1
|
Yu J, Ma Y, Zhang X, Wang S, Zhou L, Liu X, Li L, Liu L, Song H, Luo Y, Wen S, Li W, Niu X. β-Cyclodextrin and Hyaluronic Acid-Modified Targeted Nanodelivery System for Atherosclerosis Prevention. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35421-35437. [PMID: 38940349 DOI: 10.1021/acsami.4c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Natural products have been widely recognized in clinical treatment because of their low toxicity and high activity. It is worth paying attention to modifying the biopolymer into nanostructures to give natural active ingredients additional targeting effects. In this study, based on the multifunctional modification of β-cyclodextrin (β-CD), a nanoplatform encapsulating the unstable drug (-)-epicatechin gallate (ECG) was designed to deliver to atherosclerotic plaques. Acetalization cyclodextrin (PH-CD), which responds to low-pH environments, and hyaluronic acid cyclodextrin, which targets the CD44 receptor on macrophage membranes, were synthesized from β-CD and hyaluronic acid using acetalization and transesterification, respectively. The resulting dual-carrier nanoparticles (Double-NPs) loaded with ECG were prepared using a solvent evaporation method. The Double-NPs effectively scavenged reactive oxygen species, promoted macrophage migration, inhibited macrophage apoptosis, and suppressed abnormal proliferation and migration of vascular smooth muscle cells. Furthermore, the Double-NPs actively accumulated in atherosclerotic plaques in ApoE-/- mice fed with a high-fat diet, leading to a reduced plaque area, inflammatory infiltration, and plaque instability. Our findings demonstrate that the newly developed ECG nanopreparation represents an effective and safe nanotherapy for diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Yajing Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Xinya Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Siqi Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Lili Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Xinyao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Lingli Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Lingyi Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Yuzhi Luo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Sha Wen
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| |
Collapse
|
2
|
Zhang W, Xu X, Zhang R, Tian Y, Ma X, Wang X, Jiang Y, Man C. Stress-Induced Immunosuppression Inhibits Regional Immune Responses in Chicken Adipose Tissue Partially through Suppressing T Cells by Up-Regulating Steroid Metabolism. Animals (Basel) 2024; 14:225. [PMID: 38254394 PMCID: PMC10812502 DOI: 10.3390/ani14020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Lipid metabolism plays an important role in maintaining lipid homeostasis and regulating immune functions. However, the regulations and mechanisms of lipid metabolism on the regional immune function of avian adipose tissue (AT) have not been reported. In this study, qRT-PCR was used to investigate the changes and relationships of different lipid metabolism pathways in chicken AT during stress-induced immunosuppression (SIIS) inhibiting immune response to Newcastle disease virus vaccine, then the miRNA regulation patterns of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) gene and its potential applications were further identified. The results showed that AT actively responded to SIIS, and ATGL, CPT1A and HMGCR were all the key genes involved in the processes of SIIS inhibiting the immune responses. SIIS significantly inhibited the natural and specific immune phases of the primary immune response and the initiation phase of the secondary immune response in AT by suppressing T cells by up-regulating steroid anabolism. Moreover, steroid metabolism could play dual roles in regulating the regional immune functions of AT. The miR-29a/c-3p-HMGCR network was a potential regulation mechanism of steroid metabolism in AT, and serum circulating miR-29a/c-3p had the potential as molecular markers. The study can provide valuable references for an in-depth investigation of the regional immune functions regulated by lipid metabolism in AT.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (W.Z.); (X.X.); (R.Z.); (Y.T.); (X.M.); (X.W.); (Y.J.)
