1
|
Zheng Z, Ke L, Ye S, Shi P, Yao H. Pharmacological Mechanisms of Cryptotanshinone: Recent Advances in Cardiovascular, Cancer, and Neurological Disease Applications. Drug Des Devel Ther 2024; 18:6031-6060. [PMID: 39703195 PMCID: PMC11658958 DOI: 10.2147/dddt.s494555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Cryptotanshinone (CTS) is an important active ingredient of Salvia miltiorrhiza Bge. In recent years, its remarkable pharmacological effects have triggered extensive and in-depth studies. The aim of this study is to retrieve the latest research progress on CTS and provide prospects for future research. The selection of literature for inclusion, data extraction and methodological quality assessment were discussed. Studies included (1) physicochemical and ADME/Tox properties, (2) pharmacological effects and mechanism, (3) conclusion and bioinformatics analysis. A total of 915 titles and abstracts were screened, resulting in 184 papers used in this review; CTS has shown therapeutic effects on a variety of diseases by modulating multiple molecular pathways. For example, CTS primarily targets NF-κB pathway and MAPK pathway to have a therapeutic role in cardiovascular diseases; in cancer, CTS shows superior efficacy through the PI3K/Akt/mTOR pathway and the JAK/STAT pathway; CTS act on the Nrf2/HO-1 pathway to combat neurological diseases. In addition, key targets of CTS were predicted by bioinformatics analysis, referring to disease ontology (DO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis, with R Studio; AKT1, MAPK1, STAT3, P53 and EGFR are predicted to be the key targets of CTS against diseases. The key proteins were then docked by Autodock software to preliminarily assess their binding activities. This review provided new insights into research of CTS and its potential applications in the future, and especially the targets and directly binding modes for CTS are waiting to be investigated.
Collapse
Affiliation(s)
- Ziyao Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Shumin Ye
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
2
|
Ortiz-Mendoza N, Monribot-Villanueva JL, Guerrero-Analco JA, Martínez-Gordillo MJ, Basurto-Peña FA, Aguirre-Hernandez E, Soto-Hernández M. Comparative Metabolomic Analysis and Antinociceptive Effect of Methanolic Extracts from Salvia cinnabarina, Salvia lavanduloides and Salvia longispicata. Molecules 2024; 29:5465. [PMID: 39598854 PMCID: PMC11597310 DOI: 10.3390/molecules29225465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Mexico is considered one of the countries with the greatest diversity of the Salvia genus. A significant percentage of its species are known for their use in traditional medicine, highlighting their use as an analgesic. The objective of this work was to determine the chemical composition of the methanolic extracts of S. cinnabarina, S. lavanduloides and S. longispicata through untargeted metabolomics, as well as the in vivo evaluation of the antinociceptive effect and acute oral toxicity. The chemical profiling was performed using ultra-high performance liquid chromatography coupled with a high-resolution mass spectrometry (UPLC-ESI+/--MS-QTOF) system and tentative identifications were performed using a compendium of information on compounds previously isolated from Mexican species of the genus. Pharmacological evaluation was carried out using the formalin test and OECD guidelines. The analysis of the spectrometric features of the mass/charge ratios of the three salvias shows that a low percentage of similarity is shared between them. Likewise, the putative identification allowed the annotation of 46 compounds, mainly of diterpene and phenolic nature, with only four compounds shared between the three species. Additionally, the extracts of the three salvias produced a significant antinociceptive effect at a dose of 300 mg/kg administered orally and did not present an acute oral toxicity effect at the maximum dose tested, indicating a parameter of LD50 > 2000 mg/kg. The exploration of the chemical profile of the three salvias by untargeted metabolomics shows that, despite being species with antinociceptive potential, they have different chemical profiles and therefore different active metabolites.
Collapse
Affiliation(s)
- Nancy Ortiz-Mendoza
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria Coyoacán, Mexico City 04510, Mexico
| | - Juan L. Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, Xalapa 91073, Mexico;
| | - José A. Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, Xalapa 91073, Mexico;
| | - Martha J. Martínez-Gordillo
- Departamento de Biología Comparada, Herbario de la Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Francisco A. Basurto-Peña
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Eva Aguirre-Hernandez
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Marcos Soto-Hernández
- Posgrado en Botánica, Colegio de Postgraduados, Campus Montecillo, Texcoco 56264, Mexico;
| |
Collapse
|
3
|
Neri I, Piccolo M, Russo G, Ferraro MG, Marotta V, Santamaria R, Grumetto L. The combined use of biological investigations, bio chromatographic and in silico methods to solve the puzzle of badge and its derivative's toxicity. CHEMOSPHERE 2024; 367:143640. [PMID: 39490425 DOI: 10.1016/j.chemosphere.2024.143640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Bisphenol A diglycidyl ether (BADGE) is a pre-polymer of BPA widely used in manufacturing of epoxy resins and plastics; due to its high reactivity, unintended by-products, such as chlorinated and hydrolysed products, can reach the human body. This research integrates multiple approaches such as computational predictions, chromatographic experiments, biological assays, and human biomonitoring studies to comprehensively evaluate the toxicological profiles of the parent compound and its derivatives. In silico predictions were first utilized to estimate the toxicological properties and interactions of BADGE derivatives, providing insights into their bioactivity. Biomimetic liquid chromatography was then used to simulate membrane permeability and biodistribution, predicting how these chemicals might cross biological membranes and accumulate in tissues. In vitro experiments assessed cellular toxicity through viability assays, identifying BADGE·2HCl as the most cytotoxic derivative. Reactive Oxygen Species (ROS) production evaluation was performed to assess the oxidative stress induced by these compounds, revealing elevated ROS levels in cells exposed to BADGE and BADGE·2HCl with a consequent significant oxidative damage. Similarly, BADGE and BADGE·2HCl were able to induce cellular death by apoptosis activation. Human serum analysis in a population sample (N = 96), showed BADGE·2H2O as the most frequently detected metabolite, indicating a considerable human exposure and metabolic processes. The findings highlight a toxicity of BADGE derivatives similar to that of BADGE; BADGE·2HCl resulted particularly cytotoxic and BADGE·2H2O is the most frequent detected in human serum, underscoring the need for regulatory measures to mitigate potential health risks associated with these compounds.
Collapse
Affiliation(s)
- Ilaria Neri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
| | - Giacomo Russo
- School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, EH11 4BN, Edinburgh, United Kingdom
| | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Vincenzo Marotta
- UOC Clinica Endocrinologica e Diabetologica, AOU San Giovanni di Dio e Ruggi d'Aragona, Salerno, Italy
| | - Rita Santamaria
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
| | - Lucia Grumetto
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy.
| |
Collapse
|
4
|
Tang H, Hou T, Zhou H, Liao H, Xu F, Xie X, Yuan W, Guo Z, Liu Y, Wang J, Zhou W, Liang X. Label-free cell phenotypic profiling of histamine H4R receptor and discovery of non-competitive H4R antagonist from natural products. Bioorg Chem 2024; 147:107387. [PMID: 38643561 DOI: 10.1016/j.bioorg.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Histamine 4 receptor (H4R), the most recently identified subtype of histamine receptor, primarily induces inflammatory reactions upon activation. Several H4R antagonists have been developed for the treatment of inflammatory bowel disease (IBD) and atopic dermatitis (AD), but their use has been limited by adverse side effects, such as a short half-life and toxicity. Natural products, as an important source of anti-inflammatory agents, offer minimal side effects and reduced toxicity. This work aimed to identify novel H4R antagonists from natural products. An H4R target-pathway model deconvoluted downstream Gi and MAPK signaling pathways was established utilizing cellular label-free integrative pharmacology (CLIP), on which 148 natural products were screened. Cryptotanshinone was identified as selective H4R antagonist, with an IC50 value of 11.68 ± 1.30 μM, which was verified with Fluorescence Imaging Plate Reader (FLIPR) and Cellular Thermal Shift (CTS) assays. The kinetic binding profile revealed the noncompetitive antagonistic property of cryptotanshinone. Two allosteric binding sites of H4R were predicted using SiteMap, Fpocket and CavityPlus. Subsequent molecular docking and dynamics simulation indicated that cryptotanshinone interacts with H4R at a pocket formed by the outward interfaces between TM3/4/5, potentially representing a new allosteric binding site for H4R. Overall, this study introduced cryptotanshinone as a novel H4R antagonist, offering promise as a new hit for drug design of H4R antagonist. Additionally, this study provided a novel screening model for the discovery of H4R antagonists.
