1
|
Wojdasiewicz P, Brodacki S, Cieślicka E, Turczyn P, Poniatowski ŁA, Ławniczak W, Olczak M, Stolarczyk EU, Wróbel E, Mikulska A, Lach-Gruba A, Żuk B, Romanowska-Próchnicka K, Szukiewicz D. Salidroside: A Promising Agent in Bone Metabolism Modulation. Nutrients 2024; 16:2387. [PMID: 39125268 PMCID: PMC11314424 DOI: 10.3390/nu16152387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Rhodiola rosea, a long-lived herbaceous plant from the Crassulaceae group, contains the active compound salidroside, recognized as an adaptogen with significant therapeutic potential for bone metabolism. Salidroside promotes osteoblast proliferation and differentiation by activating critical signaling pathways, including bone morphogenetic protein-2 and adenosine monophosphate-activated protein kinase, essential for bone formation and growth. It enhances osteogenic activity by increasing alkaline phosphatase activity and mineralization markers, while upregulating key regulatory proteins including runt-related transcription factor 2 and osterix. Additionally, salidroside facilitates angiogenesis via the hypoxia-inducible factor 1-alpha and vascular endothelial growth factor pathway, crucial for coupling bone development with vascular support. Its antioxidant properties offer protection against bone loss by reducing oxidative stress and promoting osteogenic differentiation through the nuclear factor erythroid 2-related factor 2 pathway. Salidroside has the capability to counteract the negative effects of glucocorticoids on bone cells and prevents steroid-induced osteonecrosis. Additionally, it exhibits multifaceted anti-inflammatory actions, notably through the inhibition of tumor necrosis factor-alpha and interleukin-6 expression, while enhancing the expression of interleukin-10. This publication presents a comprehensive review of the literature on the impact of salidroside on various aspects of bone tissue metabolism, emphasizing its potential role in the prevention and treatment of osteoporosis and other diseases affecting bone physiology.
Collapse
Affiliation(s)
- Piotr Wojdasiewicz
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (P.W.); (S.B.); (E.W.); (A.M.); (B.Ż.); (K.R.-P.)
| | - Stanisław Brodacki
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (P.W.); (S.B.); (E.W.); (A.M.); (B.Ż.); (K.R.-P.)
| | - Ewa Cieślicka
- Department of Rehabilitation, St. Anna’s Trauma Surgery Hospital, Mazovian Rehabilitation Center—STOCER, Barska 16/20, 02-315 Warsaw, Poland; (E.C.); (A.L.-G.)
| | - Paweł Turczyn
- Department of Early Arthritis, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland;
| | - Łukasz A. Poniatowski
- Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Salvador-Allende-Straße 30, 17036 Neubrandenburg, Germany;
| | - Weronika Ławniczak
- Health Department, Institute of Health Holispace, ul. Św. Wincentego 93/5, 03-291 Warsaw, Poland;
| | - Mieszko Olczak
- Department of Forensic Medicine, Center for Biostructure Research, Medical University of Warsaw, Oczki 1, 02-007 Warsaw, Poland
| | - Elżbieta U. Stolarczyk
- Spectrometric Methods Department, National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland;
| | - Edyta Wróbel
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (P.W.); (S.B.); (E.W.); (A.M.); (B.Ż.); (K.R.-P.)
| | - Agnieszka Mikulska
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (P.W.); (S.B.); (E.W.); (A.M.); (B.Ż.); (K.R.-P.)
| | - Anna Lach-Gruba
- Department of Rehabilitation, St. Anna’s Trauma Surgery Hospital, Mazovian Rehabilitation Center—STOCER, Barska 16/20, 02-315 Warsaw, Poland; (E.C.); (A.L.-G.)
| | - Beata Żuk
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (P.W.); (S.B.); (E.W.); (A.M.); (B.Ż.); (K.R.-P.)
| | - Katarzyna Romanowska-Próchnicka
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (P.W.); (S.B.); (E.W.); (A.M.); (B.Ż.); (K.R.-P.)
| | - Dariusz Szukiewicz
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (P.W.); (S.B.); (E.W.); (A.M.); (B.Ż.); (K.R.-P.)
