1
|
Wen J, Xiang Q, Guo J, Zhang J, Yang N, Huang Y, Chen Y, Hu T, Rao C. Pharmacological activities of Zanthoxylum L. plants and its exploitation and utilization. Heliyon 2024; 10:e33207. [PMID: 39022083 PMCID: PMC11252797 DOI: 10.1016/j.heliyon.2024.e33207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
The study aims to provide an up-to-date review at the advancements of the investigations on the ethnopharmacology, phytochemistry, pharmacological effect and exploitation and utilizations of Zanthoxylum L. Besides, the possible tendency and perspective for future research of this plant are discussed, as well. This article uses "Zanthoxylum L." "Zanthorylum bungeanum" as the keywords and collects relevant information on Zanthoxylum L. plants through electronic searches (Elsevier, PubMed, ACS, Web of Science, Science Direct, CNKI, Google Scholar), relevant books, and classic literature about Chinese herb. The plants of this genus are rich in volatile oils, alkaloids, amides, lignans, coumarins and organic acids, and has a wide range of pharmacological activities, including but not limited to anti-inflammatory, analgesic, anti-tumor, hypoglycemic, hypolipidemic, antioxidant and anti-infectious. This article reviewed both Chinese and international research progress on the active ingredients and pharmacological activities of Zanthoxylum L. as well as the applications of this genus in the fields of food, medicinal and daily chemicals, and clarified the material basis of its pharmacological activities. Based on traditional usage, phytochemicals, and pharmacological properties, of Zanthoxylum L. species, which indicate that they possess diverse bioactive metabolites with interesting bioactivities. Zanthoxylum L. is a potential medicinal and edible plant with diverse pharmacological effects. Due to its various advantages, it may have vast application potential in the food and medicinal industries and daily chemicals. Nonetheless, the currently available data has several gaps in understanding the herbal utilization of Zanthoxylum L. Thus, further research into their toxicity, mechanisms of actions of the isolated bioactive metabolites, as well as scientific connotations between the traditional medicinal uses and pharmacological properties is required to unravel their efficacy in therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
2
|
Tan F, Li H, Zhang K, Xu L, Zhang D, Han Y, Han J. Sodium Alginate/Chitosan-Coated Liposomes for Oral Delivery of Hydroxy-α-Sanshool: In Vitro and In Vivo Evaluation. Pharmaceutics 2023; 15:2010. [PMID: 37514196 PMCID: PMC10383520 DOI: 10.3390/pharmaceutics15072010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Hydroxy-α-Sanshool (HAS) possesses various pharmacological properties, such as analgesia and regulating gastrointestinal function. However, the low oral bioavailability of HAS has limited its oral delivery in clinical application. METHODS AND RESULTS To enhance its oral bioavailability, a nanocomposite delivery system based on chitosan (CH, as the polycation) and sodium alginate (SA, as the polyanion) was prepared using a layer-by-layer coating technique. The morphology, thermal behavior and Fourier transform infrared spectrum (FTIR) showed that the obtained sodium alginate/chitosan-coated HAS-loaded liposomes (SA/CH-HAS-LIP) with core-shell structures have been successfully covered with polymers. When compared with HAS-loaded liposomes (HAS-LIP), SA/CH-HAS-LIP displayed obvious pH sensitivity and a sustained-release behavior in in vitro studies, which fitted well to Weibull model. In vivo, the half-life of HAS from SA/CH-HAS-LIP remarkably extended after oral administration compared to the free drug. Additionally, it allowed a 4.6-fold and 4.2-fold increase in oral bioavailability, respectively, compared with free HAS and HAS-LIP. CONCLUSIONS SA/CH-HAS-LIP could be a promising release vehicle for the oral delivery of HAS to increase its oral bioavailability.