Collapse
Affiliation(s)
- Hongming Tang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Tao Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Han Liao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Fangfang Xu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Xiaomin Xie
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Wenjie Yuan
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Zhixin Guo
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Jixia Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Weijia Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| |
Collapse
|
5
|
Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res 2024; 85:e22180. [PMID: 38680103 DOI: 10.1002/ddr.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In 2021, the World Health Organization released the fifth edition of the central nervous system (CNS) tumor classification. This classification uses histopathology and molecular pathogenesis to group tumors into more biologically and molecularly defined entities. The prognosis of brain cancer, particularly malignant tumors, has remained poor worldwide, approximately 308,102 new cases of brain and other CNS tumors were diagnosed in the year 2020, with an estimated 251,329 deaths. The cost and time-consuming nature of studies to find new anticancer agents makes it necessary to have well-designed studies. In the present study, the pathways that can be targeted for drug development are discussed in detail. Some of the important cellular origins, signaling, and pathways involved in the efficacy of bioactive molecules against CNS tumorigenesis or progression, as well as prognosis and common approaches for treatment of different types of brain tumors, are reviewed. Moreover, different study tools, including cell lines, in vitro, in vivo, and clinical trial challenges, are discussed. In addition, in this article, natural products as one of the most important sources for finding new chemotherapeutics were reviewed and over 700 reported molecules with efficacy against CNS cancer cells are gathered and classified according to their structure. Based on the clinical trials that have been registered, very few of these natural or semi-synthetic derivatives have been studied in humans. The review can help researchers understand the involved mechanisms and design new goal-oriented studies for drug development against CNS malignancies.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Irwin Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Antinociceptive Non-Opioid Active Principles for Medicinal Chemistry and Drug Design. Molecules 2024; 29:815. [PMID: 38398566 PMCID: PMC10892999 DOI: 10.3390/molecules29040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Pain is associated with many health problems and a reduced quality of life and has been a common reason for seeking medical attention. Several therapeutics are available on the market, although side effects, physical dependence, and abuse limit their use. As the process of pain transmission and modulation is regulated by different peripheral and central mechanisms and neurotransmitters, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery due to their chemical structural variety and different analgesic mechanisms. Numerous studies suggested that some chemicals from medicinal plants could be alternative options for pain relief and management. Previously, we conducted a literature search aimed at identifying natural products interacting either directly or indirectly with opioid receptors. In this review, instead, we have made an excursus including active ingredients derived from plants whose mechanism of action appears from the literature to be other than the modulation of the opioid system. These substances could, either by themselves or through synthetic and/or semi-synthetic derivatives, be investigated in order to improve their pharmacokinetic characteristics and could represent a valid alternative to the opioid approach to pain therapy. They could also be the basis for the study of new mechanisms of action in the approach to this complex and disabling pathology.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology and Toxicology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Carmela Parenti
- Department of Drug and Health Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
7
|
Huang J, Zhang J, Sun C, Yang R, Sheng M, Hu J, Kai G, Han B. Adjuvant role of Salvia miltiorrhiza bunge in cancer chemotherapy: A review of its bioactive components, health-promotion effect and mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117022. [PMID: 37572929 DOI: 10.1016/j.jep.2023.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chemotherapy is a common cancer treatment strategy. However, its effectiveness is constrained by toxicity and adverse effects. The Lamiaceae herb Salvia miltiorrhiza Bunge has a long history of therapeutic use in the treatment of blood stasis illnesses, which are believed by traditional Chinese medicine to be connected to cancer. AIM OF THE STUDY This review summarized the common toxicity of chemotherapy and the potential chemo-adjuvant effect and mechanisms of active ingredients from S. miltiorrhiza, hoping to provide valuable information for the development and application of S. miltiorrhiza resources. MATERIALS AND METHODS The literatures were retrieved from PubMed, Web of Science, Baidu Scholar and Google Scholar databases from 2002 to 2022. The inclusion criteria were studies reporting that S. miltiorrhiza or its constituents enhanced the efficiency of chemotherapy drugs or reduced the side effects. RESULTS Salvianolic acid A, salvianolic acid B, salvianolic acid C, rosmarinic acid, tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone I and miltirone are the primary adjuvant chemotherapy components of S. miltiorrhiza. The mechanisms mainly involve inhibiting proliferation, metastasis, and angiogenesis, inducing apoptosis, regulating autophagy and tumor microenvironment. In addition, they also improve chemotherapy drug-induced side effects. CONCLUSIONS The bioactive compounds of S. miltiorrhiza are shown to inhibit proliferation, metastasis, and angiogenesis, induce apoptosis and autophagy, regulate immunity and tumor microenvironment when combined with chemotherapy drugs. However, further clinical studies are required to validate the current studies.
Collapse
Affiliation(s)
- Jiayan Huang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Chengtao Sun
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ruiwen Yang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Miaomiao Sheng
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiangning Hu
- Zhejiang Conba Pharmaceutical Limited Company, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, 310052, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Zhejiang Conba Pharmaceutical Limited Company, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, 310052, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Wang R, Wang X, Zhao H, Li N, Li J, Zhang H, Di L. Targeted delivery of hybrid nanovesicles for enhanced brain penetration to achieve synergistic therapy of glioma. J Control Release 2024; 365:331-347. [PMID: 38000664 DOI: 10.1016/j.jconrel.2023.11.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/05/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Blood-brain barrier (BBB) obstructing brain drug delivery severely hampers the therapeutic efficacy towards glioma. An efficient brain delivery strategy is of paramount importance for the treatment of glioma. Inspired by brain targeting exosome, biomimetic BBB penetrated hybrid (pHybrid) nanovesicles, engineered by membrane fusion between blood exosome and tLyp-1 peptide modified liposome, is explored for brain targeting drug delivery. Transferrin receptor (TfR) on pHybrid nanovesicles facilitates the BBB transcytosis into brain parenchyma, and eventually endocytosed by glioma cells and diffusion to extra-vascular tumor tissues under the guidance of tLyp-1 peptide. pHybrid nanovesicles co-loaded with salvianolic acid B (SAB) and cryptotanshinone (CPT), which is constructed by membrane hybridization of blood exosome loaded with SAB and tLyp-1 modified liposome loaded with CPT, are explored for cytotoxic and anti-angiogenetic therapy towards glioma. Upon accumulation at tumor site, the loaded CPT and SAB shows synergistic effects towards glioma from cytotoxicity on cancer cells and anti-angiogenesis on tumor, respectively. Overall, this study provides a biomimetic nanoplatform for increased BBB transcytosis into brain parenchyma, which serves as a prospective strategy for delivering therapeutic agents against glioma through synergistic mechanisms.
Collapse
Affiliation(s)
- Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China.
| | - Xue Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Huacong Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Nengjin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Jiale Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Hanwen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China.
| |
Collapse
|
9
|
Wang B, Zou F, Xin G, Xiang BL, Zhao JQ, Yuan SF, Zhang XL, Zhang ZH. Sodium tanshinone IIA sulphate inhibits angiogenesis in lung adenocarcinoma via mediation of miR-874/eEF-2K/TG2 axis. PHARMACEUTICAL BIOLOGY 2023; 61:868-877. [PMID: 37300283 DOI: 10.1080/13880209.2023.2204879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 03/12/2023] [Accepted: 04/14/2023] [Indexed: 06/12/2023]
Abstract
CONTEXT Sodium tanshinone IIA sulphate (STS) is a product originated from Salvia miltiorrhiza Bunge [Lamiaceae], which exerts an antitumour effect. However, the role of STS on lung adenocarcinoma (LUAD) remains unexplored. OBJECTIVE Our study explores the effect and mechanism of STS against LUAD. MATERIALS AND METHODS LUAD cells were treated with 100 μM STS for 24 h and control group cells were cultured under normal medium conditions. Functionally, the viability, migration, invasion and angiogenesis of LUAD cells were examined by MTT, wound healing, transwell and tube formation assay, respectively. Moreover, cells were transvected with different transfection plasmids. Dual luciferase reporter and RNA immunoprecipitation (RIP) assays were used to verify the relationship between miR-874 and eEF-2K. RESULTS STS significantly decreased the viability (40-50% reduction), migration (migration rate of A549 cells from 0.67 to 0.28, H1299 cells from 0.71 to 0.41), invasion (invasion numbers of A549 cells from 172 to 55, H1299 cells from 188 to 35) and angiogenesis (80-90% reduction) of LUAD cells. Downregulation of miR-874 partially abolished the antitumour effect of STS. EEF-2K was identified to be the target of miR-874, and its downregulation markedly abolished the effects of miR-874 downregulation on tumourigenesis of LUAD. Moreover, silencing of TG2 abrogated eEF-2K-induced progression of LUAD. DISCUSSION AND CONCLUSIONS STS attenuated the tumourigenesis of LUAD through the mediation of the miR-874/eEF-2K/TG2 axis. STS is a promising drug to fight against lung cancer, which might effectively reverse drug resistance when combined with classical anticancer drugs.