| |
Collapse
|
2
|
Fang G, Fan J, Ding Z, Li R, Lin K, Fu J, Huang Q, Zeng Y, Liu J. Prognostic and Predictive Value of Transcription Factors Panel for Digestive System Carcinoma. Front Oncol 2021; 11:670129. [PMID: 34745933 PMCID: PMC8566925 DOI: 10.3389/fonc.2021.670129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose Digestive system carcinoma is one of the most devastating diseases worldwide. Lack of valid clinicopathological parameters as prognostic factors needs more accurate and effective biomarkers for high-confidence prognosis that guide decision-making for optimal treatment of digestive system carcinoma. The aim of the present study was to establish a novel model to improve prognosis prediction of digestive system carcinoma, with a particular interest in transcription factors (TFs). Materials and Methods A TF-related prognosis model of digestive system carcinoma with data from TCGA database successively were processed by univariate and multivariate Cox regression analyses. Then, for evaluating the prognostic prediction value of the model, ROC curve and survival analysis were performed by external data from GEO database. Furthermore, we verified the expression of TFs expression by qPCR in digestive system carcinoma tissue. Finally, we constructed a TF clinical characteristics nomogram to furtherly predict digestive system carcinoma patient survival probability with TCGA database. Results By Cox regression analysis, a panel of 17 TFs (NFIC, YBX2, ZBTB47, ZNF367, CREB3L3, HEYL, FOXD1, TIGD1, SNAI1, HSF4, CENPA, ETS2, FOXM1, ETV4, MYBL2, FOXQ1, ZNF589) was identified to present with powerful predictive performance for overall survival of digestive system carcinoma patients based on TCGA database. A nomogram that integrates TFs was established, allowing efficient prediction of survival probabilities and displaying higher clinical utility. Conclusion The 17-TF panel is an independent prognostic factor for digestive system carcinoma, and 17 TFs based nomogram might provide implication an effective approach for digestive system carcinoma patient management and treatment.
Collapse
Affiliation(s)
- Guoxu Fang
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jianhui Fan
- Department of Hepatology for Pregnancy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Zongren Ding
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Rong Li
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital of Naval Medical University, Shanghai, China
| | - Kongying Lin
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Fu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Qizhen Huang
- The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,Department of Radiation Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yongyi Zeng
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jingfeng Liu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,Department of Hepatopancreatobiliary Surgery, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
3
|
Wang S, Li G. RETRACTED ARTICLE: LncRNA XIST inhibits ovarian cancer cell growth and metastasis via regulating miR-150-5p/PDCD4 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:763. [PMID: 31930432 DOI: 10.1007/s00210-020-01808-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/04/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Shuli Wang
- Department of Imaging, Provincial Hospital Affiliated to Shandong University, Jinan, 250000, Shandong, China
| | - Guanzhen Li
- Department of Oncology, Provincial Hospital Affiliated to Shandong University, Jinan, 250000, Shandong, China.
| |
Collapse
|
4
|
Chengyu Y, Long Z, Bin Z, Hong L, Xuefei S, Congjuan L, Caixia C, Yan X. Linarin Protects the Kidney against Ischemia/Reperfusion Injury via the Inhibition of Bioactive ETS2/IL-12. Biol Pharm Bull 2021; 44:25-31. [PMID: 33390546 DOI: 10.1248/bpb.b20-00508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemia/reperfusion injury (IRI), a participant in acute kidney injury (AKI), can occur as a series of pathological processes such as inflammation. Linarin (LIN) has been widely used for different diseases. To confirm the anti-inflammatory value and relevant mechanism of LIN during IRI, in vivo and vitro models were established. LIN or dissolvent was given, and histologic analysis, quantitative (q)RT-PCR, serum creatinine and blood urea nitrogen testing were used to evaluate kidney injury. Microarray analysis, protein-protein interaction (PPI) analysis and molecular docking were used to identify the target protein of LIN, and small interfering RNA (siRNA) transfection was applied to explore the crucial role of identified protein. First, we found that LIN inhibited kidney injury in an in vivo IRI model and decreased the expression of interleukin-12 (IL-12) p40 in vivo and in vitro IRI models. To explore the mechanism of LIN, we collected raw data from a public microarray database and identified E26 oncogene homolog 2 (ETS2) as a crucial protein of LIN according to microarray analysis and PPI. Meanwhile, qRT-PCR indicated that IL-12 p40 showed no significant difference between ETS2 knock down group and LIN treated ETS2 knock down group after hypoxia reoxygenation treatment. In addition, according to molecular docking the contact area is highly conserved and located on a PPI domain of ETS2 which indicates that LIN may alter the interaction with synergistic proteins in the regulation of IL-12 p40 expression. Our study demonstrated the anti-inflammatory effect of LIN during IRI-AKI, broadening the medicinal value of LIN and the therapeutic options for IRI-AKI.