Collapse
Affiliation(s)
- Fengming Tan
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Huan Li
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Kai Zhang
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lulu Xu
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Dahan Zhang
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yang Han
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jing Han
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| |
Collapse
|
3
|
Silencing RPL8 inhibits the progression of hepatocellular carcinoma by down-regulating the mTORC1 signalling pathway. Hum Cell 2023; 36:725-737. [PMID: 36577883 DOI: 10.1007/s13577-022-00852-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
This study aimed to explore the role of ribosomal protein L8 (RPL8) in controlling hepatocellular carcinoma (LIHC) development. We measured RPL8 expression, apoptosis, cell viability, proliferation, migration, invasion, glucose uptake, lactate production, and the ATP/ADP ratio of LIHC cells to investigate the effect of RPL8 on LIHC. Bioinformatic analysis was employed to analyse RPL8 expression and its potential mechanism in LIHC. RPL8 was upregulated in LIHC tissues and cells. RPL8 silencing accelerated apoptosis and suppressed viability, growth, and movement of LIHC cells. Additionally, RPL8 silencing inhibited glycolysis in LIHC cells. Bioinformatic analysis revealed that RPL8 is regulated by the upstream transcription factor upstream stimulating factor 1 (USF1) and activates the mTORC1 signalling pathway. USF1 overexpression eliminated the inhibitory effect of RPL8 silencing in LIHC cells. RPL8 overexpression increased cell growth, movement, and glycolysis in LIHC. However, inhibition of the mTORC1 signalling pathway eliminated the effect of RPL8 overexpression on LIHC cells. In conclusion, RPL8 may affect LIHC progression by regulating the mTORC1 signalling pathway.
Collapse
|
4
|
The Effects of Pepper ( Zanthoxylum bungeanum) from Different Production Areas on the Volatile Flavor Compounds of Fried Pepper Oils Based on HS-SPME-GC-MS and Multivariate Statistical Method. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227760. [PMID: 36431861 PMCID: PMC9693213 DOI: 10.3390/molecules27227760] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
Fried pepper oil retains the overall flavor outline of pepper, and its unique rich and spicy flavor is deeply loved by consumers. In order to study the effect of different production areas of pepper on the flavor compounds of fried pepper oil, taking dried pepper from seven different production areas as raw materials, and taking rapeseed oil as a carrier oil as well as a constant frying temperature to prepare pepper oil, the present study analyzed the volatile flavor components of pepper oil qualitatively and quantitatively by employing headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) method was used to construct the correlation analysis model of volatile flavor substances among different samples of pepper oil. Applying the hierarchical cluster analysis (HCA), the main volatile substances causing the flavor differences of pepper oil from different production areas were identified. The results showed that a total of 81 chemical components were identified, including 15 alcohols, 10 aldehydes, 5 ketones, 34 hydrocarbons, 11 esters, 6 acids, and others. Terpinen-4-ol, linalool, 2,4-decadienal, trans-2-heptenal, sabinene, linalyl acetate, bornyl acetate, myrcene, 1-caryophyllene, trans-α-ocimene, and limonene were selected as the main substances leading to the flavor differences among the pepper oil samples. These 11 chemical components played a decisive role in the construction of the overall aroma of the pepper oil. Using a descriptive sensory analysis, it was concluded that pepper oil from different production areas holds different aroma intensities. Compared with the other six samples, S4 Hanyuan Pepper Oil (HYPO) shows a relatively strong trend toward a spicy fragrance, fresh grassy fragrance, floral and fruity fragrance, fresh sweet fragrance, and fatty aroma.
Collapse
|
5
|
Ni R, Yan H, Tian H, Zhan P, Zhang Y. Characterization of key odorants in fried red and green huajiao (Zanthoxylum bungeanum maxim. and Zanthoxylum schinifolium sieb. et Zucc.) oils. Food Chem 2022; 377:131984. [PMID: 34995962 DOI: 10.1016/j.foodchem.2021.131984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 11/15/2022]
Abstract
Fried huajiao oil (FHO) samples prepared with red or green huajiao are widely applied in different Chinese cuisines due to their own aroma characteristics. To investigate their different aroma profiles, 2 red and 3 green FHOs were analyzed by quantitative descriptive sensory analysis (QDA) and gas chromatography-olfactometry/aroma intensity (GC-O/AI). QDA results showed a distinct difference among FHOs in terms of all sensory attributes. Thirty odorants with high OAVs and AIs were screened from 5 FHOs, among which β-myrcene, (E)-2-heptenal, limonene, α-terpineol and p-cymene were the major characteristic compounds of FHOs. In addition, through orthogonal partial least square discriminate analysis (OPLS-DA), linalool, linalyl acetate, and 1,8-cineole were considered as the volatile markers for classification of FHOs with red and green huajiao. Thereafter, aroma recombination and omission tests were performed to characterize the key aroma compounds of red and green FHOs.
