1
|
Ren F, Ma Y, Zhang K, Luo Y, Pan R, Zhang J, Kan C, Hou N, Han F, Sun X. Exploring the multi-targeting phytoestrogen potential of Calycosin for cancer treatment: A review. Medicine (Baltimore) 2024; 103:e38023. [PMID: 38701310 PMCID: PMC11062656 DOI: 10.1097/md.0000000000038023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Cancer remains a significant challenge in the field of oncology, with the search for novel and effective treatments ongoing. Calycosin (CA), a phytoestrogen derived from traditional Chinese medicine, has garnered attention as a promising candidate. With its high targeting and low toxicity profile, CA has demonstrated medicinal potential across various diseases, including cancers, inflammation, and cardiovascular disease. Studies have revealed that CA possesses inhibitory effects against a diverse array of cancers. The underlying mechanism of action involves a reduction in tumor cell proliferation, induction of tumor cell apoptosis, and suppression of tumor cell migration and invasion. Furthermore, CA has been shown to enhance the efficacy of certain chemotherapeutic drugs, making it a potential component in treating malignant tumors. Given its high efficacy, low toxicity, and multi-targeting characteristics, CA holds considerable promise as a therapeutic agent for cancer treatment. The objective of this review is to present a synthesis of the current understanding of the antitumor mechanism of CA and its research progress.
Collapse
Affiliation(s)
- Fangbing Ren
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Youhong Luo
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
2
|
Sohel M, Zahra Shova FT, shuvo S, Mahjabin T, Mojnu Mia M, Halder D, Islam H, Roman Mogal M, Biswas P, Saha HR, Sarkar BC, Mamun AA. Unveiling the potential anti-cancer activity of calycosin against multivarious cancers with molecular insights: A promising frontier in cancer research. Cancer Med 2024; 13:e6924. [PMID: 38230908 PMCID: PMC10905684 DOI: 10.1002/cam4.6924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Calycosin may be a potential candidate regarding chemotherapeutic agent, because already some studies against multivarious cancer have been made with this natural compound. AIM This review elucidated a brief overview of previous studies on calycosin potential effects on various cancers and its potential mechanism of action. METHODOLOGY Data retrieved by systematic searches of Google Scholar, PubMed, Science Direct, Web of Science, and Scopus by using keywords including calycosin, cancer types, anti-cancer mechanism, synergistic, and pharmacokinetic and commonly used tools are BioRender, ChemDraw Professional 16.0, and ADMETlab 2.0. RESULTS Based on our review, calycosin is available in nature and effective against around 15 different types of cancer. Generally, the anti-cancer mechanism of this compound is mediated through a variety of processes, including regulation of apoptotic pathways, cell cycle, angiogenesis and metastasis, oncogenes, enzymatic pathways, and signal transduction process. These study conducted in various study models, including in silico, in vitro, preclinical and clinical models. The molecular framework behind the anti-cancer effect is targeting some oncogenic and therapeutic proteins and multiple signaling cascades. Therapies based on nano-formulated calycosin may make excellent nanocarriers for the delivery of this compound to targeted tissue as well as particular organ. This natural compound becomes very effective when combined with other natural compounds and some standard drugs. Moreover, proper use of this compound can reverse resistance to existing anti-cancer drugs through a variety of strategies. Calycosin showed better pharmacokinetic properties with less toxicity in human bodies. CONCLUSION Calycosin exhibits excellent potential as a therapeutic drug against several cancer types and should be consumed until standard chemotherapeutics are available in pharma markets.
