hepatocytes of patients with a negative HBV surface antigen (HBsAg) test and detectable or undetectable HBV DNA in the blood. OBI is occasionally associated with infection caused by mutant viruses that produce a modified HBsAg that is undetected by diagnostic procedures or with replication-defective variations. Many aspects of HBV (OBI more than any other stage) including prevalence, pathobiology, and clinical implications has remained controversial. According to a growing body of research, non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been linked to the development and progression of a number of illnesses, including viral infectious disorders. Despite a shortage of knowledge regarding the expression and biological activities of lncRNAs and miRNAs in HBV infection, Hepatitis B remains a major global public health concern. This review summarizes the role of lncRNAs in the diagnosis and treatment of different stages of hepatitis B infection.
Collapse
Affiliation(s)
- Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Sama Akbarzadeh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Moein
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Paria Amini
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Amir Tahavvori
- Internal Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Mokhtari M. Contribution of CRNDE lncRNA in the development of cancer and the underlying mechanisms. Pathol Res Pract 2023; 244:154387. [PMID: 36893710 DOI: 10.1016/j.prp.2023.154387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Colorectal Neoplasia Differentially Expressed (CRNDE) is an lncRNA with crucial roles in cancer development. It is located on chromosome 16 on the opposite strand to the adjacent IRX5 gene, implying the presence of a shared bidirectional promoter for these two genes. Expression of CRNDE has been assessed in a diverse array of hematological malignancies and solid tumors, representing its potential as a therapeutic target in these conditions. This lncRNA has a regulatory effect on activity of several pathways and axes that are involved in the regulation of cell apoptosis, immune responses and tumorigenesis. The current review is an updated review about the role of CRNDE in the development of cancers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Mokhtari
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Hashemi M, Mirzaei S, Zandieh MA, Rezaei S, Amirabbas Kakavand, Dehghanpour A, Esmaeili N, Ghahremanzade A, Saebfar H, Heidari H, Salimimoghadam S, Taheriazam A, Entezari M, Ahn KS. Long non-coding RNAs (lncRNAs) in hepatocellular carcinoma progression: Biological functions and new therapeutic targets. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:207-228. [PMID: 36584761 DOI: 10.1016/j.pbiomolbio.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Liver is an important organ in body that performs vital functions such as detoxification. Liver is susceptible to development of cancers, and hepatocellular carcinoma (HCC) is among them. 75-85% of liver cancer cases are related to HCC. Therefore, much attention has been directed towards understanding factors mediating HCC progression. LncRNAs are epigenetic factors with more than 200 nucleotides in length located in both nucleus and cytoplasm and they are promising candidates in cancer therapy. Directing studies towards understanding function of lncRNAs in HCC is of importance. LncRNAs regulate cell cycle progression and growth of HCC cells, and they can also induce/inhibit apoptosis in tumor cells. LncRNAs affect invasion and metastasis in HCC mainly by epithelial-mesenchymal transition (EMT) mechanism. Revealing the association between lncRNAs and downstream signaling pathways in HCC is discussed in the current manuscript. Infectious diseases can affect lncRNA expression in mediating HCC development and then, altered expression level of lncRNA is associated with drug resistance and radio-resistance. Biomarker application of lncRNAs and their role in prognosis and diagnosis of HCC are also discussed to pave the way for treatment of HCC patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Hajar Heidari
- Department of Biomedical Sciences, School of Public Health University at Albany State University of New York, Albany, NY, 12208, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Liu YC, Lin YH, Chi HC, Huang PS, Liao CJ, Liou YS, Lin CC, Yu CJ, Yeh CT, Huang YH, Lin KH. CRNDE acts as an epigenetic modulator of the p300/YY1 complex to promote HCC progression and therapeutic resistance. Clin Epigenetics 2022; 14:106. [PMID: 35999564 PMCID: PMC9400329 DOI: 10.1186/s13148-022-01326-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common primary liver malignancies worldwide. The long-term prognosis for HCC remains extremely poor, with drug resistance being the major underlying cause of recurrence and mortality. The lncRNA colorectal neoplasia differentially expressed (CRNDE) is an epigenetic mediator and plays an important role to drive proliferation and drug resistance in HCC. However, CRNDE as an epigenetic regulator with influences sorafenib resistance in HCC is unclear. Thus, we explore the potential of targeting the CRNDE/p300/YY1 axis as a novel therapeutic strategy to overcome sorafenib resistance of HCC. Method Detection of the expression level of CRNDE and EGFR in clinical specimens of HCC. CRNDE, EGFR, p300, and YY1expression were altered in HCC cells through transfection with different plasmids, and cell proliferation, migration, invasion, and sorafenib resistance were subsequently observed. Immunoprecipitation, chromatin immunoprecipitation, re-chromatin immunoprecipitation, site-directed mutagenesis, RNA Immunoprecipitation, immune fluorescence, qRT-PCR, and western blotting were performed to uncover the mechanisms of CRNDE regulation. The xenograft nude mice model was used to investigate the tumor growth and sorafenib resistance. Results In this study, we showed that CRNDE expression is significantly positively correlated with that of epidermal growth factor receptor (EGFR) in clinical specimens of HCC and induces proliferation and sorafenib resistance of HCC via EGFR-mediated signaling. Mechanistically, CRNDE stabilized the p300/YY1 complex at the EGFR promoter and simultaneously enhanced histone H3K9 and H3K27 acetylation, which serve as markers of relaxed chromatin. EGFR was positively upregulated by the epigenetic complex, p300/YY1, in a manner dependent on CRNDE expression, leading to enhanced tumor cell proliferation and sorafenib resistance. Furthermore, C646, a p300 inhibitor, suppressed EGFR transcriptional activity by decreasing chromatin relaxation and YY1 binding, which effectively reduced proliferation/sorafenib resistance and prolonged overall survival. Conclusion Our collective findings support the potential of targeting the CRNDE/p300/YY1 axis as a novel therapeutic strategy to overcome sorafenib resistance of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01326-3.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Hsiang-Cheng Chi
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China
| | - Chia-Jung Liao
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China
| | - Yu-Syuan Liou
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China
| | - Chiao-Chun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China
| | - Chia-Jung Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China. .,Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
14
|
CRNDE: A valuable long noncoding RNA for diagnosis and therapy of solid and hematological malignancies. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:190-201. [PMID: 35402077 PMCID: PMC8961077 DOI: 10.1016/j.omtn.2022.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colorectal neoplasia differentially expressed (CRNDE) is an oncogenic long noncoding RNA (lncRNA). Increased CRNDE expression was initially discovered in colorectal cancer and then in a variety of solid tumors and hematological malignancies. CRNDE participates in multiple biological processes, such as cell proliferation, differentiation, migration, and apoptosis. CRNDE has been shown to modulate target gene expression through multiple mechanisms, including transcriptional regulation, post-transcriptional regulation, and competition for microRNA (miRNA) binding. In this review, we summarize the evidence that supports CRNDE in the diagnosis and prognosis predicting of cancers. The functional roles and molecular mechanisms of CRNDE are further described for major types of solid tumors and hematological malignancies. The therapeutic potential of CRNDE as a target for research and development is also discussed.