Collapse
Affiliation(s)
- Bu Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Fang Zou
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Gu Xin
- Department of Neurology Physician, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei Province, P.R. China
| | - Bao-Li Xiang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Jian-Qing Zhao
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Sheng-Fang Yuan
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Xiu-Long Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Zhi-Hua Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| |
Collapse
|
10
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
11
|
An Q, Wu M, Yang C, Feng Y, Xu X, Su H, Zhang G. Salviae miltiorrhiza against human lung cancer: A review of its mechanism (Review). Exp Ther Med 2023; 25:139. [PMID: 36845955 PMCID: PMC9947574 DOI: 10.3892/etm.2023.11838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/10/2023] [Indexed: 02/15/2023] Open
Abstract
Lung cancer is one of the commonest malignant tumors in the world today, causing millions of mortalities every year. New methods to treat lung cancer are urgently needed. Salviae miltiorrhiza Bunge is a common Chinese medicine, often used for promoting blood circulation. In the past 20 years, Salviae miltiorrhiza has made significant progress in the treatment of lung cancer and is considered to be one of the most promising methods to fight against the disease. A great amount of research has shown that the mechanism of Salviae miltiorrhiza against human lung cancer mainly includes inhibiting the proliferation of lung cancer cells, promoting lung cancer cell apoptosis, inducing cell autophagy, regulating immunity and resisting angiogenesis. Research has shown that Salviae miltiorrhiza has certain effects on the resistance to chemotherapy drugs. The present review discussed the status and prospects of Salviae miltiorrhiza against human lung cancer.
Collapse
Affiliation(s)
- Qingwen An
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Mengting Wu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Chuqi Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Yewen Feng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Xuefei Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Hang Su
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China,Traditional Chinese Medicine ‘Preventing Disease’ Wisdom Health Project Research Center of Zhejiang, Hangzhou, Zhejiang 310053, P.R. China,Correspondence to: Professor Guangji Zhang, School of Basic Medical Sciences, Zhejiang Chinese Medical University, 526 Binwen Road, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
12
|
Colarusso E, Ceccacci S, Monti MC, Gazzillo E, Giordano A, Chini MG, Ferraro MG, Piccolo M, Ruggiero D, Irace C, Terracciano S, Bruno I, Bifulco G, Lauro G. Identification of 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based small molecules as selective BRD9 binders. Eur J Med Chem 2023; 247:115018. [PMID: 36577218 DOI: 10.1016/j.ejmech.2022.115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Targeting bromodomain-containing protein 9 (BRD9) represents a promising strategy for the development of new agents endowed with anticancer properties. With this aim, a set of 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based compounds was investigated following a combined approach that relied on in silico studies, chemical synthesis, biophysical and biological evaluation of the most promising items. The protocol was initially based on molecular docking experiments, accounting a library of 1896 potentially synthesizable items tested in silico against the bromodomain of BRD9. A first set of 21 compounds (1-21) was selected and the binding on BDR9 was assessed through AlphaScreen assays. The obtained results disclosed compounds 17 and 20 able to bind BRD9 in the submicromolar range (IC50 = 0.35 ± 0.18 μM and IC50 = 0.14 ± 0.03 μM, respectively) showing a promising selectivity profile when tested against further nine bromodomains. Taking advantage of 3D structure-based pharmacophore models, additional 10 derivatives were selected in silico for the synthetic step and binding assessment, highlighting seven compounds (22, 23, 25, 26, 28, 29, 31) able to selectively bind BRD9 among different bromodomains. The ability of the identified BRD9 binders to cross artificial membranes in vitro was also assessed, revealing a very good passive permeability profile. Preliminary studies were carried out on a panel of healthy and cancer human cell lines to explore the biological behavior of the selected compounds, disclosing a moderate activity and significant selectivity profile towards leukaemia cells. These results highlighted the applicability of the reported multidisciplinary approach for accelerating the selection of promising items and for driving the chemical synthesis of novel selective BRD9 binders. Moreover, the low molecular weight of the reported 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based BRD9 binders suggests the possibility for further exploring the chemical space in order to obtain new analogues with improved potency.
Collapse
Affiliation(s)
- Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Sara Ceccacci
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Erica Gazzillo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Assunta Giordano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy; Institute of Biomolecular Chemistry (ICB), Consiglio Nazionale Delle Ricerche (CNR), Via Campi Flegrei 34, I-80078, Pozzuoli, Napoli, Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, Pesche, 86090, Italy
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via Domenico Montesano 49, Naples, 80131, Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via Domenico Montesano 49, Naples, 80131, Italy
| | - Dafne Ruggiero
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via Domenico Montesano 49, Naples, 80131, Italy
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy.
| |
Collapse
|
13
|
Russo G, Piccolo M, Neri I, Ferraro MG, Santamaria R, Grumetto L. Lipophilicity profiling and cell viability assessment of a selected panel of endocrine disruptors. CHEMOSPHERE 2023; 313:137569. [PMID: 36535497 DOI: 10.1016/j.chemosphere.2022.137569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Endocrine disruptors are chemicals widely used worldwide by industries in a variety of applications. Routinely exposure to these chemicals, even if at low doses, can cause damage effects on human health. In the present study, we evaluated toxic effects of nine chemicals, among which phthalates, using various cell lines to inspect their capability to interfere with cell proliferation and viability. Alongside, we investigated their affinity for phospholipids to assess the possible passage through biomembranes. Experimentally determined logkwIAM.MG values ranged from 1.37 to 3.49 whilst calculated log kwIAM.DD2 spanned from 1.80 to 5.21, supporting the target contaminants to exhibit lipophilicity moderate or very high. The achieved results were related to pharmacokinetic and toxicological properties by ADMET predictor™ and EPI Suite™ software. Triclosan and 4-Nonylphenol were found to be the most toxic against all cell lines screened, showing an IC50 of 30 μM for triclosan on human keratinocytes and of 50 μM for 4-Nonylphenol on human colorectal adenocarcinoma cells. Overall, even if the phthalates showed higher IC50 values (ranging from 170 μM to 280 μM), we can assert that all contaminants herein tested were able to interfere with cell growth and viability.
Collapse
Affiliation(s)
- Giacomo Russo
- School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, EH11 4BN, Edinburgh, United Kingdom
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
| | - Ilaria Neri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
| | - Rita Santamaria
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy.
| | - Lucia Grumetto
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy.
| |
Collapse
|
14
|
Vellecco V, Saviano A, Raucci F, Casillo GM, Mansour AA, Panza E, Mitidieri E, Femminella GD, Ferrara N, Cirino G, Sorrentino R, Iqbal AJ, d'Emmanuele di Villa Bianca R, Bucci M, Maione F. Interleukin-17 (IL-17) triggers systemic inflammation, peripheral vascular dysfunction, and related prothrombotic state in a mouse model of Alzheimer's disease. Pharmacol Res 2023; 187:106595. [PMID: 36470548 DOI: 10.1016/j.phrs.2022.106595] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/08/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent forms of neurodegenerative disorders. Previously, we have shown that in vivo administration of an IL-17 neutralizing antibody (IL-17Ab) rescues amyloid-β-induced neuro-inflammation and memory impairment, demonstrating the pivotal role of IL-17 in AD-derived cognitive deficit. Recently, AD has been recognized as a more intriguing pathology affecting vascular networks and platelet function. However, not much is known about peripheral vascular inflammation and how pro-inflammatory circulating cells/mediators could affect peripheral vessels' function. This study aimed to evaluate whether IL-17Ab treatment could also impact peripheral AD features, such as systemic inflammation, peripheral vascular dysfunction, and related pro-thrombotic state in a non-genetic mouse model of AD. Mice were injected intracerebroventricularly with Aβ1-42 peptide (3 μg/3 μl). To evaluate the systemic/peripheral protective profile of IL-17Ab, we used an intranasal administration of IL-17Ab (1 μg/10 μl) at 5, 12, and 19 days after Aβ1-42 injection. Circulating Th17/Treg cells and related cyto-chemokines, haematological parameters, vascular/endothelial reactivity, platelets and coagulation function in mice were evaluated. IL-17Ab treatment ameliorates the systemic/peripheral inflammation, immunological perturbance, vascular/endothelial impairment and pro-thrombotic state, suggesting a key role for this cytokine in fostering inflammatory processes that characterize the multifaced aspects of AD.