Collapse
Affiliation(s)
- Md Sohel
- Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Fatema Tuj Zahra Shova
- Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Shahporan shuvo
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Taiyara Mahjabin
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Mojnu Mia
- Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Dibyendu Halder
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Hafizul Islam
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md Roman Mogal
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and TechnologyJashore University of Science and Technology (JUST)JashoreBangladesh
| | - Hasi Rani Saha
- Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | | | - Abdullah Al Mamun
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| |
Collapse
|
3
|
Feng H, Zhao F, Luo J, Xu S, Liang Z, Xu W, Bao Y, Qin G. Long non-coding RNA HOTTIP exerts an oncogenic function by regulating HOXA13 in nasopharyngeal carcinoma. Mol Biol Rep 2023; 50:6807-6818. [PMID: 37392284 PMCID: PMC10374758 DOI: 10.1007/s11033-023-08598-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND The long non-coding RNA HOXA transcript at the distal tip (HOTTIP) and homeobox A13 (HOXA13) have been identified as oncogenes that play a pivotal role in tumorigenesis. However, their specific mechanisms of action in nasopharyngeal carcinoma (NPC) progression remain unclear. METHODS AND RESULTS In the present study, RT-qPCR was employed to quantify RNA expression in NPC cells and tissues. Flow cytometry, MTT, CCK8 and colony formation assays were utilized to assess cell apoptosis and proliferation. Transwell assay was conducted to evaluate migration and invasion while Western blotting was performed for protein expression analysis. Our findings revealed that the expression of HOTTIP was significantly upregulated in NPC cell lines. Inhibition of HOTTIP could induce apoptosis and suppress proliferation, clonogenicity, invasion and metastasis in NPC cells. Knockdown of HOTTIP led to downregulation of HOXA13 expression, which subsequently inhibited the proliferation and metastasis in NPC cells. The inhibitory effects on cell proliferation and metastasis caused by HOTTIP silencing were rescued by HOXA13 overexpression. Additionally, there was a significant positive correlation between HOTTIP and HOXA13, which were found to be elevated in NPC tissues compared to normal tissues. CONCLUSIONS We have determined that LncRNA HOTTIP facilitates tumorigenesis by modulating the expression of HOXA13 in NPC cells. Targeting HOTTIP/HOXA13 may be a promising therapeutic strategy for NPC.
Collapse
Affiliation(s)
- Huajun Feng
- Department of Otolaryngology Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Feipeng Zhao
- Department of Otolaryngology Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Jian Luo
- Department of Otolaryngology Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Shengen Xu
- Department of Otolaryngology Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Zhuoping Liang
- Department of Otolaryngology Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Wei Xu
- Department of Otolaryngology Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Yilin Bao
- Department of Otolaryngology Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Zhai W, Hu Y, Zhang Y, Zhang G, Chen H, Tan X, Zheng Y, Gao W, Wei Y, Wu J. A systematic review of phytochemicals from Chinese herbal medicines for non-coding RNAs-mediated cancer prevention and treatment: From molecular mechanisms to potential clinical applications. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Wen J, Li H, Li D, Dong X. Clinicopathological and prognostic significance of long non-coding RNA EWSAT1 in human cancers: A review and meta analysis. PLoS One 2022; 17:e0265264. [PMID: 35286362 PMCID: PMC8920262 DOI: 10.1371/journal.pone.0265264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/26/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Ewing sarcoma-associated transcript 1 (lncRNA EWSAT1) is reported to have a close relationship with the overall survival in many cancers. However, the role of its prognosis and correlations with the clinicopathological features in different cancers haven’t been explored yet. Herein, we intend to assess the prognostic value and correlations with the clinicopathological features in several cancers.
Methods
PubMed, Embase, Web of Science, and The Cochrane Library were searched for literature review from inception to October 25, 2021. Valid data was extracted to make forest and sensitivity analysis plots using Review Manager 5.4 and Stata software. Hazard ratio (HR) or odds ratio (OR) with 95% confidence interval (CI) was used to evaluate the relationship between different expression of EWSAT1 and patients’ prognosis and clinicopathological features.
Results
7 studies were screened for this review, including 550 samples. Meta-analysis showed that high expression of lncRNA EWSAT1 was associated with poor overall survival (OS) (HR = 2.10, 95% CI, 1.60–2.75, p < 0.0001) in cancers reported. In addition, patients in high expression group of EWAST1 tended to have more metastasis (OR = 2.20, 95% CI 1.47–3.31, p = 0.0001), and higher TNM stage (I+II vs. III: OR = 0.34, 95% CI 0.21–0.56, p < 0.0001), but in the same time with higher differentiation (well + moderate vs. Poor: OR = 2.21, 95% CI 1.02–4.76, p = 0.04). Age (OR = 1.47, 95% CI 0.94–2.30, p = 0.09) was not significantly different in patients with aberrant expression of EWSAT1.