Collapse
|
15
|
Xu Y, Yu X, Sun Z, He Y, Guo W. Roles of lncRNAs Mediating Wnt/β-Catenin Signaling in HCC. Front Oncol 2022; 12:831366. [PMID: 35356220 PMCID: PMC8959654 DOI: 10.3389/fonc.2022.831366] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the second most deadly cancer worldwide. Due to the absence of early diagnostic markers and effective therapeutic approaches, distant metastasis and increasing recurrence rates are major difficulties in the clinical treatment of HCC. Further understanding of its pathogenesis has become an urgent goal in HCC research. Recently, abnormal expression of long noncoding RNAs (lncRNAs) was identified as a vital regulator involved in the initiation and development of HCC. Activation of the Wnt/β-catenin pathway has been reported to obviously impact cell proliferation, invasion, and migration of HCC. This article reviews specific interactions, significant mechanisms and molecules related to HCC initiation and progression to provide promising strategies for treatment.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| |
Collapse
|
16
|
Zhao Z, Liu M, Long W, Yuan J, Li H, Zhang C, Tang G, Jiang W, Yuan X, Wu M, Liu Q. Knockdown lncRNA CRNDE enhances temozolomide chemosensitivity by regulating autophagy in glioblastoma. Cancer Cell Int 2021; 21:456. [PMID: 34454479 PMCID: PMC8399846 DOI: 10.1186/s12935-021-02153-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/16/2021] [Indexed: 01/07/2023] Open
Abstract
Background The regulatory roles of long non-coding RNA (lncRNA) CRNDE in temozolomide (TMZ) chemoresistance to glioblastoma multiforme (GBM) are still poorly understood. Therefore, the function, characteristics, and possible mechanism of CRNDE in TMZ-induced chemoresistance to GBM were explored. Methods Firstly, the expression level of CRNDE in 58 cases of glioma tissue specimens and 30 cases of normal brain tissues were tested by qRT-PCR. Meanwhile, the correlation between CRNDE expression level, the clinicopathological characteristics, and survival time of patients with glioma were analyzed. Then, the CRNDE expression in various glioma cell lines was detected, and CRNDE knockdown cell models were constructed. Subsequently, to explore the effect of CRNDE on chemosensitivity to TMZ, cell viability was detected by the CCK-8 assay and IC50 values, and cell proliferation was detected by cell clone assay and EdU assay, as well as cell survival was detected by apoptosis with flow cytometry under TMZ treatment. Further, the expression of drug-resistance protein ABCG2, autophagy related proteins, and PI3K/Akt/mTOR pathway were measured by western blot or qRT-PCR in TMZ-treated glioma cells. Finally, the mouse tumor xenograft model was established and the tumor volume and weight were measured, and ABCG2 expression was conducted by immunohistochemistry assay. Results The integrated results demonstrated lncRNA CRNDE was a poor prognosis factor for GBM patient, which was upregulated in patients who were resistant to TMZ, and closely associated with chemotherapeutic response status to TMZ treatment. Further, functional assays revealed that knockdown of CRNDE could notably reduce glioma cell viability and proliferation, and elevate cell apoptosis to enhance the chemosensitivity to TMZ in vitro and in vivo. Mechanistically, the depression of CRNDE could diminish the expression of LC3 II/I, Beclin1 and Atg5 and increase the p62 expression level to inhibit autophagy due to the activation of PI3K/Akt/mTOR pathway as well as highly correlated with ABCG2 expression. Conclusions Overall, the study provided that lncRNA CRNDE is a reliable clinical predictor of outcome and prognosis and a potential biomarker for predicting TMZ treatment response in GBM by modulating the autophagy through PI3K/Akt/mTOR pathway and ABCG2 expression which may be a novel therapeutic target for regulating TMZ sensitivity to GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02153-x.
Collapse
Affiliation(s)
- Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Neurosurgical Medical Central, Central South University, Changsha, China.,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China
| | - Miaomiao Liu
- Department of Nuclear Medicine (PET-CT Central), Xiangya Hospital, Central South University, Changsha, China
| | - Wenyong Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Neurosurgical Medical Central, Central South University, Changsha, China.,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China
| | - Jian Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Neurosurgical Medical Central, Central South University, Changsha, China.,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Neurosurgical Medical Central, Central South University, Changsha, China.,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Neurosurgical Medical Central, Central South University, Changsha, China.,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China
| | - Guodong Tang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Neurosurgical Medical Central, Central South University, Changsha, China.,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China
| | - Weixi Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Neurosurgical Medical Central, Central South University, Changsha, China.,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Neurosurgical Medical Central, Central South University, Changsha, China.,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China
| | - Minghua Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China. .,Neurosurgical Medical Central, Central South University, Changsha, China. .,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China.
| |
Collapse
|
17
|
Chen L, Sun L, Dai X, Li T, Yan X, Zhang Y, Xiao H, Shen X, Huang G, Xiang W, Zhang Y, Tan D, Yang S, Nie Y, Huang X, Lian J, He F. LncRNA CRNDE Promotes ATG4B-Mediated Autophagy and Alleviates the Sensitivity of Sorafenib in Hepatocellular Carcinoma Cells. Front Cell Dev Biol 2021; 9:687524. [PMID: 34409031 PMCID: PMC8365422 DOI: 10.3389/fcell.2021.687524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023] Open
Abstract
Autophagy is closely related to the growth and drug resistance of cancer cells, and autophagy related 4B (ATG4B) performs a crucial role in the process of autophagy. The long non-coding RNA (lncRNA) colorectal neoplasia differentially expressed (CRNDE) promotes the progression of hepatocellular carcinoma (HCC), but it is unclear whether the tumor-promoting effect of CRNDE is associated with the regulation of ATG4B and autophagy. Herein, we for the first time demonstrated that CRNDE triggered autophagy via upregulating ATG4B in HCC cells. Mechanistically, CRNDE enhanced the stability of ATG4B mRNA by sequestrating miR-543, leading to the elevation of ATG4B and autophagy in HCC cells. Moreover, sorafenib induced CRNDE and ATG4B as well as autophagy in HCC cells. Knockdown of CRNDE sensitized HCC cells to sorafenib in vitro and in vivo. Collectively, these results reveal that CRNDE drives ATG4B-mediated autophagy, which attenuates the sensitivity of sorafenib in HCC cells, suggesting that the pathway CRNDE/ATG4B/autophagy may be a novel target to develop sensitizing measures of sorafenib in HCC treatment.
Collapse
Affiliation(s)
- Lingxi Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Liangbo Sun
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Xufang Dai
- College of Educational Science, Chongqing Normal University, Chongqing, China
| | - Tao Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Xiaojing Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yueting Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Hanxi Xiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Xiaodong Shen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Wei Xiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Dehong Tan
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, Air Force Medical University, Xi'an, China
| | - Xuequan Huang
- Center of Minimally Invasive Intervention, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jiqin Lian
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China.,Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| |
Collapse
|
18
|
Shiu TY, Lin HH, Shih YL, Feng AC, Huang HH, Huang TY, Hsieh CB, Chang WK, Hsieh TY. CRNDE-h transcript/miR-136-5p axis regulates interleukin enhancer binding factor 2 expression to promote hepatocellular carcinoma cell proliferation. Life Sci 2021; 284:119708. [PMID: 34153299 DOI: 10.1016/j.lfs.2021.119708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
AIMS Hepatocellular carcinoma (HCC) is a primary malignancy of the hepatocyte. Interleukin enhancer binding factor 2 (ILF2) plays a role in the development of HCC. However, the regulatory mechanisms of ILF2 expression in HCC remain unclear. In this study, we aimed to identify ILF2-targeting microRNAs (miRNAs) and to explore how they affect ILF2 expression in HCC. MAIN METHODS The tissue specimens were collected from 25 HCC patients. The underlying regulatory mechanism of ILF2 expression in HCC progression was determined using luciferase reporter assay, quantitative real-time PCR, Western blotting, and BrdU incorporation assay. KEY FINDINGS Of predicted miRNA candidates (miR-122-5p, miR-425-5p, miR-136-5p, miR-7-5p, miR-421 and miR-543), a statistically significant inverse correlation by linear correlation analysis was observed between miR-136-5p and ILF2 mRNA expressions in patients with HCC (r = -0.627, P < 0.001). Further analysis demonstrated that ILF2 was directly regulated by miR-136-5p. In addition, we showed that long noncoding RNA colorectal neoplasia differentially expressed-h (lncRNA CRNDE-h) transcript expression was significantly up-regulated in HCC, and a miR-136-5p binding site was newly found in the lncRNA CRNDE-h transcript sequence using IntaRNA tool. In terms of mechanism, highly-expressed lncRNA CRNDE-h transcript can sponge miR-136-5p, thereby preventing it from interacting with target ILF2 mRNA while promoting the proliferation of HCC cells. SIGNIFICANCE The lncRNA CRNDE-h/miR-136-5p/ILF2 axis plays a significant regulatory role in HCC progression, which may partly explain the pathogenic mechanisms of HCC and may provide promising potential targets for the diagnosis, treatment, and prognosis of HCC.