| |
Collapse
|
3
|
Lu LQ, Li NS, Li MR, Peng JY, Tang LJ, Luo XJ, Peng J. DL-3-n-butylphthalide improves the endothelium-dependent vasodilation in high-fat diet-fed ApoE -/- mice via suppressing inflammation, endothelial necroptosis and apoptosis. Eur J Pharmacol 2023; 956:175938. [PMID: 37536623 DOI: 10.1016/j.ejphar.2023.175938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Impaired endothelium-dependent vasodilation in atherosclerosis is a high-risk factor for myocardial infarction and ischemic stroke, and inflammation, necroptosis and apoptosis contribute to endothelial dysfunction in atherosclerosis. Although DL-3-n-butylphthalide (NBP) has been widely used in treating ischemic stroke, its effect on endothelium-dependent vasodilation remains unknown. This study aims to explore whether NBP is able to improve endothelium-dependent vasodilation in atherosclerosis and the underlying mechanisms. Male ApoE-/- mice were fed with a high-fat diet (HFD) for 9-16 weeks to establish a model of atherosclerosis. NBP were given to the mice after eating HFD for 6 weeks and atorvastatin served as a positive control. The endothelium-dependent vasodilation, the blood flow velocity, the atherosclerotic lesion area, the serum levels of lipids, inflammatory cytokines and necroptosis-relevant proteins (RIPK1, RIPK3 and MLKL), and the endothelial necroptosis and apoptosis within the aorta were measured. Human umbilical vein endothelial cells (HUVECs) were incubated with oxidized low-density lipoprotein (ox-LDL) for 48 h to mimic endothelial injury in atherosclerosis, lactate dehydrogenase release, the ratio of necroptosis and apoptosis and the expression of necroptosis-relevant proteins were examined. Similar to atorvastatin, NBP improves endothelium-dependent vasodilation, decreases aortic flow velocity and reduces atherosclerotic lesion area in HFD-fed ApoE-/- mice, concomitant with a reduction in serum lipids, inflammatory cytokines and necroptosis-relevant proteins, and endothelial necroptosis and apoptosis. Consistently, NBP inhibited necroptosis and apoptosis in ox-LDL-treated HUVECs. Based on these observations, we conclude that NBP exerts beneficial effects on improving the endothelium-dependent vasodilation in atherosclerosis via suppressing inflammation, endothelial necroptosis and apoptosis.
Collapse
Affiliation(s)
- Li-Qun Lu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Nian-Sheng Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Ming-Rui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jiao-Yang Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Li-Jing Tang
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
4
|
Li B, Zhang Z, Fu Y. Anti-inflammatory effects of artesunate on atherosclerosis via miR-16-5p and TXNIP regulation of the NLRP3 inflammasome. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1558. [PMID: 34790764 PMCID: PMC8576697 DOI: 10.21037/atm-21-4939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/16/2021] [Indexed: 12/21/2022]
Abstract
Background Atherosclerosis (AS) is chronic inflammatory arterial disorder. Artesunate could exhibit anti-inflammatory activity in AS, but its role in AS is still in its incipient stage. In this study, we explored the anti-inflammatory effect of artesunate in AS and its underlying mechanism. Methods We isolated CD14+ monocytes from peripheral blood (PB) of 115 coronary heart disease (CHD) patients and 33 non-CHD patients confirmed by coronary angiography. Phorbol myristate acetate (PMA) was used to induce the differentiation of THP-1 monocytes to macrophages. Cells were treated with artesunate at a final concentration of 2.5, 5 or 10 µmol/L. The activation of NLRP3 inflammasome was assessed by immunoblotting of apoptosis-associated speck-like protein containing caspase recruitment domain (ASC). The expression of pro-caspase-1/pro-interleukin (IL)-1β/pro-IL-18 and their mature forms was measured using immunoblotting. A rat model of AS was induced by vitamin D3 (VD3) and a 21-day high-fat diet. Results Downregulated miR-16-5p and upregulated thioredoxin-interacting protein (TXNIP) was determined in CD14+ monocytes from CHD patients and associated with disease severity. Artesunate abrogated the activation of NLRP3 inflammasome in the presence of inflammasome activators in cultured macrophages. Artesunate reduced TXNIP expression and impaired the interaction between TXNIP and NLRP3, thereby inhibiting release of inflammatory cytokines and ASC production in cultured macrophages. In addition, miR-16-5p negatively regulated the messenger RNA (mRNA) of TXNIP. Artesunate increased the expression of miR-16-5p in a dose-dependent manner, and inhibition of miR-16-5p enhanced the secretion of inflammatory cytokines. Our in vivo experiments also demonstrated that artesunate reduced lipid accumulation, atherosclerotic plaque formation, and antagonized inflammation in a dose-dependent manner by upregulating miR-16-5p. Conclusions In summary, the present study unveiled a mechanism underlying the anti-inflammatory role of artesunate in AS.