Conclusions
Our study shows that high expression of EWSAT1 may indicate poor overall survival and associated with several clinicopathological features, which can be used as a potential prognosis biomarker for multiple cancers.
Collapse
Affiliation(s)
- Jian Wen
- People’s Clinical Medical College affiliated to Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Haima Li
- People’s Clinical Medical College affiliated to Nanchang University, Nanchang, Jiangxi, China
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Dongdong Li
- People’s Clinical Medical College affiliated to Nanchang University, Nanchang, Jiangxi, China
- Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Xieping Dong
- People’s Clinical Medical College affiliated to Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- * E-mail:
| |
Collapse
|
6
|
Chen X, Xu W, Ma Z, Zhu J, Hu J, Li X, Fu S. TTN-AS1 accelerates the growth and migration of nasopharyngeal carcinoma cells via targeting miR-876-5p/NETO2. Mol Ther Oncolytics 2022; 24:535-546. [PMID: 35229031 PMCID: PMC8851086 DOI: 10.1016/j.omto.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most predominant cancers occurring in China with high morbidity. Lately, large quantities of long non-coding RNAs (lncRNAs) have been highlighted to regulate the biological activities in multiple tumors, including NPC. Our study centered on whether TTN-AS1 was involved in NPC and how it modulated the progression of NPC. Here, qRT-PCR data uncovered that TTN-AS1 expression was conspicuously high in NPC cells. Based on the results of functional assays, TTN-AS1 silence hampered the proliferative, migratory, and invasive abilities but stimulated the apoptotic capability of NPC cells. After a series of mechanism assays, TTN-AS1 was found to competitively bind with miR-876-5p and recruit UPF1 to enhance NETO2 expression. In addition, TTN-AS1 could be transcriptionally activated by YY1 in NPC cells. It was also found that miR-876-5p overexpression or NETO2 downregulation had inhibitory effects on cell proliferation, migration, and invasion in NPC. Moreover, NETO2 upregulation could restore the suppressive impacts of TTN-AS1 depletion on NPC cell and tumor growth. In conclusion, YY1-activated TTN-AS1 interacted with both miR-876-5p and UPF1 to upregulate NETO2, thus strengthening NPC cell malignant behaviors, which might provide more useful information for people to develop effective NPC treatments.
Collapse
Affiliation(s)
- Xinping Chen
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
| | - Weihua Xu
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
| | - Zhichao Ma
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
| | - Juan Zhu
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
| | - Junjie Hu
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
| | - Xiaojuan Li
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
| | - Shengmiao Fu
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
- Corresponding author Shengmiao Fu, Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China.
| |
Collapse
|
7
|
Wang J, Wang W, Huang X, Cao J, Hou S, Ni X, Peng C, Liu T. m6A-dependent upregulation of TRAF6 by METTL3 is associated with metastatic osteosarcoma. J Bone Oncol 2022; 32:100411. [PMID: 35145841 PMCID: PMC8802048 DOI: 10.1016/j.jbo.2022.100411] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/30/2021] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
METTL3 is highly expressed in osteosarcoma. METTL3 downregulation inhibits metastases of osteosarcoma cells. m6A regulates osteosarcoma cell activity. METTL3 modifies TRAF6 activity via m6A. TRAF6 inhibits the repressive effects of sh-METTL3 on osteosarcoma metastases.
Objectives RNA N6-methyladenosine (m6A) is associated with tumorigenesis. The importance of methyltransferase-like 3 (METTL3) has been reported in cancer progression and metastasis. However, its role and molecular mechanism in osteosarcoma (OS), the most common primary bone tumor, is poorly studied. In this study, we aimed to investigate the functional role and underlying mechanism of METTL3 in the metastasis of OS. Methods The expression differences of METTL3 between metastatic and non-metastatic OS tissues and patients with different Enneking stages were detected using RT-qPCR. METTL3 was artificially downregulated in the cells, followed by wound healing assay, Matrigel assay, immunofluorescence, in vivo tumorigenic assay, HE staining, and western blot. Transcriptome sequencing and m6A-seq was conducted to identify the downstream genes of METTL3, and RIP and dual-luciferase assays were performed for validation. The expression of TRAF6 in OS tissues was detected using RT-qPCR. Finally, the rescue experiments were conducted. Results METTL3 was overexpressed in metastatic OS tissues, and downregulation of METTL3 decreased cell migration, invasion, epithelial-mesenchymal transition, and tumorigenic and metastatic activities. The m6A site was highly enriched in cells poorly expressing METTL3, and the m6A peak was mainly enriched in the exon region. METTL3 was positively correlated with TRAF6 in metastatic OS, and depletion of METTL3 resulted in the loss of TRAF6 expression in OS cells. Upregulation of TRAF6 contributed to metastases in vitro and in vivo. Conclusion METTL3 is highly expressed in OS and enhances TRAF6 expression through m6A modification, thereby promoting the metastases of OS cells.