Collapse
Affiliation(s)
- Tzu-Yue Shiu
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsuan-Hwai Lin
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Yu-Lueng Shih
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - An-Chieh Feng
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsin-Hung Huang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Tien-Yu Huang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chung-Bao Hsieh
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wei-Kuo Chang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Tsai-Yuan Hsieh
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
19
|
Ghafouri-Fard S, Gholipour M, Hussen BM, Taheri M. The Impact of Long Non-Coding RNAs in the Pathogenesis of Hepatocellular Carcinoma. Front Oncol 2021; 11:649107. [PMID: 33968749 PMCID: PMC8097102 DOI: 10.3389/fonc.2021.649107] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the utmost deadly human malignancies. This type of cancer has been associated with several environmental, viral, and lifestyle risk factors. Among the epigenetic factors which contribute in the pathogenesis of HCC is dysregulation of long non-coding RNAs (lncRNAs). These transcripts modulate expression of several tumor suppressor genes and oncogenes and alter the activity of cancer-related signaling axes. Several lncRNAs such as NEAT1, MALAT1, ANRIL, and SNHG1 have been up-regulated in HCC samples. On the other hand, a number of so-called tumor suppressor lncRNAs namely CASS2 and MEG3 are down-regulated in HCC. The interaction between lncRNAs and miRNAs regulate expression of a number of mRNA coding genes which are involved in the pathogenesis of HCC. H19/miR-15b/CDC42, H19/miR-326/TWIST1, NEAT1/miR-485/STAT3, MALAT1/miR-124-3p/Slug, MALAT1/miR-195/EGFR, MALAT1/miR-22/SNAI1, and ANRIL/miR-144/PBX3 axes are among functional axes in the pathobiology of HCC. Some genetic polymorphisms within non-coding regions of the genome have been associated with risk of HCC in certain populations. In the current paper, we describe the recent finding about the impact of lncRNAs in HCC.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Zhang Z, Qin X, Wang Z, Li Y, Chen F, Chen R, Li C, Zhang W, Zhang M. Oxymatrine pretreatment protects H9c2 cardiomyocytes from hypoxia/reoxygenation injury by modulating the PI3K/Akt pathway. Exp Ther Med 2021; 21:556. [PMID: 33850528 PMCID: PMC8027759 DOI: 10.3892/etm.2021.9988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion (I/R) plays an important role in myocardial damage, which has been widely recognized as a key procedure in the cardiovascular disease. A hypoxia/reoxygenation (H/R) model was established using H9c2 cardiomyocytes to investigate the possible positive effect of oxymatrine (OMT), an alkaloid originating from the traditional Chinese herb Sophora flavescens Aiton, on cardiomyocytes exposed to H/R injury and the underlying molecular mechanisms. Cell viability was measured using the MTT assay, lactate dehydrogenase release measurements and hematoxylin and eosin staining. Oxidative stress was detected by measuring cellular malondialdehyde (MDA) content, as well as superoxide dismutase (SOD) and catalase (CAT) activities. Apoptosis was detected using TUNEL staining and flow cytometric analysis, and the underlying mechanism was investigated using reverse transcription-quantitative PCR and western blot analyses. The results revealed that OMT increased the viability of H9c2 cardiomyocytes exposed to H/R. The OMT pretreatment decreased the production of MDA by reactive oxygen species and increased the activities of SOD and CAT. Furthermore, the OMT pretreatment reduced the expression of Bax and caspase-3, while inducing Bcl-2 expression. In addition, the protective effect of OMT was shown to be associated with the PI3K/Akt signaling pathway, and the PI3K inhibitor LY294002 attenuated the effects of OMT on the H9c2 cardiomyocytes exposed to H/R. These findings indicate that OMT could be a potential therapeutic candidate for the treatment of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zhongbai Zhang
- The Fourth Detachment, Armed Police and Coastal Police Corps, Wenchang, Hainan 571300, P.R. China
| | - Xueting Qin
- Department of Cardiology, The Third People's Hospital of Jingzhou, Jingzhou, Hubei 434000, P.R. China
| | - Zhenghui Wang
- Department of Human Morphology Section, Logistics University of People's Armed Police Force, Tianjin 300162, P.R. China
| | - Yanchun Li
- Department of Pharmacy, Heilongjiang Municipal Corps Hospital of Chinese People's Armed Police Force, Harbin, Heilongjiang 150076, P.R. China
| | - Fei Chen
- Department of Health Service, The Second Mobile Corps Hospital of Chinese People's Armed Police Force, Wuxi, Jiangsu 214000, P.R. China
| | - Rundu Chen
- Department of Cardiac Thoracic Surgery, Characteristic Medical Center of People's Armed Police Force, Tianjin 300309, P.R. China
| | - Chuang Li
- Department of Cardiac Thoracic Surgery, Characteristic Medical Center of People's Armed Police Force, Tianjin 300309, P.R. China
| | - Wencheng Zhang
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Characteristic Medical Center of People's Armed Police Force, Tianjin 300162, P.R. China
| | - Mei Zhang
- Department of Cardiac Thoracic Surgery, Characteristic Medical Center of People's Armed Police Force, Tianjin 300309, P.R. China
| |
Collapse
|
21
|
Yu Y, Wang L, Li Z, Zheng Y, Shi Z, Wang G. Long noncoding RNA CRNDE functions as a diagnostic and prognostic biomarker in osteosarcoma, as well as promotes its progression via inhibition of miR-335-3p. J Biochem Mol Toxicol 2021; 35:e22734. [PMID: 33522065 DOI: 10.1002/jbt.22734] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/28/2020] [Accepted: 01/20/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND This study was performed to evaluate the diagnostic and prognostic value, as well as the role of long-chain noncoding RNA (lncRNA) colorectal neoplasia differentially expressed (CRNDE) in osteosarcoma (OS). MATERIALS AND METHODS A quantitative real-time polymerase chain reaction assay was to determine lncRNA CRNDE and microRNA-335-3p (miR-335-3p) expressions. The Kaplan-Meier analysis was to analyze the relationship between lncRNA CRNDE expression and survival in patients with OS. Receiver operating characteristic curves were to evaluate the diagnostic value of lncRNA CRNDE in OS. Bioinformatics analysis and luciferase reporter assays were used to predict and confirm the relationship between lncRNA CRNDE and miR-335-3p. Cell counting Kit-8 and transwell migration assays assessed the role of lncRNA CRNDE and miR-335-3p in OS cells. RESULTS lncRNA CRNDE expression was upregulated and miR-355-3p expression was downregulated in OS. In patients with OS, low lncRNA CRNDE expression demonstrated higher overall survival, whereas high lncRNA CRNDE expression was an independent poor prognostic factor. Furthermore, increased lncRNA CRNDE expression was associated with distant metastasis and the tumor-node-metastasis stage in patients with OS, which can be considered as an independent diagnostic biomarker in OS. We revealed that miR-335-3p was the target of lncRNA CRNDE. It also demonstrated that knockdown of lncRNA CRNDE inhibited OS cell proliferation, migration, and invasion, and inhibition of miR-355-3p promoted this effect. Finally, miR-335-3p partially mediated the stimulatory effects of lncRNA CRNDE in OS. CONCLUSION We demonstrated that lncRNA CRNDE is a potential diagnostic and prognostic biomarker for OS, and the lncRNA CRNDE/miR-335-3p axis participates in OS progression.