Collapse
Affiliation(s)
- Ruijie Ni
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China
| | - Haiyan Yan
- Food College of Shihezi University, Shihezi 832000, China
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China; Food College of Shihezi University, Shihezi 832000, China.
| | - Ping Zhan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China.
| | - Yuyu Zhang
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
6
|
Jia Z, Kang B, Cai Y, Chen C, Yu Z, Li W, Zhang W. Cell-free fat extract attenuates osteoarthritis via chondrocytes regeneration and macrophages immunomodulation. Stem Cell Res Ther 2022; 13:133. [PMID: 35365233 PMCID: PMC8973552 DOI: 10.1186/s13287-022-02813-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/02/2022] [Indexed: 01/15/2023] Open
Abstract
Background The prevalence of osteoarthritis (OA) is increasing, yet clinically effective and economical treatments are unavailable. We have previously proposed a cell-free fat extract (CEFFE) containing multiple cytokines, which possessed antiapoptotic, anti-oxidative, and proliferation promotion functions, as a “cell-free” strategy. In this study, we aimed to evaluate the therapeutic effect of CEFFE in vivo and in vitro. Methods In vivo study, sodium iodoacetate-induced OA rats were treated with CEFFE by intra-articular injections for 8 weeks. Behavioral experiments were performed every two weeks. Histological analyses, anti-type II collagen, and toluidine staining provided structural evaluation. Macrophage infiltration was assessed by anti-CD68 and anti-CD206 staining. In vitro study, the effect of CEFFE on macrophage polarization and secretory factors was evaluated by flow cytometry, immunofluorescence, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The effect of CEFFE on cartilage regeneration was accessed by cell counting kit-8 assay and qRT-PCR. The generation of reactive oxygen species (ROS) and levels of ROS-related enzymes were investigated by qRT-PCR and western blotting. Results In rat models with sodium iodoacetate (MIA)-induced OA, CEFFE increased claw retraction pressure while decreasing bipedal pressure in a dose-dependent manner. Moreover, CEFFE promoted cartilage structure restoration and increased the proportion of CD206+ macrophages in the synovium. In vitro, CEFFE decreased the proportion of CD86+ cells and reduced the expression of pro-inflammatory factors in LPS + IFN-γ induced Raw 264.7. In addition, CEFFE decreased the expression of interleukin-6 and ADAMTs-5 and promoted the expression of SOX-9 in mouse primary chondrocytes. Besides, CEFFE reduced the intracellular levels of reactive oxygen species in both in vitro models through regulating ROS-related enzymes. Conclusions CEFFE inhibits the progression of OA by promoting cartilage regeneration and limiting low-grade joint inflammation. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02813-3.
Collapse
Affiliation(s)
- Zhuoxuan Jia
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China
| | - Bijun Kang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China
| | - Yizuo Cai
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China
| | - Chingyu Chen
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China
| | - Zheyuan Yu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China.
| | - Wei Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China.
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai, 200011, China.
| |
Collapse
|
7
|
Yun SW, Seo YJ, Kwon JE, Park DW, Lee YG, Choe TH, Kim SK, Lee HS, Kim H, Kang SC. Preclinical evaluation of Zanthoxylum piperitum Benn., traditional muscle pain remedy, for joint inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114921. [PMID: 34921962 DOI: 10.1016/j.jep.2021.114921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum piperitum has been used as a traditional Asian medicine to treat hypertension, stroke, bruise and muscle pain. It has been known to induce detoxification; affect anti-bacterial, anti-oxidant, and tyrosinase activity; inhibit osteosarcoma proliferation; anti-osteoarthritis inflammation. In this study, we aim to identify the therapeutic effect of Z. piperitum 90% EtOH extract (ZPE-LR) on rheumatoid arthritis. MATERIAL AND METHODS We investigated the anti-rheumatoid arthritis and -immunomodulatory activities of the ZPE-LR in collagen-induced arthritic (CIA) mice, a rheumatoid arthritis animal model. In order to assess the analgesic effects of ZPE-LR in vivo, acetic acid injection, formaldehyde injection, hot plate model was used. The mechanism for anti-inflammatory activity of ZPE-LR was identified with LPS-stimulated Raw 264.7 cells. RESULTS Pharmacologically, oral administration of ZPE-LR into CIA mice resulted in a significant and dose-dependent decrease in clinical arthritis score and paw swelling compared to untreated negative control. Pathologic examination showed that ZPE-LR prevented morphological change in cartilage and destruction of phalanges in CIA mice. This protective effect was associated with reduced pain, inflammatory mediators such as NO, TNF-α, IL-1β, and IL-6, as well as COX-2 and iNOS expression. Furthermore, reduction of phosphor-ERK and BDNF indicates a novel rheumatoid arthritis-regulating mechanism by ZPE-LR treatment. CONCLUSIONS These data suggest that the administration of ZPE-LR remarkably inhibited CIA progression and might be helpful in suppressing inflammation and pain in rheumatoid arthritis.
