1
|
Karp JM, Modrek AS, Ezhilarasan R, Zhang ZY, Ding Y, Graciani M, Sahimi A, Silvestro M, Chen T, Li S, Wong KK, Ramkhelawon B, Bhat KP, Sulman EP. Deconvolution of the tumor-educated platelet transcriptome reveals activated platelet and inflammatory cell transcript signatures. JCI Insight 2024; 9:e178719. [PMID: 39190500 PMCID: PMC11466191 DOI: 10.1172/jci.insight.178719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Tumor-educated platelets (TEPs) are a potential method of liquid biopsy for the diagnosis and monitoring of cancer. However, the mechanism underlying tumor education of platelets is not known, and transcripts associated with TEPs are often not tumor-associated transcripts. We demonstrated that direct tumor transfer of transcripts to circulating platelets is an unlikely source of the TEP signal. We used CDSeq, a latent Dirichlet allocation algorithm, to deconvolute the TEP signal in blood samples from patients with glioblastoma. We demonstrated that a substantial proportion of transcripts in the platelet transcriptome are derived from nonplatelet cells, and the use of this algorithm allows the removal of contaminant transcripts. Furthermore, we used the results of this algorithm to demonstrate that TEPs represent a subset of more activated platelets, which also contain transcripts normally associated with nonplatelet inflammatory cells, suggesting that these inflammatory cells, possibly in the tumor microenvironment, transfer transcripts to platelets that are then found in circulation. Our analysis suggests a useful and efficient method of processing TEP transcriptomic data to enable the isolation of a unique TEP signal associated with specific tumors.
Collapse
Affiliation(s)
- Jerome M. Karp
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Aram S. Modrek
- Department of Radiation Oncology, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Ze-Yan Zhang
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Yingwen Ding
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Melanie Graciani
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Ali Sahimi
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | | | - Ting Chen
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Shuai Li
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | | | | | - Erik P. Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Bravaccini S, Boldrin E, Gurioli G, Tedaldi G, Piano MA, Canale M, Curtarello M, Ulivi P, Pilati P. The use of platelets as a clinical tool in oncology: opportunities and challenges. Cancer Lett 2024:217044. [PMID: 38876385 DOI: 10.1016/j.canlet.2024.217044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
Platelets are small circulating anucleated cells mainly involved in thrombosis and hemostasis processes. Moreover, platelets play an active role in tumorigenesis and cancer progression, stimulating angiogenesis and vascular remodelling, and protecting circulating cancer cells from shear forces and immune surveillance. Several reports indicate that platelet number in the blood circulation of cancer patients is associated with prognosis and response to treatment. However, the mechanisms of platelets "education" by cancer cells and the crosstalk between platelets and tumor are still unclear, and the role of "tumor educated platelets" (TEPs) is achieving growing interest in cancer research. TEPs are a biological source of cancer-derived biomarkers, especially RNAs that are protected by platelets membrane from circulating RNases, and could serve as a non-invasive tool for tumor detection, molecular profiling and evolution during therapy in clinical practice. Moreover, short platelet lifespan offers the possibility to get a snapshot assessment of cancer molecular profile, providing a real-time tool. We review and discuss the potential and the clinical utility, in terms of cancer diagnosis and monitoring, of platelet count together with other morphological parameters and of the more recent and innovative TEP profiling.
Collapse
Affiliation(s)
- Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014 Meldola, Italy.
| | - Elisa Boldrin
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy.
| | - Giorgia Gurioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014 Meldola, Italy.
| | - Gianluca Tedaldi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014 Meldola, Italy.
| | - Maria Assunta Piano
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy.
| | - Matteo Canale
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014 Meldola, Italy.
| | - Matteo Curtarello
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy.
| | - Paola Ulivi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014 Meldola, Italy.
| | - Pierluigi Pilati
- Surgical Oncology of Digestive Tract Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy.