Collapse
Affiliation(s)
| | - Leiming Wang
- Department of Laboratory, Zhengzhou Orthopedic Hospital, Zhengzhou, China
| | - Zijun Li
- Department of Laboratory, Zhengzhou Orthopedic Hospital, Zhengzhou, China
| | - Yan Zheng
- Department of Laboratory, Zhengzhou Orthopedic Hospital, Zhengzhou, China
| | - Zhisong Shi
- Department of Orthopedic Surgery, Zhumadian Central Hospital, Zhumadian, China
| | - Guanghui Wang
- Department of Orthopedic Surgery, Zhumadian Central Hospital, Zhumadian, China
| |
Collapse
|
22
|
The emerging role of non-coding RNAs in the regulation of PI3K/AKT pathway in the carcinogenesis process. Biomed Pharmacother 2021; 137:111279. [PMID: 33493969 DOI: 10.1016/j.biopha.2021.111279] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The PI3K/AKT pathway is an intracellular signaling pathway with an indispensable impact on cell cycle control. This pathway is functionally related with cell proliferation, cell survival, metabolism, and quiescence. The crucial role of this pathway in the development of cancer has offered this pathway as a target of novel anti-cancer treatments. Recent researches have demonstrated the role of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in controlling the PI3K/AKT pathway. Some miRNAs such as miR-155-5p, miR-328-3p, miR-125b-5p, miR-126, miR-331-3p and miR-16 inactivate this pathway, while miR-182, miR-106a, miR-193, miR-214, miR-106b, miR-93, miR-21 and miR-103/107 enhance activity of this pathway. Expression levels of PI3K/AKT-associated miRNAs could be used to envisage the survival of cancer patients. Numerous lncRNAs such as GAS5, FER1L4, LINC00628, PICART1, LOC101928316, ADAMTS9-AS2, SLC25A5-AS1, MEG3, AB073614 and SNHG6 interplay with this pathway. Identification of the impact of miRNAs and lncRNAs in the control of the activity of PI3K/AKT pathway would enhance the efficacy of targeted therapies against this pathway. Moreover, each of the mentioned miRNAs and lncRNAs could be used as a putative therapeutic candidate for the interfering with the carcinogenesis. In the current study, we review the role of miRNAs and lncRNAs in controlling the PI3K/AKT pathway and their contribution to carcinogenesis.
Collapse
|
23
|
Zhang Q, Sun L, Zhang Q, Zhang W, Tian W, Liu M, Wang Y. Construction of a disease-specific lncRNA-miRNA-mRNA regulatory network reveals potential regulatory axes and prognostic biomarkers for hepatocellular carcinoma. Cancer Med 2020; 9:9219-9235. [PMID: 33232580 PMCID: PMC7774738 DOI: 10.1002/cam4.3526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 09/21/2020] [Indexed: 01/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy with a high incidence and poor prognosis. Exploration of the underlying mechanisms and effective prognostic indicators is conducive to clinical management and optimization of treatment. The RNA‐seq and clinical phenotype data of HCC were retrieved from The Cancer Genome Atlas (TCGA), and differential expression analysis was performed. Then, a differential lncRNA‐miRNA‐mRNA regulatory network was constructed, and the key genes were further identified and validated. By integrating this network with the online tool‐based ceRNA network, an HCC‐specific ceRNA network was obtained, and lncRNA‐miRNA‐mRNA regulatory axes were extracted. RNAs associated with prognosis were further obtained, and multivariate Cox regression models were established to identify the prognostic signature and nomogram. As a result, 198 DElncRNAs, 120 DEmiRNAs, and 2827 DEmRNAs were identified, and 30 key genes identified from the differential network were enriched in four cancer‐related pathways. Four HCC‐specific lncRNA‐miRNA‐mRNA regulatory axes were extracted, and SNHG11, CRNDE, MYLK‐AS1, E2F3, and CHEK1 were found to be related with HCC prognosis. Multivariate Cox regression analysis identified a prognostic signature, comprised of CRNDE, MYLK‐AS1, and CHEK1, for overall survival (OS) of HCC. A nomogram comprising the prognostic signature and pathological stage was established and showed some net clinical benefits. The AUC of the prognostic signature and nomogram for 1‐year, 3‐year, and 5‐year survival was 0.777 (0.657‐0.865), 0.722 (0.640‐0.848), and 0.630 (0.528‐0.823), and 0.751 (0.664‐0.870), 0.773 (0.707‐0.849), and 0.734 (0.638‐0.845), respectively. These results provided clues for the study of potential biomarkers and therapeutic targets for HCC. In addition, the obtained 30 key genes and 4 regulatory axes might also help elucidate the underlying mechanism of HCC.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biostatistics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lin Sun
- Department of Biostatistics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qiuju Zhang
- Department of Biostatistics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Zhang
- Department of Biostatistics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Tian
- Department of Biostatistics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Meina Liu
- Department of Biostatistics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yupeng Wang
- Department of Biostatistics, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
24
|
Wu Y, Zhang Y, Qin X, Geng H, Zuo D, Zhao Q. PI3K/AKT/mTOR pathway-related long non-coding RNAs: roles and mechanisms in hepatocellular carcinoma. Pharmacol Res 2020; 160:105195. [PMID: 32916254 DOI: 10.1016/j.phrs.2020.105195] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide with high prevalence and lethality. The oncogenic phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway is a classic dysregulated pathway involved in the pathogenesis of HCC. However, the underlying mechanism for how PI3K/AKT/mTOR pathway aberrantly activates HCC has not been entirely elucidated. The recognition of the functional roles of long non-coding RNAs (lncRNAs) in PI3K/AKT/mTOR signaling axis sheds light on a new dimension to our understanding of hepatocarcinogenesis. In this review, we comprehensively summarize 67 dysregulated PI3K/AKT/mTOR pathway-related lncRNAs in HCC. Many studies have indicated that the 67 dysregulated lncRNAs show oncogenic or anti-oncogenic effects in HCC by regulation on epigenetic, transcriptional and post-transcriptional levels and they play pivotal roles in the initiation of HCC in diverse biological processes like proliferation, metastasis, drug resistance, radio-resistance, energy metabolism, autophagy and so on. Besides, many of these lncRNAs are associated with clinicopathological features and clinical prognosis in HCC, which may provide a potential future application in the diagnosis and therapy of HCC.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Yingshi Zhang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Xiaochun Qin
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Haobin Geng
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Qingchun Zhao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang 110840, China.
| |
Collapse
|
25
|
Xie SC, Zhang JQ, Jiang XL, Hua YY, Xie SW, Qin YA, Yang YJ. LncRNA CRNDE facilitates epigenetic suppression of CELF2 and LATS2 to promote proliferation, migration and chemoresistance in hepatocellular carcinoma. Cell Death Dis 2020; 11:676. [PMID: 32826865 PMCID: PMC7442829 DOI: 10.1038/s41419-020-02853-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/08/2023]
Abstract
Our study aimed to investigate the expression, functional significance, and related mechanism of long noncoding RNA CRNDE (colorectal neoplasia differentially expressed) in hepatocellular carcinoma (HCC) pathogenesis. The resulted revealed that CRNDE was significantly overexpressed in HCC tissues and cell lines, and was statistically correlated with poor clinical outcome. CRNDE knockdown markedly decreased HCC cell proliferation, migration, and chemoresistance. In addition, in vivo experiments confirmed the suppressive effect of CRNDE knockdown on HCC progression. Mechanically, CRNDE directly bound to EZH2 (enhancer of zeste homolog), SUZ12 (suppressor of zeste 12), SUV39H1, and mediated their inhibition of tumor suppressor genes, including CUGBP Elav-like family member 2 (CELF2) and large tumor suppressor 2 (LATS2). CELF2 exerted tumor suppressive effect in HCC and was involved in CRNDE-mediated oncogenic effect. In addition, the oncogenic effects of CRNDE on HCC proliferation, migration and tumorigenesis, as well as its inhibition of Hippo pathway were abolished by LATS2 overexpression. Together, our work demonstrated the importance of CRNDE in HCC progression and elucidated the underlying molecular mechanisms. These findings provided new insights into HCC pathogenesis and chemoresistance mediated by CRNDE.