Collapse
Affiliation(s)
- Yang Chengyu
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Zhao Long
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Zhou Bin
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Luan Hong
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Shen Xuefei
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Luo Congjuan
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| | - Cao Caixia
- Department of Geriatrics, The Affiliated Hospital of Qingdao University
| | - Xu Yan
- Department of Nephrology, The Affiliated Hospital of Qingdao University
| |
Collapse
|
5
|
Shao Q, Zhang Z, Cao R, Zang H, Pei W, Sun T. CPA4 Promotes EMT in Pancreatic Cancer via Stimulating PI3K-AKT-mTOR Signaling. Onco Targets Ther 2020; 13:8567-8580. [PMID: 32922037 PMCID: PMC7457871 DOI: 10.2147/ott.s257057] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
Background Carboxypeptidase A4 (CPA4), as a novel tumor biomarker, is prevalently observed in various cancers. However, the potential role of CPA4 in pancreatic cancer (PC), to our knowledge, has not been fully clarified. Materials and Methods We systematically explored the detailed function of CPA4 in epithelial to mesenchymal transition (EMT) stimulated PC in human clinical samples and in vitro. Results CPA4 was overexpressed in clinical PC samples that was positively related with tumor size (P=0.026), T stage (P=0.011), lymph-node metastasis (P=0.026) and a worse prognosis for PC patients (P=0.001). Interestingly, CPA4 was inversely correlated with E-cadherin (r=−0.372, P=0.003) in clinical samples and PC cell lines which cooperatively contributed to a worse prognosis (P=0.005) for PC patients. CPA4 overexpression enhanced EMT in AsPC-1 and Capan-2 cells, which promoted EMT-like cellular morphology and cell invasion and migration. Meanwhile, CPA4 overexpression activated EMT and PI3K-AKT-mTOR signaling, following with the downregulation of E-cadherin and β-catenin, and the upregulation of N-cadherin, vimentin, p-PI3K (Tyr458), p-AKT (Ser473) and p-mTOR (Ser2448). However, PI3K inhibitor LY294002 reversed CPA4 overexpression-stimulated EMT in vitro. Moreover, CPA4 was co-immunoprecipitated with AKT in two PC cells with CPA4 high expression. Conversely, CPA4 silencing inhibited EMT in PANC-1 cells. CPA4 overexpression or silencing promoted or inhibited cell proliferation and drug resistance in Capan-2 and PANC-1 cells via regulating Bcl2/Bax and cleaved-caspase3 signaling. However, LY294002 reversed CPA4 overexpression-stimulated cell proliferation and drug resistance in vitro in Bcl2/Bax and caspase3-dependent apoptosis. Conclusion CPA4 overexpression contributes to aggressive clinical stage of PC patients and promotes EMT in vitro via activation of PI3K-AKT-mTOR signaling.
Collapse
Affiliation(s)
- Qingliang Shao
- Department of General Surgery, The Peoples' Hospital of Liaoning Province, Shenyang City, Liaoning Province, People's Republic of China
| | - Zhiqiang Zhang
- Department of General Surgery, The Peoples' Hospital of Liaoning Province, Shenyang City, Liaoning Province, People's Republic of China
| | - Rongxian Cao
- Graduate School of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| | - Hui Zang
- Department of General Surgery, The Peoples' Hospital of Liaoning Province, Shenyang City, Liaoning Province, People's Republic of China
| | - Wanting Pei
- Graduate School of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| | - Tian Sun
- Graduate School of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| |
Collapse
|
6
|
Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 2020; 47:4587-4629. [PMID: 32333246 PMCID: PMC7295848 DOI: 10.1007/s11033-020-05435-1] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Given that the PI3K/AKT pathway has manifested its compelling influence on multiple cellular process, we further review the roles of hyperactivation of PI3K/AKT pathway in various human cancers. We state the abnormalities of PI3K/AKT pathway in different cancers, which are closely related with tumorigenesis, proliferation, growth, apoptosis, invasion, metastasis, epithelial-mesenchymal transition, stem-like phenotype, immune microenvironment and drug resistance of cancer cells. In addition, we investigated the current clinical trials of inhibitors against PI3K/AKT pathway in cancers and found that the clinical efficacy of these inhibitors as monotherapy has so far been limited despite of the promising preclinical activity, which means combinations of targeted therapy may achieve better efficacies in cancers. In short, we hope to feature PI3K/AKT pathway in cancers to the clinic and bring the new promising to patients for targeted therapies.