| |
Collapse
|
3
|
Wang Y, Dong A, Jin M, Li S, Duan Y. TEP RNA: a new frontier for early diagnosis of NSCLC. J Cancer Res Clin Oncol 2024; 150:97. [PMID: 38372784 PMCID: PMC10876732 DOI: 10.1007/s00432-024-05620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common type of lung cancer (LC), which is the leading cause of tumor mortality. In recent years, compared with tissue biopsy, which is the diagnostic gold standard for tumor diagnosis, Liquid biopsy (LB) is considered to be a more minimally invasive, sensitive, and safer alternative or auxiliary diagnostic method. However, the current value of LB in early diagnosis of LC is not ideal, so it is particularly important to study the changes in blood composition during the process of tumorigenesis and find more sensitive biomarkers. PURPOSE Platelets are a type of abundant blood cells that carry a large amount of RNA. In the LC regulatory network, activated platelets play an important role in the process of tumorigenesis, development, and metastasis. In order to identify predictive liquid biopsy biomarkers for the diagnosis of NSCLC, we summarized the development and function of platelets, the interaction between platelets and tumors, the value of TEP RNA in diagnosis, prognosis, and treatment of NSCLC, and the method for detecting TEP RNA of NSCLC in this article. CONCLUSION The application of platelets in the diagnosis and treatment of NSCLC remains at a nascent stage. In addition to the drawbacks of low platelet count and complex experimental processes, the diagnostic accuracy of TEP RNA-seq for cancer in different populations still needs to be improved and validated. At present, a large number of studies have confirmed significant differences in the expression of TEP RNA in platelets between NSCLC patients and healthy individuals. Continuous exploration of the diagnostic value of TEP RNA in NSCLC is of utmost importance. The integration of NSCLC platelet-related markers with other NSCLC markers can improve current tumor diagnosis and prognostic evaluation systems, providing broad prospects in tumor screening, disease monitoring, and prognosis assessment.
Collapse
Affiliation(s)
- Yuan Wang
- Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261000, Shandong, China
- Department of Clinical Laboratory Science, Weifang Medical University, Weifang, 261000, Shandong, China
| | - Aiping Dong
- Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261000, Shandong, China
| | - Minhan Jin
- Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261000, Shandong, China
- Department of Clinical Laboratory Science, Weifang Medical University, Weifang, 261000, Shandong, China
| | - Shirong Li
- Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261000, Shandong, China.
| | - Yang Duan
- Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261000, Shandong, China.
| |
Collapse
|
4
|
Cai C, Chen X, He J, Xiang C, Liu Y, Wu K, Luo K. Correlation between LSM1 Expression and Clinical Outcomes in Glioblastoma and Functional Mechanisms. Int J Genomics 2023; 2023:1543620. [PMID: 37954131 PMCID: PMC10635750 DOI: 10.1155/2023/1543620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 11/14/2023] Open
Abstract
Background Glioblastoma (GBM) is an aggressive form of brain tumor characterized by limited treatment options and a bleak prognosis. Although the role of Like-Sm 1 (LSM1), a component of the mRNA splicing machinery, has been studied in various cancers, its significance in GBM remains unclear. The purpose of this research was to investigate the expression of LSM1 and its role in driving GBM progression. Methods We analyzed gene expression data obtained from TCGA and GTEx databases to compare the levels of LSM1 expression between GBM and normal brain tissues. To assess the impact of LSM1, we conducted experiments using U87 GBM cells, wherein we manipulated LSM1 expression through overexpression and knockdown techniques. These experiments allowed us to evaluate cellular behaviors such as proliferation and invasion. Additionally, we explored the correlation between LSM1 expression and immune cell infiltration in GBM. Results Our analysis of TCGA and GTEx datasets revealed a significant upregulation of LSM1 expression in GBM compared to normal brain tissues. In our in vitro experiments using U87 cells, we observed that LSM1 overexpression promoted cell proliferation and invasion, while LSM1 knockdown exerted the opposite effects. Moreover, we discovered correlations between LSM1 expression and immune cell infiltration in GBM, specifically involving TFH cells, CD56bright cells, macrophages, and Th2 cells. Conclusions The findings of this study demonstrate the upregulation of LSM1 in GBM and its contribution to tumor progression by enhancing cell proliferation, invasion, and influencing immune cell infiltration. Our research sheds light on the potential oncogenic role of LSM1 in GBM and suggests its viability as a therapeutic target for this aggressive brain tumor.