Collapse
Affiliation(s)
- Shu-Cai Xie
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China
| | - Jian-Quan Zhang
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China
| | - Xi-Li Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, 410007, Hunan Province, People's Republic of China
| | - Yong-Yong Hua
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China
| | - Shao-Wei Xie
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China
| | - Ye-Ang Qin
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China
| | - Yi-Jun Yang
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China.
| |
Collapse
|
26
|
Lin Z, Ni X, Dai S, Chen H, Chen J, Wu B, Ao J, Shi K, Sun H. Screening and verification of long noncoding RNA promoter methylation sites in hepatocellular carcinoma. Cancer Cell Int 2020; 20:311. [PMID: 32684848 PMCID: PMC7362420 DOI: 10.1186/s12935-020-01407-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Background Long noncoding ribonucleic acid (lncRNA) promoter methylation is closely related to the occurrence and development of hepatocellular carcinoma (HCC). Thus, we aim to screen and verify the lncRNA promoter methylation sites associated with overall survival (OS), vascular invasion, pathological grade, and clinical stage in HCC. Methods Methylation-related data including clinical characteristic, transcriptome, methylation, and messenger RNA (mRNA) expression were taken from the Cancer Genome Atlas (TCGA) database. The OS, vascular invasion, pathological grade, and clinical stage-related lncRNA promoter methylation models were developed by the least absolute shrinkage and selection operator (LASSO) algorithm based on the lncRNA promoter methylation sites screened via R software. The Kaplan-Meier analysis, the area under the receiver operating characteristic (ROC) curve (AUC), the calibration curve (C-index) were performed to evaluate the performance of these models. Finally, the methylation-specific polymerase chain reaction (MS-PCR) was performed to verify the accuracy of these models based on 146 HCC tissues from our hospital. Results A total of 10 methylation sites were included in the OS-related lncRNA promoter methylation model that could effectively divide HCC patients into high-risk and low-risk groups (P < 0.0001) via survival analysis. COX univariable and multivariable regression analysis found that the OS-related model (P < 0.001, 95% CI 1.378-2.942) and T stage (P < 0.001, 95% CI 1.490-3.418) were independent risk factors affecting OS in HCC patients. The vascular invasion-related model contained 8 methylation sites with its AUC value of 0.657; the pathological grade-related model contained 22 methylation sites with its AUC value of 0.797; the clinical stage-related model contained 13 methylation sites with its AUC of 0.724. Target genes corresponded to vascular invasion-related lncRNA promoter methylation sites were involved in many kinds of biological processes in HCC such as PI3K-Akt signaling pathway. The accuracy of the vascular invasion-related model was consistent with our bioinformatics conclusion after being verified via MS-PCR. Conclusion The lncRNA promoter methylation sites are closely correlated with the process of HCC and can be utilized to improve the therapy and prognosis of HCC.
Collapse
Affiliation(s)
- Zhuo Lin
- Department of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Xiaofeng Ni
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Shengjie Dai
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Hao Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Jianhui Chen
- Department of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China.,Chinese Academy of Sciences Shanghai Branch, Shanghai, People's Republic of China
| | - Boda Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Jianyang Ao
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Keqing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China.,Laboratory of Precision Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Hongwei Sun
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China.,Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| |
Collapse
|
27
|
Lu Y, Sha H, Sun X, Zhang Y, Wu Y, Zhang J, Zhang H, Wu J, Feng J. CRNDE: an oncogenic long non-coding RNA in cancers. Cancer Cell Int 2020; 20:162. [PMID: 32435153 PMCID: PMC7218640 DOI: 10.1186/s12935-020-01246-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal neoplasia differentially expressed (CRNDE) is a long non-coding RNA which has been proved upregulated in various cancers. Meanwhile, CRNDE has been demonstrated to be involved in multiple biological processes of different cancers according to previous study. Moreover, recent studies suggested CRNDE might be a potential diagnostic biomarker and prognostic predictor due to its high sensitivity and specificity in cancer tissues and plasma. In this review, we summarize the biological function of CRNDE and the relevant mechanisms in cancers to establish a molecular basis for the clinical use of CRNDE in the future.
Collapse
Affiliation(s)
- Ya Lu
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China.,2The Forth Clinical School of Nanjing Medical University, Nanjing, China
| | - Huanhuan Sha
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China.,2The Forth Clinical School of Nanjing Medical University, Nanjing, China
| | - Xun Sun
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China.,2The Forth Clinical School of Nanjing Medical University, Nanjing, China
| | - Yuan Zhang
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China
| | - Yang Wu
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China
| | - Junying Zhang
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China
| | - Hui Zhang
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China.,2The Forth Clinical School of Nanjing Medical University, Nanjing, China
| | - Jianzhong Wu
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China
| | - Jifeng Feng
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China
| |
Collapse
|
28
|
Progress in the study of long noncoding RNA in tongue squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129:51-58. [DOI: 10.1016/j.oooo.2019.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/13/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022]
|
29
|
Zeng B, Ge C, Zhao W, Fu K, Liu L, Lin Z, Fu Q, Li Z, Li R, Guo H, Li C, Zhao L, Hu H, Yang H, Huang W, Huang Y, Song X. Anticancer effect of the traditional Chinese medicine herb Maytenus compound via the EGFR/PI3K/AKT/GSK3β pathway. Transl Cancer Res 2019; 8:2130-2140. [PMID: 35116963 PMCID: PMC8798896 DOI: 10.21037/tcr.2019.09.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
Background Cancer is a leading cause of death worldwide; folk anticancer medicinal plants have applied for cancer treatment. The Maytenus compound tablet as traditional Chinese compound medicine has been approved for alleviating hyperplasia of mammary glands, whether it can inhibit cancer still unknown. The study was to evaluate the anticancer activity of the Maytenus compound tablet. Methods MTS assay evaluated the anti-proliferation effect of the Maytenus compound on H226, A2058, 786O and HeLa cancer cells and two normal epithelial cell lines, namely, 16HBE and Hecate. Nude mouse xenograft tumor model using H226 and HeLa cells examined the drug’s anticancer effect in vivo. Western blot assay studied the possible mechanism. Results The Maytenus compound indicated obvious ability to against proliferation in four strains of cancer cells, particularly against H226 cells by an IC50 of 85.47±10.06 µg/mL and against HeLa cells by an IC50 of 128.74±17.46 µg/mL. However, it had a low cytotoxicity in human normal epithelial cell lines 16HBE with an IC50 of 4,555.86±25.21 µg/mL and Hecate with an IC50 of 833.56±181.88 µg/mL. The Maytenus compound at the 2.45 g/kg oral dosages inhibited the proliferation of H226 cells and HeLa cells in nude mouse with inhibitory rates of 36.06% and 26.45%, respectively, and no organ toxicity. The Maytenus compound could significantly downregulate the expression of pEGFR, pPI3K, pAKT, pGSK3β, β-catenin, and c-MYC and upregulate the protein expression of GSK3β. Conclusions The Maytenus compound has significant anticancer activities against human cancer H226 and HeLa cells both in vitro and in vivo, highlighting it may be an anticancer medicine.