Collapse
Affiliation(s)
- Ningni Jiang
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Qijie Dai
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
7
|
ETS2 promotes epithelial-to-mesenchymal transition in renal fibrosis by targeting JUNB transcription. J Transl Med 2020; 100:438-453. [PMID: 31641227 DOI: 10.1038/s41374-019-0331-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 08/16/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) plays an important role in the progression of renal tubulointerstitial fibrosis, a common mechanism leading to end-stage renal failure. V-ets erythroblastosis virus E26 oncogene homolog 2 (ETS2), a transcription factor, exhibits diverse roles in pathogenesis; however, its role in renal fibrosis is not yet fully understood. In this study, we detected the expression of ETS2 in an animal model of renal fibrosis and evaluated the potential role of ETS2 in tubular EMT induced by TGF-β1. We found that ETS2 and profibrogenic factors, alpha-smooth muscle actin (α-SMA) and fibronectin (FN), were significantly increased in the unilateral ureteral obstruction (UUO)-induced renal fibrosis model in mice. In vitro, TGF-β1 induced a high expression of ETS2 dependent on Smad3 and ERK signaling pathway in human proximal tubular epithelial cells (HK2). Knockdown of ETS2 abrogated TGF-β1-mediated expression of profibrogenic factors vimentin, α-SMA, collagen I, and FN in HK2 cells. Mechanistically, ETS2 promoted JUNB expression in HK2 cells after TGF-β1 stimulation. Furthermore, luciferase and Chromatin Immunoprecipitation (ChIP) assays revealed that the binding of ETS2 to three EBS motifs on the promoter of JUNB triggered its transcription. Notably, silencing JUNB reversed the ETS2-induced upregulation of the profibrogenic factors in HK2 cells after TGF-β1 stimulation. These findings suggest that ETS2 mediates TGF-β1-induced EMT in renal tubular cells through JUNB, a novel pathway for preventing renal fibrosis.
Collapse
|
8
|
Cheng S, Li C, Xie W, Miao Y, Guo J, Wang J, Zhang Y. Integrated analysis of DNA methylation and mRNA expression profiles to identify key genes involved in the regrowth of clinically non-functioning pituitary adenoma. Aging (Albany NY) 2020; 12:2408-2427. [PMID: 32015217 PMCID: PMC7041752 DOI: 10.18632/aging.102751] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Abstract
Tumour regrowth is a key characteristic of clinically non-functioning pituitary adenoma (NFPA). No applicable prognosis evaluation method is available for post-operative patients. We aimed to identify DNA methylation biomarkers that can facilitate prognosis evaluation. Genome-wide DNA methylation and mRNA microarray analyses were performed for tumour samples from 71 NFPA patients. Differentially expressed genes and methylated genes were identified based on the regrowth vs non-regrowth grouping. There were 139 genes that showed alterations in methylation status and expression level, and only 13 genes showed a negative correlation. The progression-free analysis found that FAM90A1, ETS2, STAT6, MYT1L, ING2 and KCNK1 are related to tumour regrowth. A prognosis-prediction model was built based on all 13 genes from integrated analysis, and the 6-gene model achieved the best area under the receiver operating characteristic curves (AUC) of 0.820, compared with 0.785 and 0.568 for the 13-gene and 7-gene models, respectively. Our prognostic biomarkers were validated by pyrosequencing and RT-PCR. FAM90A1 and ING2 was found to be independent prognostic factors of tumour regrowth with univariate Cox regression. The DNA methylation and expression levels of FAM90A1 and ING2 are associated with tumour regrowth, and may serve as biomarkers for predicting the prognosis of patients with NFPA.