Collapse
Affiliation(s)
- Changcheng Cai
- Department of Neurosurgery, Suining Central Hospital, Suining, 629000 Sichuan, China
| | - Xingyu Chen
- Department of Neurosurgery, Suining Central Hospital, Suining, 629000 Sichuan, China
| | - Jimin He
- Department of Neurosurgery, Suining Central Hospital, Suining, 629000 Sichuan, China
| | - Chengwei Xiang
- Department of Neurosurgery, Suining Central Hospital, Suining, 629000 Sichuan, China
| | - Yinggang Liu
- Department of Neurosurgery, Suining Central Hospital, Suining, 629000 Sichuan, China
| | - Ke Wu
- Department of Neurosurgery, Xichang People's Hospital, Xichang, 615000 Sichuan, China
| | - Ke Luo
- Department of Neurosurgery, Suining Central Hospital, Suining, 629000 Sichuan, China
| |
Collapse
|
5
|
Hou Y, Qiu W, Ling Y, Qi X, Liu J, Yang H, Chu L. The role of tumor-associated macrophages in glioma cohort: through both traditional RNA sequencing and single cell RNA sequencing. Front Oncol 2023; 13:1249448. [PMID: 37781198 PMCID: PMC10539593 DOI: 10.3389/fonc.2023.1249448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
Gliomas are the leading cause in more than 50% of malignant brain tumor cases. Prognoses, recurrences, and mortality are usually poor for gliomas that have malignant features. In gliomas, there are four grades, with grade IV gliomas known as glioblastomas (GBM). Currently, the primary methods employed for glioma treatment include surgical removal, followed by chemotherapy after the operation, and targeted therapy. However, the outcomes of these treatments are unsatisfactory. Gliomas have a high number of tumor-associated macrophages (TAM), which consist of brain microglia and macrophages, making them the predominant cell group in the tumor microenvironment (TME). The glioma cohort was analyzed using single-cell RNA sequencing to quantify the genes related to TAMs in this study. Furthermore, the ssGSEA analysis was utilized to assess the TAM-associated score in the glioma group. In the glioma cohort, we have successfully developed a prognostic model consisting of 12 genes, which is derived from the TAM-associated genes. The glioma cohort demonstrated the predictive significance of the TAM-based risk model through survival analysis and time-dependent ROC curve. Furthermore, the correlation analysis revealed the significance of the TAM-based risk model in the application of immunotherapy for individuals diagnosed with GBM. Ultimately, the additional examination unveiled the prognostic significance of PTX3 in the glioma group, establishing it as the utmost valuable prognostic indicator in patients with GBM. The PCR assay revealed the PTX3 is significantly up-regulated in GBM cohort. Additionally, the assessment of cell growth further confirms the involvement of PTX3 in the GBM group. The analysis of cell proliferation showed that the increased expression of PTX3 enhanced the ability of glioma cells to proliferate. The prognosis of glioblastomas and glioma is influenced by the proliferation of tumor-associated macrophages.
Collapse
Affiliation(s)
- Yunan Hou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanguo Ling
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Antunes-Ferreira M, D'Ambrosi S, Arkani M, Post E, In 't Veld SGJG, Ramaker J, Zwaan K, Kucukguzel ED, Wedekind LE, Griffioen AW, Oude Egbrink M, Kuijpers MJE, van den Broek D, Noske DP, Hartemink KJ, Sabrkhany S, Bahce I, Sol N, Bogaard HJ, Koppers-Lalic D, Best MG, Wurdinger T. Tumor-educated platelet blood tests for Non-Small Cell Lung Cancer detection and management. Sci Rep 2023; 13:9359. [PMID: 37291189 PMCID: PMC10250384 DOI: 10.1038/s41598-023-35818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Liquid biopsy approaches offer a promising technology for early and minimally invasive cancer detection. Tumor-educated platelets (TEPs) have emerged as a promising liquid biopsy biosource for the detection of various cancer types. In this study, we processed and analyzed the TEPs collected from 466 Non-small Cell Lung Carcinoma (NSCLC) patients and 410 asymptomatic individuals (controls) using the previously established thromboSeq protocol. We developed a novel particle-swarm optimization machine learning algorithm which enabled the selection of an 881 RNA biomarker panel (AUC 0.88). Herein we propose and validate in an independent cohort of samples (n = 558) two approaches for blood samples testing: one with high sensitivity (95% NSCLC detected) and another with high specificity (94% controls detected). Our data explain how TEP-derived spliced RNAs may serve as a biomarker for minimally-invasive clinical blood tests, complement existing imaging tests, and assist the detection and management of lung cancer patients.