Collapse
Affiliation(s)
- Seung-Won Yun
- Chungbuk Technopark, Cheongju, 28115, Chungbuk, Republic of Korea.
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Jeong Eun Kwon
- Department of Oriental Medicine and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, 17104, Republic of Korea.
| | - Dae Won Park
- Department of Oriental Medicine and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, 17104, Republic of Korea.
| | - Yeong-Geun Lee
- Department of Oriental Medicine and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, 17104, Republic of Korea.
| | - Tae Hwan Choe
- Department of Oriental Medicine and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, 17104, Republic of Korea.
| | - Seul-Ki Kim
- Food Science R&D Center, Kolmar BNH Co., Ltd., Seoul, 06800, Republic of Korea.
| | - Hak Sung Lee
- Food Science R&D Center, Kolmar BNH Co., Ltd., Seoul, 06800, Republic of Korea.
| | - Hyunggun Kim
- Department of Bio-Mechatronic Engineering, Sungkyungkwan University, Suwon, 16419, Republic of Korea.
| | - Se Chan Kang
- Department of Oriental Medicine and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, 17104, Republic of Korea.
| |
Collapse
|
8
|
Gupta UC, Gupta SC, Gupta SS. Clinical Overview of Arthritis with a Focus on Management Options and Preventive Lifestyle Measures for Its Control. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220204095629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT:
Arthritis is the spectrum of conditions that cause swelling and tenderness of one or more body joints with key symptoms of joint pain and stiffness. Its progression is closely tied to age. Although there are a number of arthritis types, such as, ankylosing, gout, joint infections, juvenile idiopathic, reactive and septic; the two most common types are osteoarthritis and rheumatoid arthritis. Osteoarthritis causes the articulating smooth cartilage that covers the ends of bones, where they form a joint, to breakdown. Rheumatoid arthritis is a disease in which the immune system attacks joints, beginning with the cartilaginous lining of the joints. The latter is considered a systemic disease, i.e. affecting many parts of the body, but the respiratory system is involved in 10 to 20 % of all mortality. Osteoarthritis is one of the leading causes of disability globally. Several preventive measures to control arthritis have been suggested, such as the use of analgesics, non-steroid anti-inflammatory drugs, moderate to vigorous physical activity and exercise, reducing sedentary hours, getting adequate sleep and maintaining a healthy body weight. Foods including, a Mediterranean diet rich in fruits and vegetables, fish oil, medicinal plants and microbiota are vital protective methods. The intake of vitamins such as A and C, minerals e.g., selenium and zinc; poly unsaturated and n-3 fatty acids is also a significant preventive measures.