Collapse
Affiliation(s)
- Baozhen Zeng
- Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China.,Department of Yunnan Tumor Research Institute, the Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Chunlei Ge
- Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Wentao Zhao
- Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Kaicong Fu
- Department of Traditional medicine research laboratory, Puer Traditional Ethnomedicine Institute, Puer 665000, China
| | - Lin Liu
- Department of Traditional medicine research laboratory, Puer Traditional Ethnomedicine Institute, Puer 665000, China
| | - Zhuying Lin
- Department of Oncology Yan'An Hospital of Kunming City, Kunming 650118, China
| | - Qiaofen Fu
- Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Zhen Li
- Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Huan Guo
- Department of Oncology Yan'An Hospital of Kunming City, Kunming 650118, China
| | - Chunyan Li
- Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China.,Department of Yunnan Tumor Research Institute, the Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Liufang Zhao
- Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Hongyan Hu
- Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Hanyu Yang
- Department of Traditional medicine research laboratory, Puer Traditional Ethnomedicine Institute, Puer 665000, China
| | - Wenhua Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Youguang Huang
- Department of Yunnan Tumor Research Institute, the Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Xin Song
- Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China.,Department of Yunnan Tumor Research Institute, the Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| |
Collapse
|
30
|
Zhou Y, He X, Liu R, Qin Y, Wang S, Yao X, Li C, Hu Z. LncRNA CRNDE regulates the proliferation and migration of vascular smooth muscle cells. J Cell Physiol 2019; 234:16205-16214. [PMID: 30740670 DOI: 10.1002/jcp.28284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 01/24/2023]
Abstract
Restenosis after angioplasty or stent is a major clinical problem. While long noncoding RNAs (lncRNAs) are implicated in a variety of diseases, their role in restenosis is not well understood. This study aims to investigate how dysregulated lncRNAs and messenger RNAs (mRNAs) contribute to restenosis. By microarray analysis, we identified 202 lncRNAs and 625 mRNAs (fold change > 2.0, p < 0.05) differentially expressed between the balloon-injured carotid artery and uninjured carotid artery in the rats. Among differentially expressed lncRNAs, LncRNA CRNDE had the highest fold change and the change was validated by reverse transcription polymerase chain reaction. We found that LncRNA CRNDE was significantly upregulated in injured rat carotid artery and vascular smooth muscle cells (VSMCs) stimulated by platelet-derived growth factor-BB (PDGF-BB). Knockdown of LncRNA CRNDE by small interference RNA significantly inhibited PDGF-BB stimulated proliferation and migration of VSMCs. Moreover, knockdown of LncRNA CRNDE attenuated PDGF-BB-induced phenotypic change of VSMCs. Taken together, our study reveals a novel mechanoresponsive LncRNA CRNDE which may be a therapeutic target for restenosis.
Collapse
Affiliation(s)
- Yu Zhou
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Xuyu He
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ruiming Liu
- Laboratory of Department of Surgery, The First Affiliated Hospital of Sun Yat-sen Universitya, Guangzhou, China
| | - Yuansen Qin
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Shenming Wang
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Xi Yao
- Department of Biomedical Sciences, Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Zuojun Hu
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
31
|
Han S, Han B, Li Z, Sun D. Downregulation of long noncoding RNA CRNDE suppresses drug resistance of liver cancer cells by increasing microRNA-33a expression and decreasing HMGA2 expression. Cell Cycle 2019; 18:2524-2537. [PMID: 31416393 DOI: 10.1080/15384101.2019.1652035] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
At present, some researches have revealed the participation of long noncoding RNAs (lncRNAs) in liver cancer, but few of them have mentioned the role of CRNDE in drug resistance of liver cancer. Hence, this study is conducted to understand the role of CRNDE on liver cancer by regulating microRNA-33a (miR-33a) and high mobility group protein A2 (HMGA2) in liver cancer. First, drug-resistance model (HepG2 and BEL-7402) of human liver cancer cells was established. Then, CRNDE expression in drug-resistant cell lines (HepG2/adriamycin [ADM], BEL-7402/ADM) and parental cell lines (HepG2, BEL-7402) was detected. Furthermore, HepG2/ADM and BEL-7402/ADM cell lines with poor CRNDE expression or miR-33a overexpression was constructed. Next, drug-resistance index was calculated, and cell proliferation, apoptosis, migration, and invasion were detected, respectively. Then, the growth of tumor was observed in nude mice. Finally, the binding relationship between CRNDE and miR-33a and the targeting relationship between miR-33a and HMGA2 were verified. LncRNA CRNDE expressed highly in drug-resistant cells of liver cancer. Downregulated CRNDE and upregulated miR-33a-inhibited cells drug-resistance and promoted their apoptosis in liver cancer drug-resistant cells. CRNDE adsorbing and inhibiting miR-33a to promote HMGA2 in liver cancer drug-resistant cells by acting as a ceRNA. Silencing CRNDE or up-regulating miR-33a inhibited tumor growth of liver cancer in vivo. Our study provides evidence that downregulated CRNDE could upregulate miR-33a and inhibit HMGA2 expression, thus significantly promotes apoptosis of liver cancer cells and inhibiting its proliferation, migration, invasion and drug resistance.
Collapse
Affiliation(s)
- Shukun Han
- Genneral Surgery, The Fourth Affiliated Hospital of China Medical University , Shenyang , PR, China
| | - Bing Han
- Digestive System Department, Liaoyang Central Hospital , Liaoyang , PR, China
| | - Zhongmin Li
- Genneral Surgery, The Fourth Affiliated Hospital of China Medical University , Shenyang , PR, China
| | - Du Sun
- Genneral Surgery, The Fourth Affiliated Hospital of China Medical University , Shenyang , PR, China
| |
Collapse
|
32
|
Overexpression of long non-coding RNA LINC00982 suppresses cell proliferation and tumor growth of papillary thyroid carcinoma through PI3K-ATK signaling pathway. Biosci Rep 2019; 39:BSR20191210. [PMID: 31262968 PMCID: PMC6629942 DOI: 10.1042/bsr20191210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been widely reported that involved in human cancers, including papillary thyroid carcinoma (PTC). The present study aims to investigate the biological role of LINC00982 in PTC. The mRNA expression of LINC00982 in human PTC tissues was detected using qPCR. Moreover, Kaplan-Meier method was performed to analyze the internal relevance between LINC00982 expression and overall survival (OS) rate of patients with PTC. In addition, gain- and loss-of-functions assays were performed to detect the effects of LINC00982 on the cell proliferation and migration in PTC cells. Furthermore, western blot assay was used to measure the alteration expression levels of apoptosis relative proteins and the relative protein involved phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway. Finally, a xenograft model was used to analyze the antitumor role of LINC00982 in vivo Here, we found that LINC00982 was decreased in human PTC tissues. Patients with decreased LINC00982 expression levels had a reduced OS (P=0.0019) compared with those with high LINC00982 expression levels. Overexpression of LINC00982 suppressed the proliferation and migration of BHT101 and B-CPAP cells and promoted cell apoptosis. Knockdown of LINC00982 promoted the proliferation and migration of BHT101 and B-CPAP cells and induced cell apoptosis. Moreover, in vivo assay showed that overexpression of LINC00982 could suppress the growth of PTC. Finally, LINC00982 could regulate the activity of PI3K/AKT signaling pathway in vitro and in vivo Taken together, our findings demonstrated that overexpression of LINC00982 could suppress cell proliferation and induce cell apoptosis by regulating PI3K/AKT signaling pathway in PTC.
Collapse
|
33
|
Shao N, Tang H, Qu Y, Wan F, Ye D. Development and validation of lncRNAs-based nomogram for prediction of biochemical recurrence in prostate cancer by bioinformatics analysis. J Cancer 2019; 10:2927-2934. [PMID: 31281469 PMCID: PMC6590034 DOI: 10.7150/jca.31132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/13/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Early biochemical recurrence (BCR) was considered as a sign for clinical recurrence and metastasis of prostate cancer (PCa). The purpose of the present study was to identify a lncRNA-based nomogram that can predict BCR of PCa accurately. Materials and methods: Bioinformatics analysis, such as propensity score matching (PSM) and differentially expressed genes (DEGs) analyses were used to identify candidate lncRNAs for further bioinformatics analysis. LASSO Cox regression model was used to select the most significant prognostic lncRNAs and construct the lncRNAs signature for predicting BCR in discovery set. Additionally, a nomogram based on our lncRNAs signature was also formulated. Both lncRNAs signature and nomogram were validated in test set. GSEA was carried out to identify various gene sets which share a common biological function, chromosomal location, or regulation. Results: A total of 457 patients with sufficient BCR information were included in our analysis. Finally, a five lncRNAs signature significantly associated with BCR was identified in discovery set (HR=0.44, 95%CI: 0.27-0.72, C-index = 0.63) and validated in test set (HR=0.22, 95%CI: 0.09-0.56, C-index = 0.65). Additionally, the lncRNAs-based nomogram showed significant performance for predicting BCR in both discovery set (C-index = 0.74) and test set (C-index = 0.78). Conclusion: In conclusion, our lncRNAs-based nomogram is a reliable prognostic tool for BCR in PCa patients. In addition, the present study put forward the direction for the further investigation on the mechanism of PCa progression.