Collapse
|
8
|
Homayoonfal M, Asemi Z, Yousefi B. Targeting long non coding RNA by natural products: Implications for cancer therapy. Crit Rev Food Sci Nutr 2021:1-29. [PMID: 34783279 DOI: 10.1080/10408398.2021.2001785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In spite of achieving substantial progress in its therapeutic strategies, cancer-associated prevalence and mortality are persistently rising globally. However, most malignant cancers either cannot be adequately diagnosed at the primary phase or resist against multiple treatments such as chemotherapy, surgery, radiotherapy as well as targeting therapy. In recent decades, overwhelming evidences have provided more convincing words on the undeniable roles of long non-coding RNAs (lncRNAs) in incidence and development of various cancer types. Recently, phytochemical and nutraceutical compounds have received a great deal of attention due to their inhibitory and stimulatory effects on oncogenic and tumor suppressor lncRNAs respectively that finally may lead to attenuate various processes of cancer cells such as growth, proliferation, metastasis and invasion. Therefore, application of phytochemicals with anticancer characteristics can be considered as an innovative approach for treating cancer and increasing the sensitivity of cancer cells to standard prevailing therapies. The purpose of this review was to investigate the effect of various phytochemicals on regulation of lncRNAs in different human cancer and evaluate their capabilities for cancer treatment and prevention.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Tang Y, He X. Long non-coding RNAs in nasopharyngeal carcinoma: biological functions and clinical applications. Mol Cell Biochem 2021; 476:3537-3550. [PMID: 33999333 DOI: 10.1007/s11010-021-04176-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck malignancies. It has obvious ethnic and regional specificity. Long non-coding RNAs (LncRNAs) are a class of non-protein coding RNA molecules. Emerging research shows that lncRNAs play a key role in tumor development, prognosis, and treatment. With the deepening of sequence analysis, a large number of functional LncRNAs have been found in NPC, which interact with coding genes, miRNAs, and proteins to form a complex regulatory network. However, the specific role and mechanism of abnormally expressed lncRNAs in the pathogenesis of NPC is not fully understood. This article briefly introduced the concept, classification, and functional mechanism of lncRNAs and reviewed their biological functions and their clinical applications in NPC. Specifically, we described lncRNAs related to the occurrence, growth, invasion, metastasis, angiogenesis, and cancer stem cells of NPC; discussed lncRNAs related to Epstein-Barr virus infection; and summarized the role of lncRNAs in NPC treatment resistance. We have also sorted out lncRNAs related to Chinese medicine treatment. We believe that with the deepening of lncRNAs research, tumor-specific lncRNAs may become a new target for the treatment and a biomarker for predicting prognosis.