Collapse
Affiliation(s)
- Mafalda Antunes-Ferreira
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Silvia D'Ambrosi
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Mohammad Arkani
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Biomedical Data Science, Leiden University Medical Center, Leiden, The Netherlands
| | - Edward Post
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Sjors G J G In 't Veld
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Jip Ramaker
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Kenn Zwaan
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Ece Demirel Kucukguzel
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Laurine E Wedekind
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Mirjam Oude Egbrink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Daan van den Broek
- Department of Laboratory Medicine, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - David P Noske
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Koen J Hartemink
- Department of Thoracic Surgery, The Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Siamack Sabrkhany
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Idris Bahce
- Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Nik Sol
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Harm-Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | | | - Myron G Best
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Amsterdam, The Netherlands.
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Gao Y, Cheng X, Han M. ZEB1-activated Notch1 promotes circulating tumor cell migration and invasion in lung squamous cell carcinoma. Clin Transl Oncol 2023; 25:817-829. [PMID: 36418641 DOI: 10.1007/s12094-022-02993-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is recognized as the major subtypes of non-small cell lung cancer (NSCLC). Circulating tumor cells (CTCs) are critical players in tumor metastasis. A molecular profiling of CTCs has previously identified notch receptor 1 (Notch1) as an important mediator in NSCLC. Therefore, we investigate Notch1 roles in LUSC and its related mechanisms. METHODS The serum levels of Notch1 were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The CTCs isolated from blood samples were characterized via an immunofluorescence method. Cell motion was determined using Transwell chambers. The regulatory relationship between Notch1 and zinc finger E-box-binding homeobox 1 (ZEB1) was verified by chromatin immunoprecipitation (ChIP) and luciferase reporter assays. The protein levels were detected by western blotting. RESULTS Higher Notch1 expression in patients with LUSC than that in normal controls was observed. Notch1 knockdown inhibited cell motion and epithelial-mesenchymal transition (EMT). ZEB1 transcriptionally activated Notch1. ZEB1 upregulation exacerbated the malignant phenotypes of CTCs. CONCLUSION ZEB1-activated Notch1 promotes malignant phenotypes of CTCs in LUSC and indicates poor prognosis.
Collapse
Affiliation(s)
- Yong Gao
- Department of Clinical Laboratory, Fuyang Second People's Hospital, Fuyang Infectious Disease Clinical College, Anhui Medical University, Fuyang, 236015, Anhui, China
| | - Xinyuan Cheng
- Ocean University of China, Qingdao, 266100, Shandong, China
| | - Mingfeng Han
- Department of Respiratory, Fuyang Second People's Hospital, Fuyang Infectious Disease Clinical College, Anhui Medical University, No. 1088, Yinghe West Road, Yingzhou District, Fuyang, 236015, Anhui, China.
| |
Collapse
|
8
|
Xiang Y, Xiang P, Zhang L, Li Y, Zhang J. A narrative review for platelets and their RNAs in cancers: New concepts and clinical perspectives. Medicine (Baltimore) 2022; 101:e32539. [PMID: 36596034 PMCID: PMC9803462 DOI: 10.1097/md.0000000000032539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent years have witnessed a growing body of evidence suggesting that platelets are involved in several stages of the metastatic process via direct or indirect interactions with cancer cells, contributing to the progression of neoplastic malignancies. Cancer cells can dynamically exchange components with platelets in and out of blood vessels, and directly phagocytose platelets to hijack their proteome, transcriptome, and secretome, or be remotely regulated by metabolites or microparticles released by platelets, resulting in phenotypic, genetic, and functional modifications. Moreover, platelet interactions with stromal and immune cells in the tumor microenvironment lead to alterations in their components, including the ribonucleic acid (RNA) profile, and complicate the impact of platelets on cancers. A deeper understanding of the roles of platelets and their RNAs in cancer will contribute to the development of anticancer strategies and the optimization of clinical management. Encouragingly, advances in high-throughput sequencing, bioinformatics data analysis, and machine learning have allowed scientists to explore the potential of platelet RNAs for cancer diagnosis, prognosis, and guiding treatment. However, the clinical application of this technique remains controversial and requires larger, multicenter studies with standardized protocols. Here, we integrate the latest evidence to provide a broader insight into the role of platelets in cancer progression and management, and propose standardized recommendations for the clinical utility of platelet RNAs to facilitate translation and benefit patients.