Collapse
Affiliation(s)
- Valentina Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Federica Raucci
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Gian Marco Casillo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Adel Abo Mansour
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Elisabetta Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Grazia Daniela Femminella
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; Istituti Clinici Scientifici ICS-Maugeri, Telese Terme, BN, Italy.
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples, Federico II, Via Pansini, 5, 80131 Naples, Italy.
| | - Asif Jilani Iqbal
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | | | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
15
|
Okem A, Henstra C, Lambert M, Hayeshi R. A review of the pharmacodynamic effect of chemo-herbal drug combinations therapy for cancer treatment. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Feng JH, Jung JS, Hwang SH, Lee SK, Lee SY, Kwak YG, Kim DH, Song CY, Kim MJ, Suh HW, Kim SC, Lim SS. The mixture of Agrimonia pilosa Ledeb. and Salvia miltiorrhiza Bunge. extract produces analgesic and anti-inflammatory effects in a collagen-induced arthritis mouse model. Anim Cells Syst (Seoul) 2022; 26:166-173. [PMID: 36046031 PMCID: PMC9423830 DOI: 10.1080/19768354.2022.2106302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Jing Hui Feng
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jeon Sub Jung
- Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | | | - Soo Kyeong Lee
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, Chuncheon, Republic of Korea
- Institute of Korean Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Sang Youn Lee
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, Chuncheon, Republic of Korea
| | - Youn Gil Kwak
- Research Institute, Huons Foodience, Keumsan, Republic of Korea
| | - Doo-Ho Kim
- Research Institute, Huons Foodience, Keumsan, Republic of Korea
| | - Chu-Youn Song
- Research Institute, Huons Foodience, Keumsan, Republic of Korea
| | - Min Jung Kim
- Research Institute, Huons Foodience, Keumsan, Republic of Korea
| | - Hong Won Suh
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Sung Chan Kim
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Soon Sung Lim
- Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, Chuncheon, Republic of Korea
- Institute of Korean Nutrition, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
17
|
Wang XP, Wang RQ, Pan XY, Xing RR, Yang L, Chen X, Hu S. Preconcentration of liposoluble constituents in Salvia Miltiorrhiza using acid-assisted liquid phase microextraction based on a switchable deep eutectic solvent. J Chromatogr A 2022; 1666:462858. [DOI: 10.1016/j.chroma.2022.462858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 12/23/2022]
|
18
|
Xu X, Jia L, Ma X, Li H, Sun C. Application Potential of Plant-Derived Medicines in Prevention and Treatment of Platinum-Induced Peripheral Neurotoxicity. Front Pharmacol 2022; 12:792331. [PMID: 35095502 PMCID: PMC8793340 DOI: 10.3389/fphar.2021.792331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
As observed with other chemotherapeutic agents, the clinical application of platinum agents is a double-edged sword. Platinum-induced peripheral neuropathy (PIPN) is a common adverse event that negatively affects clinical outcomes and patients’ quality of life. Considering the unavailability of effective established agents for preventing or treating PIPN and the increasing population of cancer survivors, the identification and development of novel, effective interventions are the need of the hour. Plant-derived medicines, recognized as ideal agents, can not only help improve PIPN without affecting chemotherapy efficacy, but may also produce synergy. In this review, we present a brief summary of the mechanisms of platinum agents and PIPN and then focus on exploring the preventive or curative effects and underlying mechanisms of plant-derived medicines, which have been evaluated under platinum-induced neurotoxicity conditions. We identified 11 plant extracts as well as 17 plant secondary metabolites, and four polyherbal preparations. Their effects against PIPN are focused on oxidative stress and mitochondrial dysfunction, glial activation and inflammation response, and ion channel dysfunction. Also, ten clinical trials have assessed the effect of herbal products in patients with PIPN. The understanding of the molecular mechanism is still limited, the quality of clinical trials need to be further improved, and in terms of their efficacy, safety, and cost effectiveness studies have not provided sufficient evidence to establish a standard practice. But plant-derived medicines have been found to be invaluable sources for the development of natural agents with beneficial effects in the prevention and treatment of PIPN.
Collapse
Affiliation(s)
- Xiaowei Xu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqun Jia
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoran Ma
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China.,College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
19
|
Datta S, Luthra R, Bharadvaja N. Medicinal Plants for Glioblastoma Treatment. Anticancer Agents Med Chem 2021; 22:2367-2384. [PMID: 34939551 DOI: 10.2174/1871520622666211221144739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
Glioblastoma, an aggressive brain cancer, demonstrates the least life expectancy among all brain cancers. Because of the regulation of diverse signaling pathways in cancers, the chemotherapeutic approaches used to suppress their multiplication and spreading are restricted. Sensitivity towards chemotherapeutic agents has developed because of the pathological and drug-evading abilities of these diverse mechanisms. As a result, the identification and exploration of strategies or treatments, which can overcome such refractory obstacles to improve glioblastoma response to treatment as well as recovery, is essential. Medicinal herbs contain a wide variety of bioactive compounds, which could trigger aggressive brain cancers, regulate their anti-cancer mechanisms and immune responses to assist in cancer elimination, and cause cell death. Numerous tumor-causing proteins, which facilitate invasion as well as metastasis of cancer, tolerance of chemotherapies, and angiogenesis, are also inhibited by these phytochemicals. Such herbs remain valuable for glioblastoma prevention and its incidence by effectively being used as anti-glioma therapies. This review thus presents the latest findings on medicinal plants using which the extracts or bioactive components are being used against glioblastoma, their mechanism of functioning, pharmacological description as well as recent clinical studies conducted on them.
Collapse
Affiliation(s)
- Shreeja Datta
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Ritika Luthra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| |
Collapse
|
20
|
A System Bioinformatics Approach Predicts the Molecular Mechanism Underlying the Course of Action of Radix Salviae Reverses GBM Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1218969. [PMID: 35154340 PMCID: PMC8825271 DOI: 10.1155/2021/1218969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022]
Abstract
Objective This study used in vitro techniques to investigate the therapeutic effect of Radix Salviae on human glioblastoma and decode its underlying molecular mechanism. Methods The active components and targets of the Radix Salviae were identified from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP). The targets of human glioblastoma were obtained from the GeneCards Database. The Radix Salviae-mediated antiglioblastoma was evaluated by Gene Ontology (GO) analyses and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Finally, mechanism of action of Radix Salviae against human glioblastoma was deduced by molecular docking and experiments. Results We screened 66 active ingredients and 45 targets of the Radix Salviae. The enrichment analysis based on the targets mentioned above suggested a possible role in protein phosphorylation, cell transcription, apoptosis, and inflammatory factor signaling pathways. Further study demonstrated that cryptotanshinone, an essential component of Radix Salviae, played a significant role in killing human glioblastoma cells and protecting the body by inhibiting the AKT, IKB, and STAT3 signaling pathways. Conclusions Radix Salviae could inhibit the proliferation and invasion of human glioblastoma by regulating STAT3, Akt, and IKB signaling pathways. Radix Salviae has potential therapeutic value in the future for human glioblastoma.
Collapse
|
21
|
Lee JH, Kim N, Park S, Kim SK. Analgesic effects of medicinal plants and phytochemicals on chemotherapy-induced neuropathic pain through glial modulation. Pharmacol Res Perspect 2021; 9:e00819. [PMID: 34676990 PMCID: PMC8532132 DOI: 10.1002/prp2.819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) frequently occurs in cancer patients. This side effect lowers the quality of life of patients and may cause the patients to abandon chemotherapy. Several medications (e.g., duloxetine and gabapentin) are recommended as remedies to treat CIPN; however, usage of these drugs is limited because of low efficacy or side effects such as dizziness, nausea, somnolence, and vomiting. From ancient East Asia, the decoction of medicinal herbal formulas or single herbs have been used to treat pain and could serve as alternative therapeutic option. Recently, the analgesic potency of medicinal plants and their phytochemicals on CIPN has been reported, and a majority of their effects have been shown to be mediated by glial modulation. In this review, we summarize the analgesic efficacy of medicinal plants and their phytochemicals, and discuss their possible mechanisms focusing on glial modulation in animal studies.