Collapse
Affiliation(s)
- Yao Tang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, China
| | - Xiusheng He
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
10
|
Kalhori MR, Khodayari H, Khodayari S, Vesovic M, Jackson G, Farzaei MH, Bishayee A. Regulation of Long Non-Coding RNAs by Plant Secondary Metabolites: A Novel Anticancer Therapeutic Approach. Cancers (Basel) 2021; 13:cancers13061274. [PMID: 33805687 PMCID: PMC8001769 DOI: 10.3390/cancers13061274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer is caused by the rapid and uncontrolled growth of cells that eventually lead to tumor formation. Genetic and epigenetic alterations are among the most critical factors in the onset of carcinoma. Phytochemicals are a group of natural compounds that play an essential role in cancer prevention and treatment. Long non-coding RNAs (lncRNAs) are potential therapeutic targets of bioactive phytochemicals, and these compounds could regulate the expression of lncRNAs directly and indirectly. Here, we critically evaluate in vitro and in vivo anticancer effects of phytochemicals in numerous human cancers via regulation of lncRNA expression and their downstream target genes. Abstract Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs that play an essential role in various cellular activities, such as differentiation, proliferation, and apoptosis. Dysregulation of lncRNAs serves a fundamental role in the progression and initiation of various diseases, including cancer. Precision medicine is a suitable and optimal treatment method for cancer so that based on each patient’s genetic content, a specific treatment or drug is prescribed. The rapid advancement of science and technology in recent years has led to many successes in this particular treatment. Phytochemicals are a group of natural compounds extracted from fruits, vegetables, and plants. Through the downregulation of oncogenic lncRNAs or upregulation of tumor suppressor lncRNAs, these bioactive compounds can inhibit metastasis, proliferation, invasion, migration, and cancer cells. These natural products can be a novel and alternative strategy for cancer treatment and improve tumor cells’ sensitivity to standard adjuvant therapies. This review will discuss the antineoplastic effects of bioactive plant secondary metabolites (phytochemicals) via regulation of expression of lncRNAs in various human cancers and their potential for the treatment and prevention of human cancers.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Hamid Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Saeed Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Miko Vesovic
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gloria Jackson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran
- Correspondence: (M.H.F.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (M.H.F.); or (A.B.)
| |
Collapse
|
11
|
Liu TJ, Hu S, Qiu ZD, Liu D. Anti-Tumor Mechanisms Associated With Regulation of Non-Coding RNA by Active Ingredients of Chinese Medicine: A Review. Front Oncol 2021; 10:634936. [PMID: 33680956 PMCID: PMC7930492 DOI: 10.3389/fonc.2020.634936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer has become the second leading cause of death worldwide; however, its complex pathogenesis remains largely unclear. Previous research has shown that cancer development and progression are closely associated with various non-coding RNAs, including long non-coding RNAs and microRNAs, which regulate gene expression. Target gene abnormalities are regulated and engaged in the complex mechanism underlying tumor formation, thereby controlling apoptosis, invasion, and migration of tumor cells and providing potentially effective targets for the treatment of malignant tumors. Chemotherapy is a commonly used therapeutic strategy for cancer; however, its effectiveness is limited by general toxicity and tumor cell drug resistance. Therefore, increasing attention has been paid to developing new cancer treatment modalities using traditional Chinese medicines, which exert regulatory effects on multiple components, targets, and pathways. Several active ingredients in Chinese medicine, including ginsenoside, baicalin, and matrine have been found to regulate ncRNA expression levels, thus, exerting anti-tumor effects. This review summarizes the scientific progress made regarding the anti-tumor mechanisms elicited by various active ingredients of Chinese medicine in regulating non-coding RNAs, to provide a theoretical foundation for treating tumors using traditional Chinese medicine.