Collapse
Affiliation(s)
- Yunhui Xiang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Pinpin Xiang
- Department of Laboratory Medicine, Xiping Community Health Service Center of Longquanyi District Chengdu City, Chengdu, China
| | - Liuyun Zhang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanying Li
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Zhang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- * Correspondence: Juan Zhang, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, 32# West Second Section, First Ring Road, Qingyang District, Chengdu City, Sichuan Province 610072, China (e-mail: )
| |
Collapse
|
9
|
Actin-Binding LIM 1 (ABLIM1) Inhibits Glioblastoma Progression and Serves as a Novel Prognostic Biomarker. DISEASE MARKERS 2022; 2022:9516808. [PMID: 36583064 PMCID: PMC9794427 DOI: 10.1155/2022/9516808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Background Glioma is the most prevalent malignant brain tumor in adult humans, and glioblastoma (GBM) is the most malignant type. The actin-binding LIM 1 (ABLIM1) protein can modulate actin polymerization, which is essential for the cell proliferation and migration. We aim to investigate ABLIM1 expression, function, and clinical significance in GBM. Methods The ABLIM1 mRNA level was extracted from the TCGA and GTEx online databases. The ABLIM1 protein expression level was explored using immunohistochemistry staining in a GBM cohort enrolled in our hospital (n = 104). The patient survival and prognostic factors were determined using the Kaplan-Meier method and multivariate Cox hazard proportional analysis, respectively. Two human GBM cell lines, U87 and U251 cells, were utilized for ABLIM1 overexpression and cell proliferation analyses. A subcutaneous xenograft model was generated using nude mice to validate the tumor-related effect of ABLIM1 in vivo. Results ABLIM1 exhibited a significantly lower mRNA level in GBM than in other glioma or normal brain tissues. Higher ABLIM1 protein level was correlated with smaller GBM tumor size and better cancer-specific survival (CSS). Multivariate analysis identified ABLIM1 as a novel independent prognostic factor for GBM prognosis. ABLIM1 overexpression significantly inhibits U87 and U251 cell proliferation and colony formation. Consistently, ABLIM1 exerted tumor-suppressing functions in mice models. Conclusion ABLIM1 plays antitumor roles in GBM progression and could be served as a novel biomarker to help predict GBM prognosis.
Collapse
|
10
|
Sun Q, Zhang H, Zong L, Julaiti A, Jing X, Zhang L. Prognostic Value and Oncogenic Effects of Ubiquitin-Specific Protease 43 in Lung Squamous Cell Carcinoma. TOHOKU J EXP MED 2022; 257:135-145. [PMID: 35321978 DOI: 10.1620/tjem.2022.j008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Qingchao Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University
| | - Haiping Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University
| | - Liang Zong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University
| | - Ainiwaer Julaiti
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University
| | - Xiaoliang Jing
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University
| | - Liwei Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University
| |
Collapse
|
11
|
Yu L, Guo Y, Chang Z, Zhang D, Zhang S, Pei H, Pang J, Zhao ZJ, Chen Y. Bidirectional Interaction Between Cancer Cells and Platelets Provides Potential Strategies for Cancer Therapies. Front Oncol 2021; 11:764119. [PMID: 34722319 PMCID: PMC8551800 DOI: 10.3389/fonc.2021.764119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets are essential components in the tumor microenvironment. For decades, clinical data have demonstrated that cancer patients have a high risk of thrombosis that is associated with adverse prognosis and decreased survival, indicating the involvement of platelets in cancer progression. Increasing evidence confirms that cancer cells are able to induce production and activation of platelets. Once activated, platelets serve as allies of cancer cells in tumor growth and metastasis. They can protect circulating tumor cells (CTCs) against the immune system and detachment-induced apoptosis while facilitating angiogenesis and tumor cell adhesion and invasion. Therefore, antiplatelet agents and platelet-based therapies should be developed for cancer treatment. Here, we discuss the mechanisms underlying the bidirectional cancer-platelet crosstalk and platelet-based therapeutic approaches.