Collapse
Affiliation(s)
- Sen Cheng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Institute for Brain Disorders Brain Tumour Center, China National Clinical Research Center for Neurological Diseases, Key Laboratory of Central Nervous System Injury Research, Beijing 100070, China
| | - Weiyan Xie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Yazhou Miao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Jing Guo
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Jichao Wang
- People's Hospital of Xin Jiang Uygur Autonomous Region, Urumqi 830001, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Institute for Brain Disorders Brain Tumour Center, China National Clinical Research Center for Neurological Diseases, Key Laboratory of Central Nervous System Injury Research, Beijing 100070, China
| |
Collapse
|
9
|
Zhu Q, Zhong AL, Hu H, Zhao JJ, Weng DS, Tang Y, Pan QZ, Zhou ZQ, Song MJ, Yang JY, He JY, Liu Y, Li M, Hu WM, Yang CP, Xiang T, Chen MY, Ma G, Guo L, Xia JC. Acylglycerol kinase promotes tumour growth and metastasis via activating the PI3K/AKT/GSK3β signalling pathway in renal cell carcinoma. J Hematol Oncol 2020; 13:2. [PMID: 31900208 PMCID: PMC6942383 DOI: 10.1186/s13045-019-0840-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Clinically, the median survival in patients with metastatic renal cell carcinoma (RCC) was only 6-12 months and a 5-year survival rate of less than 20%. Therefore, an in-depth study of the molecular mechanisms involved in RCC is of great significance for improving the survival of patients with advanced RCC. Acylglycerol kinase (AGK) is a newly discovered lipid kinase that has been reported to be a potent oncogene that may be involved in the regulation of malignant progression in a variety of tumours. However, the expression and biological characteristics of the AGK gene in RCC remain unclear. METHODS AGK expression was quantified by quantitative real-time PCR, Western blotting and immunohistochemistry in RCC cell lines and paired patient tissues. Kaplan-Meier method and Cox proportional hazards models were used to evaluate the prognostic value of AGK in human RCC tissue samples. Chi-squared test was performed to analyse the correlation between AGK expression and the clinicopathological features. Stable overexpression and knockdown of AGK in RCC cells was constructed with lentivirus. The oncogenic effects of AGK in human RCC progression were investigated using assays of colony formation, anchorage-independent growth, EdU assay, cell cycle analysis, wound-healing, trans-well analysis and xenograft tumour model. GSEA and KEGG analysis were conducted to detect the potential pathway of AGK involved in RCC. These results were further confirmed using the luciferase reporter assays, immunofluorescence and in vivo experiments. RESULTS AGK expression is significantly elevated in RCC and closely related to the malignant development and poor prognosis in RCC patients. By in vitro and in vivo experiments, AGK was shown to enhance the proliferation of RCC cells by promoting the transition from the G1 phase to the S phase in the cell cycle and to enhance the migration and invasion by promoting epithelial-mesenchymal transition. By activating the PI3K/AKT/GSK3β signalling pathway in RCC, AGK can increase nuclear accumulation of β-catenin, which further upregulated TCF/LEF transcription factor activity. CONCLUSIONS AGK promotes the progression of RCC via activating the PI3K/AKT/GSK3β signalling pathway and might be a potential target for the further research of RCC.
Collapse
Affiliation(s)
- Qian Zhu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Ai-Lin Zhong
- Office of International Exchange and Cooperation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Hao Hu
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, Nanchang, 330006, People's Republic of China
| | - Jing-Jing Zhao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - De-Sheng Weng
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yan Tang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Qiu-Zhong Pan
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zi-Qi Zhou
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Meng-Jia Song
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jie-Ying Yang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jun-Yi He
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yuan Liu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Min Li
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Wan-Ming Hu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Chao-Pin Yang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Tong Xiang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Ming-Yuan Chen
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Gang Ma
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Intensive Care Unit, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Ling Guo
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Jian-Chuan Xia
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
10
|
Ni D, Huang X, Wang Z, Deng L, Zeng L, Zhang Y, Lu D, Zou X. Expression characterization and transcription regulation analysis of porcine Yip1 domain family member 3 gene. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:398-407. [PMID: 31480180 PMCID: PMC7054614 DOI: 10.5713/ajas.19.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/20/2019] [Indexed: 01/17/2023]
Abstract
Objective The Yip1 domain family (YIPF) proteins were proposed to function in endoplasmic reticulum (ER) to Golgi transport and maintenance of the morphology of the Golgi, which were homologues of yeast Yip1p and Yif1p. YIPF3, the member 3 of YIPF family was a homolog of Yif1p. The aim of present study was to investigate the expression and regulation mechanism of porcine YIPF3. Methods Quantitative realtime polymerase chain reaction (qPCR) was used to analyze porcine YIPF3 mRNA expression pattern in different tissues and pig kidney epithelial (PK15) cells stimulated by polyinosine-polycytidylic acid (poly [I:C]). Site-directed mutations combined with dual luciferase reporter assays and electrophoretic mobility shift assay (EMSA) were employed to reveal transcription regulation mechanism of porcine YIPF3. Results Results showed that the mRNA of porcine YIPF3 (pYIPF3) was widely expressed with the highest levels in lymph and lung followed by spleen and liver, while weak in heart and skeletal muscle. Subcellular localization results indicated that it expressed in Golgi apparatus and plasma membranes. Upon stimulation with poly (I:C), the level of this gene was dramatically up-regulated in a time- and concentration-dependent manner. pYIPF3 core promoter region harbored three cis-acting elements which were bound by ETS proto-oncogene 2 (ETS2), zinc finger and BTB domain containing 4 (ZBTB4), and zinc finger and BTB domain containing 14 (ZBTB14), respectively. In which, ETS2 and ZBTB4 both promoted pYIPF3 transcription activity while ZBTB14 inhibited it, and these three transcription factors all played important regulation roles in tumorigenesis and apoptosis. Conclusion The pYIPF3 mRNA expression was regulated by ETS2, ZBTB4, and ZBTB14, and its higher expression in immune organs might contribute to enhancing ER to Golgi transport of proteins, thus adapting to the immune response.