Collapse
Affiliation(s)
- Tian-Jia Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Hu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhi-Dong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
12
|
Wang CY, Wang TC, Liang WM, Hung CH, Chiou JS, Chen CJ, Tsai FJ, Huang ST, Chang TY, Lin TH, Liao CC, Huang SM, Li TM, Lin YJ. Effect of Chinese Herbal Medicine Therapy on Overall and Cancer Related Mortality in Patients With Advanced Nasopharyngeal Carcinoma in Taiwan. Front Pharmacol 2021; 11:607413. [PMID: 33708119 PMCID: PMC7941275 DOI: 10.3389/fphar.2020.607413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/29/2020] [Indexed: 01/03/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer involving epithelial squamous-cell carcinoma of the nasopharynx that mainly occurs in individuals from East and Southeast Asia. We investigated whether Chinese herbal medicine (CHM) as a complementary therapy offers benefits to these patients. We retrospectively evaluated the Taiwan Cancer Registry (Long Form) database for patients with advanced NPC, using or not using CHM, between 2007–2013. Cox proportional-hazard model and Kaplan‒Meier survival analyses were applied for patient survival. CHM-users showed a lower overall and cancer-related mortality risk than non-users. For advanced NPC patients, the overall mortality risk was 0.799-fold for CHM-users, after controlling for age, gender, and Charlson comorbidity index (CCI) score (Cancer stages 3 + 4: adjusted hazard ratio [aHR]: 0.799, 95% confidence interval [CI]: 0.676–0.943, p = 0.008). CHM-users also showed a lower cancer-related mortality risk than non-users (aHR: 0.71, 95% CI: 0.53–0.96, p = 0.0273). Association rule analysis showed that CHM pairs were Ban-Zhi-Lian (BZL; Scutellaria barbata D.Don) and For single herbs, Bai-Hua-She-She-Cao (Herba Hedyotis Diffusae; Scleromitrion diffusum (Willd.) R.J.Wang (syn. Hedyotis diffusa Willd.) and Mai-Men-Dong (MMD; Ophiopogon japonicus (Thunb.) Ker Gawl.), and Gan-Lu-Yin (GLY) and BHSSC. Network analysis revealed that BHSSC was the core CHM, and BZL, GLY, and Xin-Yi-Qing-Fei-Tang (XYQFT) were important CHMs in cluster 1. In cluster 2, ShengDH, MMD, Xuan-Shen (XS; Scrophularia ningpoensis Hensl.), and Gua-Lou-Gen (GLG; Trichosanthes kirilowii Maxim.) were important CHMs. Thus, as a complementary therapy, CHM, and particularly the 8 CHMs identified, are important for the treatment of advanced NPC patients.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tang-Chuan Wang
- Department of Public Health, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Jian-Shiun Chiou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chao-Jung Chen
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ta-Yuan Chang
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
13
|
Jiang Y, Sun-Waterhouse D, Chen Y, Li F, Li D. Epigenetic mechanisms underlying the benefits of flavonoids in cardiovascular health and diseases: are long non-coding RNAs rising stars? Crit Rev Food Sci Nutr 2021; 62:3855-3872. [PMID: 33427492 DOI: 10.1080/10408398.2020.1870926] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases (CVDs) rank as the first leading cause of death globally. High dietary polyphenol (especially flavonoids) intake has strongly been associated with low incidence of the primary outcome, overall mortality, blood pressure, inflammatory biomarkers, onset of new-onset type 2 diabetes mellitus (T2DM), and obesity. Phytogenic flavonoids affect the physiological and pathological processes of CVDs by modulating various biochemical signaling pathways. Non-coding RNAs (ncRNAs) have attracted increasing attention as fundamental regulator of gene expression involved in CVDs. Among the different ncRNA subgroups, long ncRNAs (lncRNAs) have recently emerged as regulatory eukaryotic transcripts and therapeutic targets with important and diverse functions in health and diseases. lncRNAs may be associated with the initiation, development and progression of CVDs by modulating acute and chronic inflammation, adipogenesis and lipid metabolism, and cellular physiology. This review summarizes this research on the modulatory effects of lncRNAs and their roles in mediating cellular processes. The mechanisms of action of flavonoids underlying their therapeutic effects on CVDs are also discussed. Based on our review, flavonoids might facilitate a significant epigenetic modification as part (if not full) of their tissue-/cell-related biological effects. This finding may be attributed to their interaction with cellular signaling pathways involved in chronic diseases. Certain lncRNAs might be the target of specific flavonoids, and some critical signaling processes involved in the intervention of CVDs might mediate the therapeutic roles of flavonoids.