Collapse
Affiliation(s)
- Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Shiqiang Zhang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hanzhong Pei
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jun Pang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
12
|
Heterogeneity of Circulating Tumor Cell Neoplastic Subpopulations Outlined by Single-Cell Transcriptomics. Cancers (Basel) 2021; 13:cancers13194885. [PMID: 34638368 PMCID: PMC8508335 DOI: 10.3390/cancers13194885] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Over 12% of women in the United States will be diagnosed with breast cancer in their lifetime. The overall 5-year survival rate for breast cancer is 90%, but the 5-year survival rate for women diagnosed with metastatic breast cancer is 28.1%. This study aims to characterize the cancerous cells that have left the primary tumor site and entered the blood, known as circulating tumor cells (CTCs). These cells could adhere to a site distant from the tumor and initiate metastasis. CTCs in breast cancer patients’ blood samples were enumerated and imaged. Cells from the blood were collected, RNA extracted, and the gene expression patterns of CTCs and other cell populations in the blood were investigated at the population and single cell level. This is a crucial step in characterizing CTCs as seeds of metastasis in breast cancer and for developing methods of detection to intercept metastasis before it localizes to distant regions of the body. Abstract Fatal metastasis occurs when circulating tumor cells (CTCs) disperse through the blood to initiate a new tumor at specific sites distant from the primary tumor. CTCs have been classically defined as nucleated cells positive for epithelial cell adhesion molecule and select cytokeratins (EpCAM/CK/DAPI), while negative for the common lymphocyte marker CD45. The enumeration of CTCs allows an estimation of the overall metastatic burden in breast cancer patients, but challenges regarding CTC heterogeneity and metastatic propensities persist, and their decryption could improve therapies. CTCs from metastatic breast cancer (mBC) patients were captured using the RareCyteTM Cytefinder II platform. The Lin− and Lin+ (CD45+) cell populations isolated from the blood of three of these mBC patients were analyzed by single-cell transcriptomic methods, which identified a variety of immune cell populations and a cluster of cells with a distinct gene expression signature, which includes both cells expressing EpCAM/CK (“classic” CTCs) and cells possessing an array of genes not previously associated with CTCs. This study put forward notions that the identification of these genes and their interactions will promote novel areas of analysis by dissecting properties underlying CTC survival, proliferation, and interaction with circulatory immune cells. It improves upon capabilities to measure and interfere with CTCs for impactful therapeutic interventions.
Collapse
|
13
|
Computed Tomographic Image Processing and Reconstruction in the Diagnosis of Rare Osteochondroma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2827556. [PMID: 34434249 PMCID: PMC8382554 DOI: 10.1155/2021/2827556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022]
Abstract
Objective We applied computed tomography (CT) to explore the imaging manifestations of rare parts of osteochondroma. Based on the medical images, deblurring using a convolutional neural network (CNN), and three-dimensional (3D) reconstruction of the images is performed in order to improve the image diagnosis. Methods Twelve cases of osteochondroma in rare locations confirmed by surgical pathology or clinical long-term dynamic observation were retrospectively analyzed using medical imaging and image reconstruction. There are 7 males and 5 females, with an average age of 43 years. CT examinations were performed in all cases. Image deblurring via the GAN model is performed followed by the 3D reconstruction of the higher quality images is implemented. A retrospective study was performed on the imaging manifestations of the above cases; the imaging characteristics were summarized. Results The imaging features are the following lesions, including 4 cases of the proximal radius, 4 cases of the scapula, 2 cases of the pelvis, and 2 cases of the proximal ribs. The cartilage caps, cortex, and sternum were typical structures of the bone surface of the studied cases. In the continuous imaging features, calcification was visible in some cases, and no significant enhancement was seen in enhanced scans; there was no obvious direction of lesion growth. The image processing techniques that we performed are useful in enhancing the quality of the medical diagnosis. Conclusions Rare site osteochondroma has certain imaging features. In most cases, we can accurately diagnose rare site osteochondroma through these features via the image processing methods that are proposed in this paper.