Collapse
Affiliation(s)
- Ji Hwan Lee
- Department of PhysiologyCollege of Korean MedicineKyung Hee UniversitySeoulKorea
| | - Nari Kim
- Department of Science in Korean MedicineGraduate SchoolKyung Hee UniversitySeoulKorea
| | - Sangwon Park
- Department of Korean MedicineGraduate SchoolKyung Hee UniversitySeoulKorea
| | - Sun Kwang Kim
- Department of PhysiologyCollege of Korean MedicineKyung Hee UniversitySeoulKorea
- Department of Science in Korean MedicineGraduate SchoolKyung Hee UniversitySeoulKorea
- Department of Korean MedicineGraduate SchoolKyung Hee UniversitySeoulKorea
| |
Collapse
|
22
|
Feng JH, Kim HY, Sim SM, Zuo GL, Jung JS, Hwang SH, Kwak YG, Kim MJ, Jo JH, Kim SC, Lim SS, Suh HW. The Anti-Inflammatory and the Antinociceptive Effects of Mixed Agrimonia pilosa Ledeb. and Salvia miltiorrhiza Bunge Extract. PLANTS 2021; 10:plants10061234. [PMID: 34204404 PMCID: PMC8234973 DOI: 10.3390/plants10061234] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
Arthritis is a common condition that causes pain and inflammation in a joint. Previously, we reported that the mixture extract (ME) from Agrimonia pilosa Ledeb. (AP) and Salvia miltiorrhiza Bunge (SM) could ameliorate gout arthritis. In the present study, we aimed to investigate the potential anti-inflammatory and antinociceptive effects of ME and characterize the mechanism. We compared the anti-inflammatory and antinociceptive effects of a positive control, Perna canaliculus powder (PC). The results showed that one-off and one-week treatment of ME reduced the pain threshold in a dose-dependent manner (from 10 to 100 mg/kg) in the mono-iodoacetate (MIA)-induced osteoarthritis (OA) model. ME also reduced the plasma TNF-α, IL-6, and CRP levels. In LPS-stimulated RAW 264.7 cells, ME inhibited the release of NO, PGE2, LTB4, and IL-6, increased the phosphorylation of PPAR-γ protein, and downregulated TNF-α and MAPKs proteins expression in a concentration-dependent (from 1 to 100 µg/mL) manner. Furthermore, ME ameliorated the progression of ear edema in mice. In most of the experiments, ME-induced effects were almost equal to, or were higher than, PC-induced effects. Conclusions: The data presented here suggest that ME shows anti-inflammatory and antinociceptive activities, indicating ME may be a potential therapeutic for arthritis treatment.
Collapse
Affiliation(s)
- Jing-Hui Feng
- Department of Pharmacology, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (J.-H.F.); (S.-M.S.)
- Institute of Natural Medicine, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea;
| | - Hyun-Yong Kim
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (H.-Y.K.); (G.-L.Z.); (S.-H.H.)
| | - Su-Min Sim
- Department of Pharmacology, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (J.-H.F.); (S.-M.S.)
- Institute of Natural Medicine, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea;
| | - Guang-Lei Zuo
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (H.-Y.K.); (G.-L.Z.); (S.-H.H.)
| | - Jeon-Sub Jung
- Institute of Natural Medicine, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea;
| | - Seung-Hwan Hwang
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (H.-Y.K.); (G.-L.Z.); (S.-H.H.)
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Gyeonggi-do, Korea
| | - Youn-Gil Kwak
- Research Institute, Huons Nature, Geumsan 32742, Choong-cheong Nam-do, Korea; (Y.-G.K.); (M.-J.K.); (J.-H.J.)
| | - Min-Jung Kim
- Research Institute, Huons Nature, Geumsan 32742, Choong-cheong Nam-do, Korea; (Y.-G.K.); (M.-J.K.); (J.-H.J.)
| | - Jeong-Hun Jo
- Research Institute, Huons Nature, Geumsan 32742, Choong-cheong Nam-do, Korea; (Y.-G.K.); (M.-J.K.); (J.-H.J.)
| | - Sung-Chan Kim
- Department of Biochemistry, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea;
| | - Soon-Sung Lim
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (H.-Y.K.); (G.-L.Z.); (S.-H.H.)
- Correspondence: (S.-S.L.); (H.-W.S.); Tel.: +82-33-248-2133 (S.-S.L.); +82-33-248-2614 (H.-W.S.)
| | - Hong-Won Suh
- Department of Pharmacology, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (J.-H.F.); (S.-M.S.)
- Institute of Natural Medicine, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea;
- Correspondence: (S.-S.L.); (H.-W.S.); Tel.: +82-33-248-2133 (S.-S.L.); +82-33-248-2614 (H.-W.S.)
| |
Collapse
|
23
|
The Effects of Salvia miltiorrhiza on Reproduction and Metabolism in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9971403. [PMID: 34055030 PMCID: PMC8143891 DOI: 10.1155/2021/9971403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Objective Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age. As a traditional medicine, Salvia miltiorrhiza (S. miltiorrhiza) has been widely used in the treatment of many gynecological diseases, but the efficacy of S. miltiorrhiza in women with PCOS has not been assessed. The purpose of this systematic review and meta-analysis was to evaluate the effectiveness and safety of S. miltiorrhiza in women with PCOS. Methods We conducted searches in PubMed, Embase, the Cochrane Library, the China National Knowledge Infrastructure, the Wanfang Database, the Chinese Scientific Journal Database, and the Chinese BioMedical database from inception to December 23, 2020, to identify studies that met the inclusion criteria. The quality of the evidence was estimated using the Cochrane Reviewer Handbook 5.0.0, and the meta-analysis was performed using RevMan 5.3.5 software. Results Six randomized controlled trials (RCTs) involving 390 patients with PCOS were included. The studies suggested that S. miltiorrhiza extract combined with letrozole (LET) was more effective in improving pregnancy rate (RR: 2.60, 95% CI: 1.06 to 6.39, P=0.04) compared to LET alone. S. miltiorrhiza extract was associated with decreased fasting blood glucose (MD: –0.25, 95% CI: –0.37 to –0.13, P < 0.0001), fasting insulin (MD: –1.16, 95% CI: –1.74 to –0.58, P < 0.0001), total cholesterol (TC) (MD: –0.58, 95% CI: –0.72 to –0.43, P < 0.00001), and triglycerides (TG) (MD: –0.31, 95% CI: –0.35 to –0.26, P < 0.00001) compared with placebo, but not with improvements in body mass index or waist-to-hip ratio (MD: –1.41, 95% CI: –4.81 to 2.00, P=0.42; MD: –0.02, 95% CI: –0.05 to 0.01, P=0.16, respectively). There was a significant difference between S. miltiorrhiza extract combined with cyproterone acetate (CPA) and CPA alone in terms of decreasing TC (MD: –0.77, 95% CI: –0.89 to –0.65, P < 0.00001), TG (MD: –0.43, 95% CI: –0.65 to –0.20, P < 0.0001), and low-density lipoprotein cholesterol (MD: –0.49, 95% CI: –0.66 to –0.33, P < 0.00001) and increasing high-density lipoprotein cholesterol (MD: 0.30, 95% CI: 0.20, 0.40, P < 0.00001). In addition, S. miltiorrhiza extract also decreased testosterone, follicle-stimulating hormone, and luteinizing hormone. The studies did not mention any adverse events with S. miltiorrhiza extract. Conclusion The current studies indicate that S. miltiorrhiza has beneficial effects on reproduction and glucose and lipid metabolism in patients with PCOS, and it is generally safe for clinical application. However, more prospective RCTs with large samples, multiple centers, and longer intervention duration are needed in the future to obtain more reliable conclusions.
Collapse
|
24
|
Hou Z, Liang Z, Li Y, Su F, Chen J, Zhang X, Yang D. Quantitative Determination and Validation of Four Phenolic Acids in Salvia Miltiorrhiza Bunge using 1H-NMR Spectroscopy. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666191231104909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Although chromatography and spectrometry-based methods have been used to
analyse phenolic acids in Chinese traditional medicine Salvia miltiorrhiza Bunge (SMB), quantitative
nuclear magnetic resonance (qNMR) has never previously been used to analyse fresh SMB root extracts.
Objective:
To establish a fast and simple method of quantitating danshensu, lithospermic acid, rosmarinic
acid, and salvianolic acid B content in fresh SMB root using 1H-NMR spectroscopy.
Method:
Fresh SMB root was extracted using a 70% methanol aqueous solution and quantitatively
analysed for danshensu, lithospermic acid, rosmarinic acid, and salvianolic acid B using 1H-NMR
spectroscopy. Different internal standards were compared and the results were validated using highperformance
liquid chromatography.
Results:
The established method was accurate and precise with good recovery. The LOD and LOQ
indicated the excellent sensitivity of the method. The robustness was testified by the modification of
four different parameters, and the differences among each parameter were all less than 2%.
Conclusion:
qNMR offers a fast, reliable, and accurate method of identifying and quantifying danshensu,
lithospermic acid, rosmarinic acid, and salvianolic acid B in fresh SMB root extracts.