Collapse
Affiliation(s)
- Bo Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.,Department of Endocrinology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zheqi Zhang
- Department of Endocrinology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yili Fu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.,State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
5
|
Ghafouri F, Bahrami A, Sadeghi M, Miraei-Ashtiani SR, Bakherad M, Barkema HW, Larose S. Omics Multi-Layers Networks Provide Novel Mechanistic and Functional Insights Into Fat Storage and Lipid Metabolism in Poultry. Front Genet 2021; 12:646297. [PMID: 34306005 PMCID: PMC8292821 DOI: 10.3389/fgene.2021.646297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
Fatty acid metabolism in poultry has a major impact on production and disease resistance traits. According to the high rate of interactions between lipid metabolism and its regulating properties, a holistic approach is necessary. To study omics multilayers of adipose tissue and identification of genes and miRNAs involved in fat metabolism, storage and endocrine signaling pathways in two groups of broiler chickens with high and low abdominal fat, as well as high-throughput techniques, were used. The gene-miRNA interacting bipartite and metabolic-signaling networks were reconstructed using their interactions. In the analysis of microarray and RNA-Seq data, 1,835 genes were detected by comparing the identified genes with significant expression differences (p.adjust < 0.01, fold change ≥ 2 and ≤ -2). Then, by comparing between different data sets, 34 genes and 19 miRNAs were detected as common and main nodes. A literature mining approach was used, and seven genes were identified and added to the common gene set. Module finding revealed three important and functional modules, which were involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, biosynthesis of unsaturated fatty acids, Alzheimer's disease metabolic pathway, adipocytokine, insulin, PI3K-Akt, mTOR, and AMPK signaling pathway. This approach revealed a new insight to better understand the biological processes associated with adipose tissue.
Collapse
Affiliation(s)
- Farzad Ghafouri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Mostafa Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Seyed Reza Miraei-Ashtiani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Maryam Bakherad
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| | - Samantha Larose
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Xiao S, Mao L, Xiao J, Wu Y, Liu H. Selenium nanoparticles inhibit the formation of atherosclerosis in apolipoprotein E deficient mice by alleviating hyperlipidemia and oxidative stress. Eur J Pharmacol 2021; 902:174120. [PMID: 33905703 DOI: 10.1016/j.ejphar.2021.174120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022]
Abstract
Atherosclerosis can cause severe cardiovascular diseases, which is the most common cause of death in the world. It's of great significance to study the prevention and treatment of atherosclerosis. Selenium nanoparticles (SeNPs) has drawn more and more attention due to high biological activity, high bioavailability, strong antioxidant capacity and low toxicity, exhibiting great potential in biomedical application. Thus, this study aimed at explore the anti-atherosclerotic effect of two kinds of SeNPs, bovine serum albumin (BSA) surface-decorated SeNPs and chitosan (CS) surface-decorated SeNPs (CS-SeNPs), in apolipoprotein E deficient (ApoE-/-) mice fed with a high-cholesterol and high-fat diet, and the possible mechanisms. The results demonstrated that both BSA-SeNPs (25, 50 and 100 μg Se/kg body weight/day) and CS-SeNPs (50 μg Se/kg body weight/day) could reduce atherosclerotic lesions in ApoE-/- mice after oral administration for 12 weeks. And these effects might mainly attributed to the ability of BSA-SeNPs and CS-SeNPs to inhibit hyperlipidemia by suppressing hepatic cholesterol and fatty acid metabolism, and alleviate oxidative stress by enhancing antioxidant activity. Moreover, the benefits of BSA-SeNPs were dose-dependent and the medium dose of BSA-SeNPs (50 μg Se/kg body weight/day) was optimal. Generally, BSA-SeNPs with mean size 38.5 nm and negative surface charge showed better anti-atherosclerotic effect than CS-SeNPs with mean size 65.8 nm and positive surface charge. These results suggested that SeNPs could significantly alleviate the formation of atherosclerosis in ApoE-/- mice, possibly by inhibiting hyperlipidemia and oxidative stress, exhibiting a potential to serve as an anti-atherosclerotic agent.
Collapse
Affiliation(s)
- Shengze Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Long Mao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Junying Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Wuhan, China
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Wuhan, China.
| |
Collapse
|
7
|
Li X, Huang S, Chen X, Xu Q, Ma Y, You L, Kulikouskaya V, Xiao J, Piao J. Structural characteristic of a sulfated polysaccharide from Gracilaria Lemaneiformis and its lipid metabolism regulation effect. Food Funct 2020; 11:10876-10885. [PMID: 33245309 DOI: 10.1039/d0fo02575e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A sulfated polysaccharide extracted from Gracilaria lemaneiformis (GLP) with a prominent effect in regulating lipid metabolism was isolated. The molecular weight was 31.5 kDa and it was composed mainly of galactose, glucose and xylose. Fourier-transform infrared (FT-IR) spectrum and nuclear magnetic resonance (NMR) analysis suggested that GLP was composed of the following repeating unit: [3-β-Gal-4(OSO3)-1→4-α-3,6-anhydrogal-2(OSO3)-1→]. GLP could significantly decrease serum total cholesterol, triglyceride and free fatty acid levels and lower alanine aminotransferase and aspartate aminotransferase activities in high-fat-diet mice. Additionally, GLP could keep the body weight and attenuate accumulation of fat surrounding the liver and epididymis induced by high-fat diet. Results of RT-PCR indicated that GLP might regulate lipid metabolism and accelerate free fatty acid oxidation by up-regulating the expression of the PPARα, ACS and CPT1a gene. The present study suggests that GLP may be potentially useful for regulating lipid metabolism.