Collapse
|
14
|
Cacic D, Reikvam H, Nordgård O, Meyer P, Hervig T. Platelet Microparticles Protect Acute Myelogenous Leukemia Cells against Daunorubicin-Induced Apoptosis. Cancers (Basel) 2021; 13:cancers13081870. [PMID: 33919720 PMCID: PMC8070730 DOI: 10.3390/cancers13081870] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/21/2022] Open
Abstract
The role of platelets in cancer development and progression is increasingly evident, and several platelet-cancer interactions have been discovered, including the uptake of platelet microparticles (PMPs) by cancer cells. PMPs inherit a myriad of proteins and small RNAs from the parental platelets, which in turn can be transferred to cancer cells following internalization. However, the exact effect this may have in acute myelogenous leukemia (AML) is unknown. In this study, we sought to investigate whether PMPs could transfer their contents to the THP-1 cell line and if this could change the biological behavior of the recipient cells. Using acridine orange stained PMPs, we demonstrated that PMPs were internalized by THP-1 cells, which resulted in increased levels of miR-125a, miR-125b, and miR-199. In addition, co-incubation with PMPs protected THP-1 and primary AML cells against daunorubicin-induced cell death. We also showed that PMPs impaired cell growth, partially inhibited cell cycle progression, decreased mitochondrial membrane potential, and induced differentiation toward macrophages in THP-1 cells. Our results suggest that this altering of cell phenotype, in combination with decrease in cell activity may offer resistance to daunorubicin-induced apoptosis, as serum starvation also yielded a lower frequency of dead and apoptotic cells when treated with daunorubicin.
Collapse
Affiliation(s)
- Daniel Cacic
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
- Correspondence:
| | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (H.R.); (T.H.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Oddmund Nordgård
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036 Stavanger, Norway
| | - Peter Meyer
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
| | - Tor Hervig
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (H.R.); (T.H.)
- Laboratory of Immunology and Transfusion Medicine, Haugesund Hospital, 5528 Haugesund, Norway
| |
Collapse
|
15
|
Xu Q, Ye L, Huang L, Zhou L, Chen X, Ye M, Wu G, Zhan P, Lv T, Song Y. Serum Exosomal miRNA Might Be a Novel Liquid Biopsy to Identify Leptomeningeal Metastasis in Non-Small Cell Lung Cancer. Onco Targets Ther 2021; 14:2327-2335. [PMID: 33833530 PMCID: PMC8021268 DOI: 10.2147/ott.s291611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/11/2021] [Indexed: 01/13/2023] Open
Abstract
Purpose The survival time of patients with leptomeningeal metastasis (LM) of lung cancer is very short, and the clinical characteristics of LM are varied, making the clinical diagnosis difficult. At present, a positive CSF fluid (CSF) cytology result remains the gold standard for diagnosing LM in lung cancer; however, the process of collecting CSF is traumatic and far less convenient than blood collection. With the development in technology, an increasing number of studies prefer to use liquid biopsy to diagnose or predict the occurrence of the disease. Therefore, we aimed to explore whether serum exosomal miRNA can replace miRNA from CSF to identify or predict the occurrence of LM. Patients and Methods Herein, four pairs of serum and CSF samples were collected at four different time points from a patient with LM from non-small cell lung cancer (NSCLC). Serum and CSF exosomes were extracted. Western blot (CD63, TSG101) and electron microscope analyses were used to verify exosome extraction, after which exosomal miRNA sequencing was performed. Next, exosomal miRNA from serum and CSF samples from seven patients with LM and 30 patients without LM were collected for validation. Results Sequencing results of serum exosomal miRNA and CSF exosomal miRNA showed that there were 44 exosomal miRNAs stably co-expressed at four different time points. Then, three common miRNAs related to LM were found (hsa-miR-483-5p, hsa-miR-423-5p, and hsa-miR-342-5p). Subsequently, exosomal miRNA was extracted from serum and CSF samples from seven patients with LM and 30 patients without LM for verification, and the expression of these exosomal miRNA was detected. The results showed that miRNA-483-5p and miRNA-342-5p significantly differed in LM−/+ patients (P = 0.0142 and P = 0.0031, respectively), whereas miRNA-423-5p had no difference (P = 0.0921). Additionally, as the symptoms improved, the expression of these miRNAs decreased or remained stable. Conclusion Serum exosomal miRNA (hsa-miR-483-5p, and hsa-miR-342-5p) may be involved in LM of lung cancer and may replace CSF to predict LM in NSCLC.