Collapse
Affiliation(s)
- Umesh Chandra Gupta
- Emeritus Research Scientist, Agriculture and Agri-food Canada, Charlottetown Research and Development Centre, 440 University Avenue, Charlottetown, PE, C1A 4N6, Canada
| | - Subhas Chandra Gupta
- Chairman and Professor, The Department of Plastic Surgery, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | | |
Collapse
|
9
|
Okagu IU, Ndefo JC, Aham EC, Udenigwe CC. Zanthoxylum Species: A Review of Traditional Uses, Phytochemistry and Pharmacology in Relation to Cancer, Infectious Diseases and Sickle Cell Anemia. Front Pharmacol 2021; 12:713090. [PMID: 34603027 PMCID: PMC8479109 DOI: 10.3389/fphar.2021.713090] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
The health benefits and toxicity of plant products are largely dependent on their secondary metabolite contents. These compounds are biosynthesized by plants as protection mechanisms against environmental factors and infectious agents. This review discusses the traditional uses, phytochemical constituents and health benefits of plant species in genus Zanthoxylum with a focus on cancer, microbial and parasitic infections, and sickle cell disease as reported in articles published from 1970 to 2021 in peer-reviewed journals and indexed in major scientific databases. Generally, Z. species are widely distributed in Asia, America and Africa, where they are used as food and for disease treatment. Several compounds belonging to alkaloids, flavonoids, terpenoids, and lignans, among others have been isolated from Z. species. This review discusses the biological activities reported for the plant species and their phytochemicals, including anticancer, antibacterial, antifungal, antiviral, anti-trypanosomal, antimalarial and anti-sickling properties. The safety profiles and suggestions for conservation of the Z. species were also discussed. Taken together, this review demonstrates that Z. species are rich in a wide range of bioactive phytochemicals with multiple health benefits, but more research is needed towards their practical application in the development of functional foods, nutraceuticals and lead compounds for new drugs.
Collapse
Affiliation(s)
| | | | - Emmanuel Chigozie Aham
- Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Nigeria
| | | |
Collapse
|
10
|
Effect of radio frequency-assisted hot-air drying on drying kinetics and quality of Sichuan pepper (Zanthoxylum bungeanum maxim.). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Okagu IU, Ndefo JC, Aham EC, Udenigwe CC. Zanthoxylum Species: A Comprehensive Review of Traditional Uses, Phytochemistry, Pharmacological and Nutraceutical Applications. Molecules 2021; 26:molecules26134023. [PMID: 34209371 PMCID: PMC8272177 DOI: 10.3390/molecules26134023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Zanthoxylum species (Syn. Fagara species) of the Rutaceae family are widely used in many countries as food and in trado-medicinal practice due to their wide geographical distribution and medicinal properties. Peer reviewed journal articles and ethnobotanical records that reported the traditional knowledge, phytoconstituents, biological activities and toxicological profiles of Z. species with a focus on metabolic and neuronal health were reviewed. It was observed that many of the plant species are used as food ingredients and in treating inflammation, pain, hypertension and brain diseases. Over 500 compounds have been isolated from Z. species, and the biological activities of both the plant extracts and their phytoconstituents, including their mechanisms of action, are discussed. The phytochemicals responsible for the biological activities of some of the species are yet to be identified. Similarly, biological activities of some isolated compounds remain unknown. Taken together, the Z. species extracts and compounds possess promising biological activities and should be further explored as potential sources of new nutraceuticals and drugs.
Collapse
Affiliation(s)
- Innocent Uzochukwu Okagu
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (I.U.O.); (E.C.A.)
| | - Joseph Chinedu Ndefo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
- Correspondence: (J.C.N.); (C.C.U.)
| | - Emmanuel Chigozie Aham
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (I.U.O.); (E.C.A.)
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (J.C.N.); (C.C.U.)
| |
Collapse
|
12
|
Vasconcelos CC, Lopes AJO, de Jesus Garcia Ataide E, Carvalho KWP, de Brito MFF, Rodrigues MS, de Morais SV, Silva GEB, da Rocha CQ, Garcia JBS, de Sousa Cartágenes MDS. Arrabidaea chica Verlot fractions reduce MIA-induced osteoarthritis progression in rat knees. Inflammopharmacology 2021; 29:735-752. [PMID: 33881683 DOI: 10.1007/s10787-021-00803-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
This study aims to investigate the activity of n-hexane, ethyl acetate and butanol fractions obtained from Arrabidaea chica Verlot against MIA-induced osteoarthritis (OA). The antinociceptive potentials of each fraction were evaluated through a cyclooxygenase (COX) 1 and 2 inhibition test and an in vivo OA-model. In addition, toxicity assessments in the liver, spleen and kidney, as well as radiographic and histopathological knee analyses, were performed. The chemical composition of the n-hexane fraction was elucidated, and a molecular docking protocol was carried out to identify which compounds are associated with the detected bioactivity. The n-hexane A. chica fraction preferentially inhibits COX-2, with 90% inhibition observed at 10 µg/mL. The fractions also produced significant improvements in OA incapacity, motor activity and hyperalgesia parameters and in radiological knee conditions. However, concerning the histopathological evaluations, these improvements were only significant in the hexane and ethyl acetate fraction treatments, which resulted in better average scores, suggesting that these fractions slow OA-promoted joint injury progression. Histopathological organ analyses indicate that the fractions are not toxic to animals. Twenty compounds were identified in the n-hexane fraction, comprising fatty acids, terpenes and phytosterols. In silico analyses indicate the presence of favourable interactions between some of the identified compounds and the COX-2 enzyme, mainly concerning alpha-tocopherol (Vitamin E), squalene and beta-sitosterol. The findings indicate that A. chica fractions display analgesic, anti-inflammatory properties, are non-toxic and are able to slow OA progression, and may, therefore, be prioritized as natural products in OA human clinical trials.