Collapse
Affiliation(s)
- Ning Shao
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong Tang
- Department of Pathology, The Affiliated WuXi No.2 People's Hospital of Nanjing Medical, Wuxi, 214002, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fangning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
34
|
Zhou Y, Wang R, Xu T, Xie P, Zhang Y, Zhang A, Wang X, Yang C, Yang H, Zhu S. Prognostic Value of Long Noncoding RNA CRNDE as a Novel Biomarker in Solid Cancers: An Updated Systematic Review and Meta-Analysis. J Cancer 2019; 10:2386-2396. [PMID: 31258743 PMCID: PMC6584336 DOI: 10.7150/jca.31088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/13/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Long noncoding RNA colorectal neoplasia differentially expressed (CRNDE) has been reported to exhibit a potential oncogenic role in the development of human cancers. However, the clinical value of CRNDE expression in various cancers still remains unclear. Herein, we conducted a meta-analysis to investigate the association between CRNDE and clinical outcomes in solid cancers. Methods: A systematic search was performed though the PubMed, EMBASE, Web of Science, Ovid, Cochrane library, CNKI and WanFang databases for eligible studies on clinical values of CRNDE in solid cancers. The pooled hazard ratios (HRs) or odd ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the link between CRNDE and clinical outcomes. Results: A total of 3690 patients from 20 studies (including 2 studies have 2 cohorts, respectively) were included. The results suggested that elevated CRNDE expression predicted a poor overall survival (OS) for in 13 types of solid cancers (HR=1.46, 95% CI: 1.33-1.58, P<0.001) with no heterogeneity (I2=21.8%, P=0.19). Subgroup analysis indicated a significant association between high CRNDE expression and shorter OS in the studies with digestive system cancers (HR=1.42, 95% CI: 1.28-1.55, P<0.001), qRT-PCR method (HR=1.45, 95% CI: 1.30-1.59, P<0.001), sample size >100 (HR=1.44, 95% CI: 1.32-1.57, P<0.001), and NOS>7 (HR= 1.50, 95% CI: 1.23-1.78, P<0.001). Furthermore, the pooled results showed that CRNDE was an independent prognostic factor for OS in cancer patients (HR=1.37, 95% CI: 1.22-1.52, P<0.001). In addition, we also revealed that CRNDE was positively related to tumor size (OR=2.10, 95%CI: 1.68-2.63, P<0.001), TNM stage (OR=2.86, 95%CI: 2.29-3.56, P<0.001), lymph node metastasis (LNM) (OR=3.21, 95%CI: 2.01-5.13, P<0.001), and distant metastasis (OR=4.36, 95%CI: 2.36-8.07, P<0.001). Although the probable evidences of publication bias were found in the studies with OS, tumor size, TNM stage or LNM, the trim and fill analysis confirmed the reliability of these results was not affected. Conclusion: Elevated CRNDE expression was associated with larger tumor size, advanced TNM stage, worse LNM and distant metastasis, and shorter OS, suggesting that CRNDE may act as an independent prognostic biomarker in solid cancers.
Collapse
Affiliation(s)
- Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Institute of Laboratory Medicine, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Rui Wang
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Tian Xu
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Ping Xie
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Institute of Laboratory Medicine, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Yun Zhang
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Aifeng Zhang
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaojie Wang
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chong Yang
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Hongji Yang
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Shikai Zhu
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, China.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
35
|
Tang D, Zhao L, Peng C, Ran K, Mu R, Ao Y. LncRNA CRNDE promotes hepatocellular carcinoma progression by upregulating SIX1 through modulating miR‐337‐3p. J Cell Biochem 2019; 120:16128-16142. [PMID: 31099050 DOI: 10.1002/jcb.28894] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/10/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Dan Tang
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Lijin Zhao
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Cijun Peng
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Kaiqiong Ran
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Rui Mu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Yu Ao
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| |
Collapse
|
36
|
Mirhosseini SA, Sarfi M, Samavarchi Tehrani S, Mirazakhani M, Maniati M, Amani J. Modulation of cancer cell signaling by long noncoding RNAs. J Cell Biochem 2019; 120:12224-12246. [PMID: 31069841 DOI: 10.1002/jcb.28847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
Cellular signaling pathways play a very important role in almost all molecular processes in the cell, and are generally composed of a complex set of cascades in which enzymes and proteins play a key role. These signaling pathways include different types of cellular signaling classified based on their receptors and effector proteins such as enzyme-linked receptors, cytokine receptors, and G-protein-coupled receptors each of which is subdivided into different classes. Signaling pathways are tightly controlled by different mechanisms mostly thorough inhibiting/activating their receptors or effector proteins. In the last two decades, our knowledge of molecular biology has changed dramatically and today we know that more than 85% of the human genome expresses noncoding RNAs most of which are crucial in the cellular and molecular mechanisms of cells. One of these noncoding RNAs are long noncoding RNAs (lncRNA) containing more than 200 nucleotides. LncRNAs participate in the progression of cancer growth through several mechanism including signaling pathways. In this review, we summarize some of the most important of lncRNAs and their effect on important signaling pathways.
Collapse
Affiliation(s)
- Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Sarfi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Bai Y, Long J, Liu Z, Lin J, Huang H, Wang D, Yang X, Miao F, Mao Y, Sang X, Zhao H. Comprehensive analysis of a ceRNA network reveals potential prognostic cytoplasmic lncRNAs involved in HCC progression. J Cell Physiol 2019; 234:18837-18848. [PMID: 30916406 PMCID: PMC6618076 DOI: 10.1002/jcp.28522] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/24/2022]
Abstract
The aberrant expression of long noncoding RNAs (lncRNAs) has drawn increasing attention in the field of hepatocellular carcinoma (HCC) biology. In the present study, we obtained the expression profiles of lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) in 371 HCC tissues and 50 normal tissues from The Cancer Genome Atlas (TCGA) and identified hepatocarcinogenesis‐specific differentially expressed genes (DEGs, log fold change ≥ 2, FDR < 0.01), including 753 lncRNAs, 97 miRNAs, and 1,535 mRNAs. Because the specific functions of lncRNAs are closely related to their intracellular localizations and because the cytoplasm is the main location for competitive endogenous RNA (ceRNA) action, we analyzed not only the interactions among these DEGs but also the distributions of lncRNAs (cytoplasmic, nuclear or both). Then, an HCC‐associated deregulated ceRNA network consisting of 37 lncRNAs, 10 miRNAs, and 26 mRNAs was constructed after excluding those lncRNAs located only in the nucleus. Survival analysis of this network demonstrated that 15 lncRNAs, 3 miRNAs, and 16 mRNAs were significantly correlated with the overall survival of HCC patients (p < 0.01). Through multivariate Cox regression and lasso analysis, a risk score system based on 13 lncRNAs was constructed, which showed good discrimination and predictive ability for HCC patient survival time. This ceRNA network‐construction approach, based on lncRNA distribution, not only narrowed the scope of target lncRNAs but also provided specific candidate molecular biomarkers for evaluating the prognosis of HCC, which will help expand our understanding of the ceRNA mechanisms involved in the early development of HCC.