Collapse
Affiliation(s)
- Xiong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Liu D, Song J, Ji X, Liu Z, Li T, Hu B. PRDM16 Upregulation Induced by MicroRNA-448 Inhibition Alleviates Atherosclerosis via the TGF-β Signaling Pathway Inactivation. Front Physiol 2020; 11:846. [PMID: 32848826 PMCID: PMC7431868 DOI: 10.3389/fphys.2020.00846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
The dysregulated expression of microRNAs (miRs) has been associated with pathological and physiological processes of atherosclerosis (AS). In addition, PR domain-containing 16 (PRDM16), a transcriptional mediator of brown fat cell identity and smooth muscle cell activities, may be involved in the hypercholesterolemia during development of AS. The bioinformatic analysis identified a regulatory miR-448 of PRDM16. Hence, the current study aimed to explore whether miR-448 influenced the activities of aortic smooth muscle cell (ASMCs) in AS. We validated that miR-448 was highly expressed in peripheral blood of patients with AS and aortic smooth muscle of AS model mice. Whereas, PRDM16 was downregulated in the aortic smooth muscle of AS model mice. PRDM16 overexpression was observed to inhibit oxidative stress injury and cell proliferation, and promote apoptosis of ASMCs. Mechanistic studies revealed that miR-448 targeted PRDM16 and negatively regulated the PRDM16 expression, while PRDM16 blocked the TGF-β signaling pathway. Furthermore, Downregulated miR-448 alleviated oxidative stress injury, and attenuated ASMC cell proliferation, migration and enhanced cell apoptosis through upregulation of PRDM16. Taken together, silencing of miR-448 upregulates PRDM16 and inactivates the TGF-β signaling pathway, thereby impeding development of AS by repressing the proliferation, migration and invasion of ASMCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Bo Hu
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Lou X, Ma X, Wang D, Li X, Sun B, Zhang T, Qin M, Ren L. Systematic analysis of long non-coding RNA and mRNA expression changes in ApoE-deficient mice during atherosclerosis. Mol Cell Biochem 2019; 462:61-73. [PMID: 31446617 PMCID: PMC6834762 DOI: 10.1007/s11010-019-03610-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/10/2019] [Indexed: 12/28/2022]
Abstract
Atherosclerosis plays an important role in the pathology of coronary heart disease, cerebrovascular disease, and systemic vascular disease. Long non-coding RNAs (lncRNAs) are involved in most biological processes and are deregulated in many human diseases. However, the expression alteration and precise role of lncRNAs during atherosclerosis are unknown. We report here the systematic profiling of lncRNAs and mRNAs in an ApoE-deficient (ApoE-/-) mouse model of atherosclerosis. Clariom D solutions for the mouse Affymetrix Gene Chip were employed to analyze the RNAs from control and ApoE-/- mice. The functions of the differentially expressed mRNAs and lncRNAs and the relationships of their expression with atherosclerosis were analyzed by gene ontology, co-expression network, pathway enrichment, and lncRNA target pathway network analyses. Quantitative real-time PCR (QRT-PCR) was used to determine the expression of mRNAs and lncRNAs. A total of 2212 differentially expressed lncRNAs were identified in ApoE-/- mice, including 1186 up-regulated and 1026 down-regulated lncRNAs (|FC| ≥ 1.1, p < 0.05). A total of 1190 differentially expressed mRNAs were found in the ApoE-/- mice with 384 up-regulated and 806 down-regulated (|FC| ≥ 1.1, p < 0.05). Bioinformatics analyses demonstrated extensive co-expression of lncRNAs and mRNAs and concomitant deregulation of multiple signaling pathways associated with the initiation and progression of atherosclerosis. The identified differentially expressed mRNAs and lncRNAs as well as the related signaling pathways may provide systematic information for understanding the pathogenesis and identifying biomarkers for the diagnosis, treatment, and prognosis of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqian Lou
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Xiaoyan Ma
- Department of Cardiology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, People's Republic of China
| | - Dawei Wang
- Department of Emergency, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Xiangjun Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Bo Sun
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Tong Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Meng Qin
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
10
|
Abd El-Kader SB, Guemei AAS, Barakat MK, Diab IH, Megallaa MH. Assessment of the Effect of HMGCR Variant Alleles on Response to Atorvastatin Treatment in Type 2 Diabetic Egyptian Patients. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2019. [DOI: 10.32527/2019/101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|