Collapse
Affiliation(s)
- Cleydlenne Costa Vasconcelos
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA, 65085-580, Brazil.
| | - Alberto Jorge Oliveira Lopes
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA, 65085-580, Brazil
| | - Emilly de Jesus Garcia Ataide
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA, 65085-580, Brazil
| | - Kevin Waquim Pessoa Carvalho
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA, 65085-580, Brazil
| | | | - Marineide Sodré Rodrigues
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA, 65085-580, Brazil
| | - Sebastião Vieira de Morais
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA, 65085-580, Brazil
| | - Gyl Eanes Barros Silva
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA, 65085-580, Brazil.,Hospital Universitário Presidente Dutra, HUPD, Federal University of Maranhão, São Luís, MA, Brazil
| | | | - João Batista Santos Garcia
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA, 65085-580, Brazil
| | | |
Collapse
|
13
|
Kim MH, Lee H, Ha IJ, Yang WM. Zanthoxylum piperitum alleviates the bone loss in osteoporosis via inhibition of RANKL-induced c-fos/NFATc1/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153397. [PMID: 33130475 DOI: 10.1016/j.phymed.2020.153397] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/29/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The fruit of Zanthoxylum piperitum (ZP) is an herbal medicine as well as a spice agent in Asia to treat carminative, stomachic, anthelmintic and degenerative diseases. Z. piperitum was reported to have anti-oxidant, anti-inflammatory, anti-osteoarthritic and osteosarcoma proliferation-control effects. PURPOSE AND STUDY DESIGN This study was conducted to determine the anti-osteoporotic effects and mechanisms of action of ZP. METHODS Female ICR mice underwent ovariectomies (OVX) and were orally administered ZP at 1, 10 and 100 mg/kg for 6 weeks. The femoral and tibial bones were assessed by dual-energy X-ray absorptiometry and histology to analyze the bone mineral density (BMD) and the number of osteoclasts. Raw 264.7 cells were stimulated by 100 ng/ml receptor activator of nuclear factor-κB ligand (RANKL) for 7 days in the presence of ZP. RANKL-induced signaling molecules were analyzed in osteoclasts. RESULTS The levels of femoral and tibial BMD were significantly increased by ZP administration. Serum biomarkers such as osteocalcin, calcium, alkaline phosphatase and bone-specific alkaline phosphatase concentrations were markedly recovered to normal levels in ZP-treated osteoporotic mice. In addition, the number of osteoclasts in the head, trochanter and body of the femur was obviously decreased in the ZP treatment groups. Moreover, ZP treated-cells showed a reduction in the number of TRAP-positive multinuclear cells in RANKL-stimulated Raw 264.7 cells. ZP decreased the RANKL-activated NFATc1 and c-fos, transcription factors of osteoclast formation. The nuclear translocation of NF-κB and phosphorylation of ERK42/44 were inhibited by the ZP treatment in RANKL-induced osteoclasts. CONCLUSION Collectively, ZP exerts its inhibitory effect against bone resorption by regulating RANKL-mediated c-fos/NFATc1/NF-κB in osteoclast. ZP may prove to be a therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Mi Hye Kim
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Haesu Lee
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Kyung Hee University, Seoul, South Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Deligiannidou GE, Papadopoulos RE, Kontogiorgis C, Detsi A, Bezirtzoglou E, Constantinides T. Unraveling Natural Products' Role in Osteoarthritis Management-An Overview. Antioxidants (Basel) 2020; 9:E348. [PMID: 32340224 PMCID: PMC7222394 DOI: 10.3390/antiox9040348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
The natural process of aging gradually causes changes in living organisms, leading to the deterioration of organs, tissues, and cells. In the case of osteoarthritis (OA), the degradation of cartilage is a result of both mechanical stress and biochemical factors. Natural products have already been evaluated for their potential role in the prevention and treatment of OA, providing a safe and effective adjunctive therapeutic approach. This review aimed to assess the therapeutic potential of natural products and their derivatives in osteoarthritis via a systematic search of literature after 2008, including in vitro, in vivo, ex vivo, and animal models, along with clinical trials and meta-analysis. Overall, 170 papers were obtained and screened. Here, we presented findings referring to the preventative and therapeutic potential of 17 natural products and 14 naturally occurring compounds, underlining, when available, the mechanisms implicated. The nature of OA calls to initially focus on the management of symptoms, and, in that context, several naturally occurring compounds have been utilized. Underlying a global need for more sustainable natural sources for treatment, the evidence supporting their chondroprotective potential is still building up. However, arriving at that kind of solution requires more clinical research, targeting the implications of long-term treatment, adverse effects, and epigenetic implications.