Collapse
Affiliation(s)
- Yi Bai
- Department of Liver SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)BeijingChina
| | - Junyu Long
- Department of Liver SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)BeijingChina
| | - Zhisong Liu
- Department of StatisticsTianjin University of Finance and Economics Pearl River CollegeTianjinChina
| | - Jianzhen Lin
- Department of Liver SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)BeijingChina
| | - Hanchan Huang
- Department of Liver SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)BeijingChina
| | - Dongxu Wang
- Department of Liver SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)BeijingChina
| | - Xu Yang
- Department of Liver SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)BeijingChina
| | - Fei Miao
- Department of StatisticsTianjin University of Finance and Economics Pearl River CollegeTianjinChina
| | - Yilei Mao
- Department of Liver SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)BeijingChina
| | - Xinting Sang
- Department of Liver SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)BeijingChina
| | - Haitao Zhao
- Department of Liver SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)BeijingChina
| |
Collapse
|
38
|
Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 2019; 18:26. [PMID: 30782187 PMCID: PMC6379961 DOI: 10.1186/s12943-019-0954-x] [Citation(s) in RCA: 958] [Impact Index Per Article: 191.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling is one of the most important intracellular pathways, which can be considered as a master regulator for cancer. Enormous efforts have been dedicated to the development of drugs targeting PI3K signaling, many of which are currently employed in clinical trials evaluation, and it is becoming increasingly clear that PI3K inhibitors are effective in inhibiting tumor progression. PI3K inhibitors are subdivided into dual PI3K/mTOR inhibitors, pan-PI3K inhibitors and isoform-specific inhibitors. In this review, we performed a critical review to summarize the role of the PI3K pathway in tumor development, recent PI3K inhibitors development based on clinical trials, and the mechanisms of resistance to PI3K inhibition.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Peng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
39
|
Xie B, Zhao Z, Liu Q, Wang X, Ma Z, Li H. CircRNA has_circ_0078710 acts as the sponge of microRNA-31 involved in hepatocellular carcinoma progression. Gene 2019; 683:253-261. [DOI: 10.1016/j.gene.2018.10.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 01/05/2023]
|
40
|
Jing H, Xia H, Qian M, Lv X. Long noncoding RNA CRNDE promotes non-small cell lung cancer progression via sponging microRNA-338-3p. Biomed Pharmacother 2018; 110:825-833. [PMID: 30554121 DOI: 10.1016/j.biopha.2018.12.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The long noncoding RNA colorectal neoplasia differentially expressed (CRNDE) was reported to be involved in the initiation and development of multiple cancers. However, the detailed biological role of CRNDE in non-small cell lung cancer (NSCLC) remains largely unclear. Herein, we aimed to explore the biological function and underlying molecular mechanism of CRNDE in NSCLC. MATERIALS AND METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect the expression of CRNDE in NSCLC tissues and cell lines. Cell counting kit-8 (CCK-8), colony formation, flow cytometry, wound-healing, and transwell invasion assays were applied to detect cell proliferation, colony formation, cycle arrest progression, migration and invasion, respectively. Novel targets of CRNDE were selected with bioinformatics software and were confirmed using luciferase reporter and RNA immunoprecipitation assays. To detect the role of CRNDE in vivo tumorigenesis, tumor xenografts were created. RESULTS CRNDE expression is remarkably upregulated in NSCLC tissues and cell lines. Upregulated CRNDE expression was positively associated with advanced tumor-node-metastasis (TNM) stage, lymph node metastasis and poor overall survival of patients with NSCLC. Function assays demonstrated that knockdown of CRNDE significantly inhibited NSCLC cell proliferation, colony formation, migration and invasionin vitro, and decreased the xenograft tumor volume and weight in vitro. We uncovered that miR-338-3p is a downstream target of CRNDE and that miR-338-3p inhibition partially reversed the CRNDE depletion-mediated inhibitory effect on cell proliferation, colony formation, migration and invasion in NSCLC cells. CONCLUSION These findings indicated that CRNDE functions as an oncogene that exerts important regulatory roles in NSCLC progression via sponging miR-338-3p.
Collapse
Affiliation(s)
- Hongyu Jing
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Huan Xia
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Ming Qian
- Department of Prosthodontics, Stomatology Hospital of Jilin University, Changchun, China
| | - Xiaohong Lv
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
41
|
Zheng YF, Zhang XY, Bu YZ. LINC01133 aggravates the progression of hepatocellular carcinoma by activating the PI3K/AKT pathway. J Cell Biochem 2018; 120:4172-4179. [PMID: 30548306 DOI: 10.1002/jcb.27704] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/27/2018] [Indexed: 01/01/2023]
Abstract
LncRNAs exhibit crucial roles in various pathological diseases, including hepatocellular carcinoma (HCC). Therefore, it is significant to recognize the dysregulated lncRNAs in HCC progression. Recently, LINC01133 has been identified in several tumors. However, the biological role of LINC01133 in HCC remains poorly understood. Currently, we focused on the function of LINC01133 in HCC development. We observed that LINC01133 was significantly increased in HCC cells including HepG2, Hep3B, MHCC-97L, SK-Hep-1, and MHCC-97H cells compared with the normal human liver cell line HL-7702. In addition, PI3K/AKT signaling was highly activated in HCC cells. Knockdown of LINC01133 was able to inhibit HCC cell proliferation, cell colony formation, cell apoptosis, and blocked cell cycle arrest in the G1 phase. For another, downregulation of LINC01133 repressed HCC cell migration and invasion. Subsequently, the PI3K/AKT signaling pathway was strongly suppressed by silence of LINC01133 in Hep3B and HepG2 cells. Then, in vivo tumor xenografts models were established using Hep3B cells to explore the function of LINC01133 in HCC progression. Consistently, our study indicated that knockdown of LINC01133 dramatically repressed HCC tumor progression through targeting the PI3K/AKT pathway in vivo. Taken these together, we revealed that LINC01133 contributed to HCC progression by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yong-Fa Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Yu Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Yan-Zhi Bu
- Department of General Surgery, Lianshui County People's Hospital, Huai'an, China
| |
Collapse
|
42
|
Han J, Han B, Wu X, Hao J, Dong X, Shen Q, Pang H. Knockdown of lncRNA H19 restores chemo-sensitivity in paclitaxel-resistant triple-negative breast cancer through triggering apoptosis and regulating Akt signaling pathway. Toxicol Appl Pharmacol 2018; 359:55-61. [DOI: 10.1016/j.taap.2018.09.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022]
|
43
|
Wu F, Liu Y, Wu Q, Li D, Zhang L, Wu X, Wang R, Zhang D, Gao S, Li W. Long non-coding RNAs potentially function synergistically in the cellular reprogramming of SCNT embryos. BMC Genomics 2018; 19:631. [PMID: 30139326 PMCID: PMC6107955 DOI: 10.1186/s12864-018-5021-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/15/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), a type of epigenetic regulator, are thought to play important roles in embryonic development in mice, and several developmental defects are associated with epigenetic modification disorders. The most dramatic epigenetic reprogramming event occurs during somatic cell nuclear transfer (SCNT) when the expression profile of a differentiated cell is abolished, and a newly embryo-specific expression profile is established. However, the molecular mechanism underlying somatic reprogramming remains unclear, and the dynamics and functions of lncRNAs in this process have not yet been illustrated, resulting in inefficient reprogramming. RESULTS In this study, 63 single-cell RNA-seq libraries were first generated and sequenced. A total of 7009 mouse polyadenylation lncRNAs (including 5204 novel lncRNAs) were obtained, and a comprehensive analysis of in vivo and SCNT mouse pre-implantation embryo lncRNAs was further performed based on our single-cell RNA sequencing data. Expression profile analysis revealed that lncRNAs were expressed in a developmental stage-specific manner during mouse early-stage embryonic development, whereas a more temporal and spatially specific expression pattern was identified in mouse SCNT embryos with changes in the state of chromatin during somatic cell reprogramming, leading to incomplete zygotic genome activation, oocyte to embryo transition and 2-cell to 4-cell transition. No obvious differences between other stages and mouse NTC or NTM embryos at the same stage were observed. Gene oncology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and weighted gene co-expression network analysis (WGCNA) of lncRNAs and their association with known protein-coding genes suggested that several lncRNAs and their associated with known protein-coding genes might be involved in mouse embryonic development and cell reprogramming. CONCLUSIONS This is a novel report on the expression landscapes of lncRNAs of mouse NT embryos by scRNA-seq analysis. This study will provide insight into the molecular mechanism underlying the involvement of lncRNAs in mouse pre-implantation embryonic development and epigenetic reprogramming in mammalian species after SCNT-based cloning.
Collapse
Affiliation(s)
- Fengrui Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Yong Liu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Qingqing Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Dengkun Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Ling Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Rong Wang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Di Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Shaorong Gao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenyong Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| |
Collapse
|