Collapse
Affiliation(s)
- Qiuli Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Southeast University, Sch Med, Nanjing, Jiangsu, People's Republic of China
| | - Liang Ye
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Litang Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Southeast University, Sch Med, Nanjing, Jiangsu, People's Republic of China
| | - Li Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Xi Chen
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Mingxiang Ye
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Guannan Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Ping Zhan
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Southeast University, Sch Med, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
16
|
Abstract
There is increasing awareness that platelets play a significant role in creating a hypercoagulable environment that mediates tumor progression, beyond their classical hemostatic function. Platelets have heterogenic responses to agonists, and differential release and uptake of bioactive molecules may be manipulated via reciprocal cross-talk with cells of the tumor microenvironment. Platelets thus promote tumor progression by enhancing tumor growth, promoting the development of tumor-associated vasculature and encouraging invasion. In the metastatic process, platelets form the shield that protects tumor cells from high-velocity forces and immunosurveillance, while ensuring the establishment of the pre-metastatic niche. This review presents the complexity of these concepts, considering platelets as biomarkers for diagnosis, prognosis and potentially as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Tanya N Augustine
- School of Anatomical Sciences, Faculty of the Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
17
|
Zhang Q, Fan H, Liu H, Jin J, Zhu S, Zhou L, Liu H, Zhang F, Zhan P, Lv T, Song Y. WNT5B exerts oncogenic effects and is negatively regulated by miR-5587-3p in lung adenocarcinoma progression. Oncogene 2019; 39:1484-1497. [PMID: 31666682 DOI: 10.1038/s41388-019-1071-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 12/29/2022]
Abstract
WNT5B glycoprotein belongs to the Wnt protein family. Limited investigations revealed a possible role of WNT5B in malignancies, such as triple-negative breast cancer and oral squamous cell carcinoma. However, whether WNT5B contributes to the progression of lung adenocarcinoma (LAD) remains unclear. Here, we initially determine that WNT5B is highly expressed in LAD and is positively correlated with lymph node metastasis and TNM stage. Consistently, clinical analysis reveals WNT5B as an independent prognostic biomarker in LAD. Silencing WNT5B suppresses the proliferation of LAD both in vitro and in vivo by interfering G1/S cell-cycle progression and modulating amino acid metabolism, revealing its remarkable oncogenic role in LAD. Of note, we also identified miR-5587-3p as a negative upstream regulator of WNT5B in LAD, which may help develop therapies targeting LAD patients with high WNT5B expression. Taken together, our results revealed an oncogenic role of WNT5B in LAD, which could be a prognostic biomarker and promising therapeutic target for LAD patients.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.,Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hang Fan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Hongda Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiajia Jin
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, 210002, Jiangsu, China
| | - Suhua Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Li Zhou
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Hongbin Liu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Fang Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
18
|
Best MG, In 't Veld SGJG, Sol N, Wurdinger T. RNA sequencing and swarm intelligence-enhanced classification algorithm development for blood-based disease diagnostics using spliced blood platelet RNA. Nat Protoc 2019; 14:1206-1234. [PMID: 30894694 DOI: 10.1038/s41596-019-0139-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
Blood-based diagnostics tests, using individual or panels of biomarkers, may revolutionize disease diagnostics and enable minimally invasive therapy monitoring. However, selection of the most relevant biomarkers from liquid biosources remains an immense challenge. We recently presented the thromboSeq pipeline, which enables RNA sequencing and cancer classification via self-learning and swarm intelligence-enhanced bioinformatics algorithms using blood platelet RNA. Here, we provide the wet-lab protocol for the generation of platelet RNA-sequencing libraries and the dry-lab protocol for the development of swarm intelligence-enhanced machine-learning-based classification algorithms. The wet-lab protocol includes platelet RNA isolation, mRNA amplification, and preparation for next-generation sequencing. The dry-lab protocol describes the automated FASTQ file pre-processing to quantified gene counts, quality controls, data normalization and correction, and swarm intelligence-enhanced support vector machine (SVM) algorithm development. This protocol enables platelet RNA profiling from 500 pg of platelet RNA and allows automated and optimized biomarker panel selection. The wet-lab protocol can be performed in 5 d before sequencing, and the algorithm development can be completed in 2 d, depending on computational resources. The protocol requires basic molecular biology skills and a basic understanding of Linux and R. In all, with this protocol, we aim to enable the scientific community to test platelet RNA for diagnostic algorithm development.
Collapse
Affiliation(s)
- Myron G Best
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands. .,Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands. .,Brain Tumor Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.
| | - Sjors G J G In 't Veld
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Brain Tumor Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Nik Sol
- Brain Tumor Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands. .,Brain Tumor Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|