Collapse
Affiliation(s)
- Georgia-Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-E.D.); (R.-E.P.); (E.B.); (T.C.)
| | - Rafail-Efraim Papadopoulos
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-E.D.); (R.-E.P.); (E.B.); (T.C.)
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-E.D.); (R.-E.P.); (E.B.); (T.C.)
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-E.D.); (R.-E.P.); (E.B.); (T.C.)
| | - Theodoros Constantinides
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-E.D.); (R.-E.P.); (E.B.); (T.C.)
| |
Collapse
|
15
|
Shi X, Pan S, Li Y, Ma W, Wang H, Xu C, Li L. Xanthoplanine attenuates macrophage polarization towards M1 and inflammation response via disruption of CrkL-STAT5 complex. Arch Biochem Biophys 2020; 683:108325. [PMID: 32142888 DOI: 10.1016/j.abb.2020.108325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 02/07/2023]
Abstract
Monocyte infiltration and macrophage polarization are widely considered as pivotal steps for the initiation and progression of atherosclerosis. Previous studies suggested that zanthoxylum piperitum had strong analgesic and anti-inflammatory effects. However, it remains unclear whether zanthoxylum piperitum inhibits inflammation via macrophage function. In the present study, we investigated the effects of xanthoplanine (the total alkaloid extract of zanthoxylum piperitum) on macrophage function. CCK-8 kit was performed to determine cell viability and the preferred concentration of xanthoplanine. We assayed the effects of xanthoplanine on markers of macrophage polarization and inflammation via quantitative PCR and enzyme-linked immunosorbent assay, and measured the production of reactive oxygen species (ROS) by flow cytometry. Immunoblots, co-immunoprecipitation, immunofluorescence and Luciferase activity were performed to investigate the molecular mechanism of STAT signaling pathway in response to xanthoplanine. We found that xanthoplanine (50 and 100 μM) significantly reduced M1 polarization and promoted M2 polarization. The contents of inflammatory cytokines measured by ELISA were markedly decreased in macrophages pretreated with xanthoplanine, compared with those induced by LPS and IFN-γ. In parallel, xanthoplanine alleviated the production of ROS in macrophages induced by LPS and IFN-γ. Moreover, xanthoplanine alleviated STAT5 phosphorylation and blocked STAT5 nuclear translocation without alterations in CrkL expression, subsequently interrupting the interaction between p-STAT5 and CrkL. Likewise, xanthoplanine prominently attenuated the transcription activity of STAT5 induced by LPS and IFN-γ but did not affect the transcription activity of STAT1 and STAT3. Xanthoplanine attenuated M1 phenotypic switch and macrophage inflammation via blocking the formation of CrkL-STAT5 complex.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Department of Emergency, Tianjin First Center Hospital, Tianjin, 300192, People's Republic of China
| | - Shuang Pan
- Department of Physiology, School of Basic Medicine, Jinzhou Medicine University, Jinzhou, Liaoning, 121000, People's Republic of China
| | - Yongqi Li
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 3050005, Japan
| | - Wei Ma
- Department of Anatomy, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Han Wang
- Department of Vascular Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, 116021, People's Republic of China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, People's Republic of China.
| |
Collapse
|