Collapse
Affiliation(s)
- Zhuoni Hou
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| | - Yuanyuan Li
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| | - Feng Su
- College of Pharmaceutical Sciences, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou,China
| | - Jipeng Chen
- College of Pharmaceutical Sciences, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou,China
| | - Xiaodan Zhang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| |
Collapse
|
25
|
Bittner ML, Lopes R, Hua J, Sima C, Datta A, Wilson-Robles H. Comprehensive live-cell imaging analysis of cryptotanshinone and synergistic drug-screening effects in various human and canine cancer cell lines. PLoS One 2021; 16:e0236074. [PMID: 33544704 PMCID: PMC7864433 DOI: 10.1371/journal.pone.0236074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background Several studies have highlighted both the extreme anticancer effects of Cryptotanshinone (CT), a Stat3 crippling component from Salvia miltiorrhiza, as well as other STAT3 inhibitors to fight cancer. Methods Data presented in this experiment incorporates 2 years of in vitro studies applying a comprehensive live-cell drug-screening analysis of human and canine cancer cells exposed to CT at 20 μM concentration, as well as to other drug combinations. As previously observed in other studies, dogs are natural cancer models, given to their similarity in cancer genetics, epidemiology and disease progression compared to humans. Results Results obtained from several types of human and canine cancer cells exposed to CT and varied drug combinations, verified CT efficacy at combating cancer by achieving an extremely high percentage of apoptosis within 24 hours of drug exposure. Conclusions CT anticancer efficacy in various human and canine cancer cell lines denotes its ability to interact across different biological processes and cancer regulatory cell networks, driving inhibition of cancer cell survival.
Collapse
Affiliation(s)
- Michael L. Bittner
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX, United States of America
- Translational Genomics Research Institute, Phoenix, AZ, United States of America
| | - Rosana Lopes
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX, United States of America
- * E-mail: (RL); (HWR)
| | - Jianping Hua
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX, United States of America
| | - Chao Sima
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX, United States of America
| | - Aniruddha Datta
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX, United States of America
| | - Heather Wilson-Robles
- College of Veterinary Medicine, Texas A&M University, College Station, TX, United States of America
- * E-mail: (RL); (HWR)
| |
Collapse
|
26
|
Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021; 22:1393. [PMID: 33573316 PMCID: PMC7866815 DOI: 10.3390/ijms22031393&set/a 813269399+839900579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
|
27
|
Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021. [DOI: 10.3390/ijms22031393
expr 945913974 + 948698388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
|
28
|
Kawashiri T, Mine K, Kobayashi D, Inoue M, Ushio S, Uchida M, Egashira N, Shimazoe T. Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021; 22:ijms22031393. [PMID: 33573316 PMCID: PMC7866815 DOI: 10.3390/ijms22031393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
Affiliation(s)
- Takehiro Kawashiri
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
- Correspondence: ; Tel.: +81-92-642-6573
| | - Keisuke Mine
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Daisuke Kobayashi
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Mizuki Inoue
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Soichiro Ushio
- Department of Pharmacy, Okayama University Hospital, Okayama 700-8558, Japan;
| | - Mayako Uchida
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan;
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan;
| | - Takao Shimazoe
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| |
Collapse
|
29
|
Hou Z, Li Y, Su F, Chen J, Zhang X, Xu L, Yang D, Liang Z. Application of 1H-NMR combined with qRT-PCR technology in the exploration of rosmarinic acid biosynthesis in hair roots of Salvia miltiorrhiza Bunge and Salvia castanea f. tomentosa Stib. PLANTA 2020; 253:2. [PMID: 33247370 PMCID: PMC7695671 DOI: 10.1007/s00425-020-03506-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 05/06/2023]
Abstract
MAIN CONCLUSION Methyl jasmonate promotes the synthesis of rosmarinic acid in Salvia miltiorrhiza Bunge and Salvia castanea f. tomentosa Stib, and it promotes the latter more strongly. Salvia miltiorrhiza Bunge (SMB) is a traditional Chinese medicinal material, its water-soluble phenolic acid component rosmarinic acid has very important medicinal value. Salvia castanea f. tomentosa Stib (SCT) mainly distributed in Nyingchi, Tibet. Its pharmacological effects are similar to SMB, but its rosmarinic acid is significantly higher than the former. Methyl jasmonate (MJ) as an inducer can induce the synthesis of phenolic acids in SMB and SCT. However, the role of MJ on rosmarinic acid in SMB is controversial. Therefore, this study used SMB and SCT hair root as an experimental material and MJ as a variable. On one hand, exploring the controversial reports in SMB; on the other hand, comparing the differences in the mechanism of action of MJ on the phenolic acids in SMB and SCT. The content of related metabolites and the expression of key genes in the synthesis pathway of rosmarinic acid was analyzed by 1H-NMR combined with qRT-PCR technology. Our research has reached the following conclusions: first of all, MJ promotes the accumulation of rosmarinic acid and related phenolic acids in the metabolic pathways of SMB and SCT. After MJ treatment, the content of related components and gene expression are increased. Second, compared to SMB, SCT has a stronger response to MJ. It is speculated that the different responses of secondary metabolism-related genes to MJ may lead to different metabolic responses of salvianolic acid between the two.
Collapse
Affiliation(s)
- Zhuoni Hou
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuanyuan Li
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Feng Su
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou, 310014, China
| | - Jipeng Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou, 310014, China
| | - Xiaodan Zhang
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ling Xu
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dongfeng Yang
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zongsuo Liang
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
30
|
You S, He X, Wang M, Mao L, Zhang L. Tanshinone IIA Suppresses Glioma Cell Proliferation, Migration and Invasion Both in vitro and in vivo Partially Through miR-16-5p/Talin-1 (TLN1) Axis. Cancer Manag Res 2020; 12:11309-11320. [PMID: 33192091 PMCID: PMC7654526 DOI: 10.2147/cmar.s256347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/01/2020] [Indexed: 01/13/2023] Open
Abstract
Background Tanshinone IIA (TIIA) is one of the active constituents derived from the rhizome of Danshen, a traditional Chinese herbal. Recently, microRNAs (miRNAs) have been suggested to be associated with the anticancer role of TIIA. However, it remains vague of the interaction between miRNAs and TIIA in glioma, a common aggressive brain tumor in humans. Methods Expression of miRNA (miR)-16-5p and talin-1 (TLN1) was detected using reverse transcription-quantitative polymerase chain reaction and Western blotting. Cell proliferation, migration and invasion were assessed with cell viability assay, transwell assay, Western blotting, and xenograft tumor experiment. The target binding between miR-16-5p and TLN1 was confirmed by dual-luciferase reporter assay and RNA pull-down assay. Results TIIA treatment inhibited cell viability, migration and invasion, and decreased Cyclin D1, matrix metalloproteinase (MMP)-9 and Vimentin expression in glioma T98G and A172 cells both in vitro and in vivo. Thus, TIIA induced anti-glioma role, wherein miR-16-5p was upregulated and TLN1 was downregulated. Moreover, silencing miR-16-5p could abate TIIA-mediated suppression on glioma cell proliferation, migration and invasion in vitro and in vivo. TLN1 overexpression also exerted tumor-promoting effect in TIIA-treated T98G and A172 cells. Mechanically, miR-16-5p could regulate TLN1 expression via target binding, and depleting TLN1 could counteract the inhibitory effect of miR-16-5p knockdown on the curative effect of TIIA in T98G and A172 cells. Conclusion TIIA exerted the anti-proliferation, anti-migration and anti-invasion role in glioma cells both in vitro and in vivo partially through regulating miR-16-5p/TLN1 axis.