Collapse
Affiliation(s)
- Dongjiao Ni
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Xiang Huang
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Zhibo Wang
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Lin Deng
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Li Zeng
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Yiwei Zhang
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Dongdong Lu
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Xinhua Zou
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| |
Collapse
|
11
|
Hao P, Kang B, Li Y, Hao W, Ma F. UBE2T promotes proliferation and regulates PI3K/Akt signaling in renal cell carcinoma. Mol Med Rep 2019; 20:1212-1220. [PMID: 31173226 PMCID: PMC6625406 DOI: 10.3892/mmr.2019.10322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Renal cell carcinoma (RCC) is a common malignant tumor globally. The overall survival of patients with RCC is poor; one important factor is tumor heterogeneity. Ubiquitin-conjugating enzyme E2T (UBE2T) has been reported to act as an oncogene in various types of cancer; however, its role in RCC has yet to be investigated. In the present study, UBE2T was demonstrated via reverse transcription-quantitative PCR analysis to be significantly upregulated in RCC samples and cell lines compared with in normal tissue and cells. Additionally, UBE2T expression was significantly associated with late tumor stage and high grade in patients with RCC, and patients with high UBE2T expression exhibited poor prognosis compared with patients with low expression. Following knockdown of UBE2T in 786-O cells using RNA interference technology, the proliferation and colony formation of cells were inhibited as determined by an MTT assay and crystal violet staining, respectively; however, the migration and invasion of 786-O cells were not affected, as determined by wound-healing assay and Transwell assays, respectively. Xenograft RCC tumor growth in vivo was also significantly suppressed. The expression levels of two mesenchymal cell markers, N-cadherin and vimentin, were reduced following UBE2T knockdown, whereas E-cadherin and fibronectin levels were increased as determined by western blotting, indicating that epithelial-mesenchymal transition was suppressed. In addition, the phosphorylation levels of PI3K, Akt and mTOR were notably decreased following UBE2T knockdown, but were increased when UBE2T was overexpressed. Wortmannin, an Akt inhibitor, reversed the UBE2T overexpression-induced increase in the phosphorylation of PI3K, Akt and mTOR. Similarly, the UBE2T overexpression-induced promotion of 786-O cell proliferation was also attenuated by wortmannin. In conclusion, UBE2T promoted the proliferation of RCC cells by regulating PI3K/Akt signaling, suggesting it may be a novel target for the treatment of patients with RCC.
Collapse
Affiliation(s)
- Peng Hao
- Department of Urology Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Bo Kang
- Department of Central Sterile Supply, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yapeng Li
- Department of Medical Record, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Wenqi Hao
- Distinguished Physician Class, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Feihong Ma
- Department of Interventional Radiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| |
Collapse
|
12
|
Zhang B, Liu P, Zhou Y, Chen Z, He Y, Mo M, Dai G, Xia W, Du Y, Liu Y, Chen X. Dihydroartemisinin attenuates renal fibrosis through regulation of fibroblast proliferation and differentiation. Life Sci 2019; 223:29-37. [DOI: 10.1016/j.lfs.2019.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/21/2019] [Accepted: 03/09/2019] [Indexed: 12/13/2022]
|