Collapse
Affiliation(s)
- Yang Jiang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian, PR China
| | | | - Yilun Chen
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian, PR China
| | - Feng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian, PR China
| | - Dapeng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian, PR China
| |
Collapse
|
14
|
Deng M, Chen H, Long J, Song J, Xie L, Li X. Calycosin: a Review of its Pharmacological Effects and Application Prospects. Expert Rev Anti Infect Ther 2020; 19:911-925. [PMID: 33346681 DOI: 10.1080/14787210.2021.1863145] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Calycosin (CA), a typical phytoestrogen extracted from root of Astragalus membranaceus. On the basis of summarizing the pharmacological and pharmacokinetic studies of CA in recent years, we hope to provide useful information for CA about treating different diseases and to make suggestions for future research.Areas covered: We collected relevant information (January 2014 to March 2020) on CA via the Internet database. Keywords searched includ pharmacology, pharmacokinetics and toxicology, and the number of effective references was 118. CA is a phytoestrogen with wide range of pharmacological activities. By affecting PI3K/Akt/mTOR, WDR7-7-GPR30, Rab27B-β-catenin-VEGF, etc. signaling pathway, CA showed the effect of anticancer, anti-inflammatory, anti-osteoporosis, neuroprotection, hepatoprotection, etc. Therefore, CA is prospective to be used in the treatment of many diseases.Expert opinion: Research shows that CA has a therapeutic effect on a variety of diseases. We think CA is a promising natural medicine. Therefore, we propose that the research directions of CA in the future include the following. Carrying out clinical research trials in order to find the most suitable medicinal concentration for different diseases; Exploring the synergistic mechanism of CA in combination with other drugs; Exploring ways to increase the blood circulation concentration of CA.
Collapse
Affiliation(s)
- Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Huijuan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
15
|
Tao SC, Huang JY, Wei ZY, Li ZX, Guo SC. EWSAT1 Acts in Concert with Exosomes in Osteosarcoma Progression and Tumor-Induced Angiogenesis: The "Double Stacking Effect". ACTA ACUST UNITED AC 2020; 4:e2000152. [PMID: 32803878 DOI: 10.1002/adbi.202000152] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Indexed: 12/11/2022]
Abstract
The prognosis for osteosarcoma (OS) continues to be unsatisfactory due to tumor recurrence as a result of metastasis and drug resistance. Several studies have shown that Ewing sarcoma associated transcript 1 (EWSAT1) plays an important role in the progression of OS. Exosomes (Exos) act as important carriers in intercellular communication and play an important role in the tumor microenvironment, especially in tumor-induced angiogenesis. Nonetheless, the specific mechanism via which EWSAT1 and Exos regulate OS progression is unknown, and whether they can be effective therapeutic targets also requires verification. Hence, in this study, it is aimed to investigate the mechanisms of action of EWSAT1 and Exos. EWSAT1 significantly promotes proliferation, migration, colony formation, and survival of OS. EWSAT1 regulates OS-induced angiogenesis via two mechanisms, called the "double stacking effect," which is a combination of the increase in sensitivity/reactivity of vascular endothelial cells triggered by Exos-carrying EWSAT1, and the EWSAT1-induced increase in angiogenic factor secretion. In vivo experiments further validates the "double stacking effect" and shows that EWSAT1-KD effectively inhibits tumor growth in OS. The above observations indicate that EWSAT1 can be used as not only a potential diagnostic and prognostic marker, but also as a precise therapeutic target for OS.
Collapse
Affiliation(s)
- Shi-Cong Tao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Ji-Yan Huang
- Department of Stomatology, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China
| | - Zhan-Ying Wei
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zi-Xiang Li
- Medical College of Soochow University, Soochow University, Changzhou, Jiangsu, 215123, China
| | - Shang-Chun Guo
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.,Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
16
|
TRAF6 Promotes Gastric Cancer Cell Self-Renewal, Proliferation, and Migration. Stem Cells Int 2020; 2020:3296192. [PMID: 32724313 PMCID: PMC7382744 DOI: 10.1155/2020/3296192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is the third most common type of tumor associated with death. TRAF6 belongs to the tumor necrosis factor receptor-associated factor family and has been demonstrated to be involved in tumor progression in various cancers. However, the exact effect of TRAF6 on gastric cancer stem cells has not been extensively studied. In this study, abnormal expression of TRAF6 was found in gastric cancer tissues. Overexpression of TRAF6 enhanced proliferation and migration, and TRAF6 knockdown reversed this phenomenon in gastric cancer cells. Moreover, TRAF6 may inhibit differentiation and promote stemness and epithelial-mesenchymal transition (EMT). Transcriptome profiles revealed 701 differentially expressed genes in the wild-type group and the TRAF6 knockout group. Potential molecules associated with cell proliferation and migration were identified, including MAPK, FOXO, and IL-17. In conclusion, TRAF6 is a significant factor promoting proliferation and migration in gastric cancer cells and may provide a new target for the accurate treatment of gastric cancer.