Collapse
Affiliation(s)
- Shihao You
- Department of Neurology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, People's Republic of China
| | - Xianghui He
- Department of Emergency, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, People's Republic of China
| | - Mei Wang
- Department of Neurology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, People's Republic of China
| | - Lina Mao
- Department of Neurology, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, People's Republic of China
| | - Lu Zhang
- Department of Peripheral Vascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| |
Collapse
|
31
|
Suo J, Wang M, Zhang P, Lu Y, Xu R, Zhang L, Qiu S, Zhang Q, Qian Y, Meng J, Zhu J. Siwei Jianbu decoction improves painful paclitaxel-induced peripheral neuropathy in mouse model by modulating the NF-κB and MAPK signaling pathways. Regen Med Res 2020; 8:2. [PMID: 33095154 PMCID: PMC7583579 DOI: 10.1051/rmr/200001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Paclitaxel, a commonly used chemotherapeutic agent, is usually associated with peripheral neuropathy. Paclitaxel induced peripheral neuropathy (PIPN) can be dose limiting and may have detrimental influence on patients' quality of life. However, the mechanism of PIPN remains unclear. Medicinal herbs and their formulas might offer neuronal protection with their multitarget and integrated benefits in chemotherapy-induced peripheral neuropathy (CIPN). Siwei Jianbu decoction (J12) is a classic formula of traditional Chinese medicine which can promote blood circulation and treat diabetic nephropathy in clinical with the symptoms of weakness and pain. Methods: The effects of J12 were treated in C57BL/6 mice before injected with Paclitaxel.Behaviour studies: Measurement of mechanical hyperalgesia, thermal nociception and cold allodynia. On the last day at the end of week 6, DRGs were obtained from mice for western blot and immunohistochemical analysis containing NF-κB, p-ERK1/2 and p-SAPK/JNK protein expression. Quantitative real-time polymerase chain reaction: mRNA expression of NF-κB, IL-1β and TNF-α was analyzed. Additionally, the blood samples collected from the eye socket of the mouse were prepared to examine the levels of NF-κB, TNF-α, IL-6 and IL-1β using ELISA assay kits. Results: Hypersensitivity tests and pathology analysis have demonstrated that J12 could improve paclitaxel-induced peripheral pain. J12 acts by inhibiting the activation of (C-Jun N-terminal kinases) JNK, (extracellular signal-regulated kinase) ERK1/2 phosphorylation in (Mitogen-activated protein kinases) MAPK signaling pathway and the nuclear factor-κB (NF-κB) in C57BL/6 mice model, J12 also inhibits the production of inflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and IL-6. Conclusion: The present study showed that J12 ameliorates paclitaxel-induced peripheral neuropathic pain.
Collapse
Affiliation(s)
- Jinshuai Suo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Man Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuting Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rong Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyan Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiuyan Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yangyan Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China - Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, USA
| |
Collapse
|
32
|
Stankovic JSK, Selakovic D, Mihailovic V, Rosic G. Antioxidant Supplementation in the Treatment of Neurotoxicity Induced by Platinum-Based Chemotherapeutics-A Review. Int J Mol Sci 2020; 21:E7753. [PMID: 33092125 PMCID: PMC7589133 DOI: 10.3390/ijms21207753] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer represents one of the most pernicious public health problems with a high mortality rate among patients worldwide. Chemotherapy is one of the major therapeutic approaches for the treatment of various malignancies. Platinum-based drugs (cisplatin, oxaliplatin, carboplatin, etc.) are highly effective chemotherapeutic drugs used for the treatment of several types of malignancies, but their application and dosage are limited by their toxic effects on various systems, including neurotoxicity. Simultaneously, researchers have tried to improve the survival rate and quality of life of cancer patients and decrease the toxicity of platinum-containing drugs by combining them with non-chemotherapy-based drugs, dietary supplements and/or antioxidants. Additionally, recent studies have shown that the root cause for the many side effects of platinum chemotherapeutics involves the production of reactive oxygen species (ROS) in naive cells. Therefore, suppression of ROS generation and their inactivation with antioxidants represents an appropriate approach for platinum drug-induced toxicities. The aim of this paper is to present an updated review of the protective effects of different antioxidant agents (vitamins, dietary antioxidants and supplements, medicaments, medicinal plants and their bioactive compounds) against the neurotoxicity induced by platinum-based chemotherapeutics. This review highlights the high potential of plant antioxidants as adjuvant strategies in chemotherapy with platinum drugs.
Collapse
Affiliation(s)
- Jelena S. Katanic Stankovic
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia;
| | - Dragica Selakovic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Vladimir Mihailovic
- Faculty of Science, Department of Chemistry, University of Kragujevac, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| |
Collapse
|
33
|
Overview of Salvia miltiorrhiza as a Potential Therapeutic Agent for Various Diseases: An Update on Efficacy and Mechanisms of Action. Antioxidants (Basel) 2020; 9:antiox9090857. [PMID: 32933217 PMCID: PMC7555792 DOI: 10.3390/antiox9090857] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Salvia miltiorrhiza Bunge (S. miltiorrhiza) is a medicinal herb that has been used for the treatment for various diseases such as cardiovascular and cerebrovascular diseases in East Asia including Korea. Considering its extensive usage as a therapeutic agent for multiple diseases, there is a need to review previous research regarding its therapeutic benefits and their mechanisms. Therefore, we searched PubMed and PubMed Central for articles reporting its therapeutic effects on certain disease groups including cancers, cardiovascular, liver, and nervous system diseases. This review provides an overview of therapeutic benefits and targets of S. miltiorrhiza, including inflammation, fibrosis, oxidative stress, and apoptosis. The findings on multi-functional properties of S. miltiorrhiza discussed in this article support the efficacy of S. miltiorrhiza extract on various diseases, but also call for further research on the multiple mechanisms that mediate its therapeutic effects.
Collapse
|
34
|
Wu YH, Wu YR, Li B, Yan ZY. Cryptotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia 2020; 145:104633. [DOI: 10.1016/j.fitote.2020.104633] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
|
35
|
Abstract
Neuropathic pain (NP) has become a serious global health issue and a huge clinical challenge without available effective treatment. P2 receptors family is involved in pain transmission and represents a promising target for pharmacological intervention. Traditional Chinese medicine (TCM) contains multiple components which are effective in targeting different pathological mechanisms involved in NP. Different from traditional analgesics, which target a single pathway, TCMs take the advantage of multiple components and multiple targets, and can significantly improve the efficacy of treatment and contribute to the prediction of the risks of NP. Compounds of TCM acting at nucleotide P2 receptors in neurons and glial cells could be considered as a potential research direction for moderating neuropathic pain. This review summarized the recently published data and highlighted several TCMs that relieved NP by acting at P2 receptors.
Collapse
|
36
|
Dai CQ, Guo Y, Chu XY. Neuropathic Pain: the Dysfunction of Drp1, Mitochondria, and ROS Homeostasis. Neurotox Res 2020; 38:553-563. [PMID: 32696439 DOI: 10.1007/s12640-020-00257-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
Neuropathic pain affects the physical and mental health status of patients. Due to its complex pathogenesis and the adverse reactions to medicines, its treatment remains challenging. Among all the etiologies, increasing evidence has pointed to mitochondrial dysfunction. Dynamin-related protein 1 (Drp1)-mediated mitochondrial fragmentation leads to excess ROS generation, which is implicated in the pathogenesis of neuropathic pain. However, the exact mechanism remains unclear. Studies aiming to clarify the possible pathway and relationship between Drp1, mitochondria, ROS, and neuropathic pain may identify a good treatment for neuropathic pain in the clinic. As shown in this review, dysfunction of Drp1 and ROS homeostasis plays essential roles in neuropathic pain. We summarized a Drp1-mitochondrial fission-ROS cycle that potentially functions in neuropathic pain and is regulated by posttranslational modifications and Ca2+. Additionally, we further enumerated six Drp1 inhibitors, including Mdivi-1, P110, Drp1 antisense oligodeoxynucleotides, hyperbaric oxygen, melatonin, and β-hydroxybutyrate, as potential treatments, with the aim of providing guidance for novel molecules to be used in the clinic.
Collapse
Affiliation(s)
- Chun-Qiu Dai
- Third Medical District, Lintong Rehabilitation and Convalescent Centre, Xi'an, 710600, People's Republic of China
| | - Yu Guo
- Third Medical District, Lintong Rehabilitation and Convalescent Centre, Xi'an, 710600, People's Republic of China
| | - Xue-Yan Chu
- Third Medical District, Lintong Rehabilitation and Convalescent Centre, Xi'an, 710600, People's Republic of China.
| |
Collapse
|
37
|
De Caro C, Raucci F, Saviano A, Cristiano C, Casillo GM, Di Lorenzo R, Sacchi A, Laneri S, Dini I, De Vita S, Chini MG, Bifulco G, Calignano A, Maione F, Mascolo N. Pharmacological and molecular docking assessment of cryptotanshinone as natural-derived analgesic compound. Biomed Pharmacother 2020; 126:110042. [PMID: 32203893 DOI: 10.1016/j.biopha.2020.110042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 11/19/2022] Open
Abstract
Medicinal plants from traditional chinese medicine are used increasingly worldwide for their benefits to health and quality of life for the relevant clinical symptoms related to pain. Among them, Salvia miltiorrhiza Bunge is traditionally used in asian countries as antioxidant, anticancer, anti-inflammatory and analgesic agent. In this context, several evidences support the hypothesis that some tanshinones, in particular cryptotanshinone (CRY), extracted from the roots (Danshen) of this plant exhibit analgesic actions. However, it is surprisingly noted that no pharmacological studies have been carried out to explore the possible analgesic action of this compound in terms of modulation of peripheral and/or central pain. Therefore, in the present study, by using peripheral and central pain models of nociception, such as tail flick and hot plate test, the analgesic effect of CRY in mice was evaluated. Successively, by the aim of a computational approach, we have evaluated the interaction mode of this diterpenoid on opioid and cannabinoid system. Finally, CRY was dosed in mice serum by an HPLC method validated according to European Medicines Agency guidelines validation rules. Here, we report that CRY displayed anti-nociceptive activity on both hot plate and tail flick test, with a prominent long-lasting peripheral analgesic effect. These evidences were indirectly confirmed after the daily administration of the tanshinone for 7 and 14 days. In addition, the analgesic effect of CRY was reverted by naloxone and cannabinoid antagonists and amplified by arginine administration. These findings were finally supported by HPLC and docking studies, that revealed a noteworthy presence of CRY on mice serum 1 h after its intraperitoneal administration and a possible interaction of tested compound on μ and k receptors. Taken together, these results provide a new line of evidences showing that CRY can produce analgesia against various phenotypes of nociception with a mechanism that seems to be related to an agonistic activity on opioid system.
Collapse
Affiliation(s)
- Carmen De Caro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Federica Raucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Anella Saviano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Claudia Cristiano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Gian Marco Casillo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Ritamaria Di Lorenzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Antonia Sacchi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Sonia Laneri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Irene Dini
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Maria Giovanna Chini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy; Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia, I-86090, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy.
| | - Antonio Calignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | - Nicola Mascolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| |
Collapse
|
38
|
Wang X, Yang Y, Liu X, Gao X. Pharmacological properties of tanshinones, the natural products from Salvia miltiorrhiza. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 87:43-70. [PMID: 32089238 DOI: 10.1016/bs.apha.2019.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Danshen (Cai, et al. 2016) is the dry root and rhizome of the herbaceous plant Salvia miltiorrhiza Bge. of family labiatae, a perennial plant that is native to China and Japan. The primary modern clinical applications of Danshen are for heart disease, chronic hepatitis, early cirrhosis, cerebral ischemia and pulmonary heart disease. Emerging evidence from cellular, animal, and clinical studies has begun to illuminate the pharmacological attributes of the primary lipophilic tanshinones from Danshen, which include tanshinone I, tanshinone II, cryptotanshinone and dihydrotanshinone, etc. Tanshinones offer the properties of anti-oxidation, anti-inflammation, antitumor, phytoestrogenic activity, vasodilation, neuroprotection, regulate metabolic function and other pharmacological advances. This chapter will review the discovery of the pharmacodynamic mechanism and pharmacokinetic studies of tanshinones and Danshen for further clinical applications.
Collapse
Affiliation(s)
- Xiaoying Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
39
|
Zhou ZY, Zhao WR, Zhang J, Chen XL, Tang JY. Sodium tanshinone IIA sulfonate: A review of pharmacological activity and pharmacokinetics. Biomed Pharmacother 2019; 118:109362. [PMID: 31545252 DOI: 10.1016/j.biopha.2019.109362] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023] Open
Abstract
Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivate of tanshinone IIA (Tan IIA) which is an active lipophilic constitute of Chinese Materia Medica Salvia miltiorrhiza Bge. (Danshen). STS presents multiple pharmacological activities, including anti-oxidant, anti-inflammation and anti-apoptosis, and has been approved for treatment of cardiovascular diseases by China State Food and Drug Administration (CFDA). In this review, we comprehensively summarized the pharmacological activities and pharmacokinetics of STS, which could support the further application and development of STS. In the recent decades, numerous experimental and clinical studies have been conducted to investigate the potential treatment effects of STS in various diseases, such as heart diseases, brain diseases, pulmonary diseases, cancers, sepsis and so on. The underlying mechanisms were most related to anti-oxidative and anti-inflammatory effects of STS via regulating various transcription factors, such as NF-κB, Nrf2, Stat1/3, Smad2/3, Hif-1α and β-catenin. Iron channels, including Ca2+, K+ and Cl- channels, were also the important targets of STS. Additionally, we emphasized the differences between STS and Tan IIA despite the interchangeable use of Tan IIA and STS in many previous studies. It is promising to improve the efficacy and reduce side effects of chemotherapeutic drug by the combination use of STS in canner treatment. The application of STS in pregnancy needs to be seriously considered. Moreover, the drug-drug interactions between STS and other drugs needs to be further studied as well as the complications of STS.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xin-Lin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
40
|
The Method of Activating Blood and Dredging Collaterals for Reducing Chemotherapy-Induced Peripheral Neuropathy: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1029626. [PMID: 31281395 PMCID: PMC6590582 DOI: 10.1155/2019/1029626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022]
Abstract
Background Chemotherapy-induced peripheral neuropathy (CIPN) remains as a big unsolved challenge for cancer patients and oncologists. However, there is no effective treatment to prevent and cure it. This systematic review and meta-analysis chiefly aimed to assess the effectiveness and safety on the method of activating blood and dredging collaterals in traditional Chinese medicine (TCM) for reducing CIPN. Methods Two authors comprehensively searched all the randomized controlled trials (RCTs) via PubMed, Cochrane, China National Knowledge Infrastructure (CNKI), and Wanfang Database of China Science Periodical Database (CSPD). The Review Manager (RevMan) 5.0 was used to conduct the meta-analysis. Results 20 trials including 1481 participants were analyzed. 15 trials tested the incidence of all-grade CIPN which was significantly lower in intervention arm and 16 trails presented that the result of high-grade CIPN was the same. The total effective rate of the use of Chinese herbs was 77.19% versus 45.79% in the comparator group. Besides, the use of Chinese herbs statistically promoted the sensory nerve conduction velocity (SNCV) and the motor nerve conduction velocity (MNCV). Besides, the quality of life (QoL) in the intervention group was better than the comparator one. Herbs-related adverse events were skin allergy, skin chap, and scald, which could be managed well. Conclusions The work involving studies of the effectiveness and safety on TCM for reducing CIPN proves to be encouraging. Herbs with the function of activating blood and dredging collaterals were found to potentially promote the curative effects as well as making improvements of SNCV and MNCV. However, in the future, more double-blind, multicenter, large-scale RCTs and more comprehensive researches are still required.
Collapse
|
41
|
Zhang W, Suo M, Yu G, Zhang M. Antinociceptive and anti-inflammatory effects of cryptotanshinone through PI3K/Akt signaling pathway in a rat model of neuropathic pain. Chem Biol Interact 2019; 305:127-133. [DOI: 10.1016/j.cbi.2019.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 01/18/2023]
|
42
|
Heo JY, Im DS. Anti-allergic effects of salvianolic acid A and tanshinone IIA from Salvia miltiorrhiza determined using in vivo and in vitro experiments. Int Immunopharmacol 2018; 67:69-77. [PMID: 30537633 DOI: 10.1016/j.intimp.2018.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022]
Abstract
Salvia miltiorrhiza root has been used in Asian traditional medicine for the treatment of cardiovascular diseases, asthma, and other conditions. Salvianolic acid B from S. miltiorrhiza extracts has been shown to improve airway hyperresponsiveness. We investigated the effects of salvianolic acid A, tanshinone I, and tanshinone IIA from S. miltiorrhiza in allergic asthma by using rat RBL-2H3 mast cells and female Balb/c mice. Antigen-induced degranulation was assessed by measuring β-hexosaminidase activity in vitro. In addition, a murine ovalbumin-induced allergic asthma model was used to test the in vivo efficacy of salvianolic acid A and tanshinone IIA. Tanshinone I and tanshinone IIA inhibited antigen-induced degranulation of mast cells, but salvianolic acid A did not. Administration of salvianolic acid A and tanshinone IIA decreased the number of immune cells, particularly eosinophils in allergic asthma-induced mice. Histological studies showed that salvianolic acid A and tanshinone IIA reduced mucin production and inflammation in the lungs. Administration of salvianolic acid A and tanshinone IIA reduced the expression and secretion of Th2 cytokines (IL-4 and IL-13) in the bronchoalveolar lavage fluid and lung tissues of mice with ovalbumin-induced allergic asthma. These findings provide evidence that salvianolic acid A and tanshinone IIA may be potential anti-allergic therapeutics.
Collapse
Affiliation(s)
- Jae-Yeong Heo
- College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - Dong-Soon Im
- College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
43
|
Liu Q, Wu Q, Zeng Z, Xia L, Huang Y. Clinical effect and mechanism of acupuncture and moxibustion on occupational hand-arm vibration disease: A retrospective study. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|