Collapse
|
17
|
Liu F, Pan Q, Wang L, Yi S, Liu P, Huang W. Anticancer targets and mechanisms of calycosin to treat nasopharyngeal carcinoma. Biofactors 2020; 46:675-684. [PMID: 32449282 DOI: 10.1002/biof.1639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
Calycosin is a naturally occurring phytoestrogen, and it has the anti-nasopharyngeal carcinoma (NPC) action played by calycosin. However, the elaborate mechanisms of calycosin treating NPC remain to be unrevealed. In current report, a promising tool of network pharmacology method was used to uncover the anti-NPC targets and therapeutic mechanisms played by calycosin. Furthermore, were conducted to validate the bioinformatic findings in human and preclinical studies. As results, the bioinformatic findings showed the core anti-NPC targets played by calycosin included tumor protein p53 (TP53), mitogen-activated protein kinase 14 (MAPK14), caspase 8 (CASP8), mitogen-activated protein kinase 3 (MAPK3), caspase 3 (CASP3), receptor interacting protein kinase 1 (RIPK1), proto-oncogene c (JUN), and estrogen receptor 1 (ESR1). Concurrently, the top 20 biological processes and top 20 pharmacological pathways of calycosin treating NPC were identified and illustrated. In clinical data, NPC samples showed up-regulated expression of MAPK14, reduced TP53, and CASP8 expressions in comparison with those in non-NPC controls. As revealed in experimental data, calycosin-treated NPC cells resulted in reduced cell survival rate, increased cell apoptosis. In apoptosis-specific staining, calycosin-treated NPC cells exhibited elevated apoptotic cell number. Following the immunostaining assays, the results indicated increased TP53-, CASP8-positive cells, and reduced MAPK14-positive cells in calycosin-treated NPC cells and xenograft tumor sections. Altogether, the bioinformatic findings from network pharmacology reveal all core targets and mechanisms of calycosin treating NPC, and some of bioinformatic findings are identified using human and preclinical experiments. Notably, the screened biotargets may be potentially used to clinically treat NPC.
Collapse
Affiliation(s)
- Fangxian Liu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qijin Pan
- Department of Oncology, Guigang City Peoples' Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China
| | - Liangliang Wang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Shijiang Yi
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Peng Liu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Wenjun Huang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
18
|
Yang H, Chen W, Jiang G, Yang J, Wang W, Li H. Long non-coding RNA EWSAT1 contributes to the proliferation and invasion of glioma by sponging miR-152-3p. Oncol Lett 2020; 20:1846-1854. [PMID: 32724428 PMCID: PMC7377177 DOI: 10.3892/ol.2020.11716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/17/2020] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNA) are a type of ncRNA with a length ranging from 200-1,000 nucleotides. Previous studies have confirmed that the lncRNA Ewing sarcoma associated transcript 1 (EWSAT1) exerts regulatory roles in cancer development and progression. However, its clinical significance in glioma remains unknown. In the present study, RNA-sequencing data from the Gene Expression Omnibus database and The Cancer Genome Atlas was explored to investigate the association between EWSAT1 expression and prognosis in patients with glioma. Increased EWSAT1 was associated with the presence of necrosis on magnetic resonance imaging scans in patients with glioma. Furthermore, knockdown of EWSAT1 was indicated to suppress the proliferative and invasive abilities of glioblastoma cell lines using Cell Counting Kit-8 and Transwell assays. Additionally, microRNA (miR)-152-3p was identified as a potential target of EWSAT1. The present study demonstrated that EWSAT1 interacted directly with miR-152-3p, and rescue experiments confirmed that EWSAT1 participated in glioma development by suppressing miR-152-3p. These results indicated that EWSAT1 is involved in the occurrence and progression of glioma, and may serve as a novel target and potential prognostic biomarker of glioma treatment.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| | - Weida Chen
- Department of Cardiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| | - Guangyu Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| | - Jun Yang
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| | - Weifeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| | - Hongbin Li
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| |
Collapse
|
19
|
Wu ML, Lin YP, Wei YL, Du HJ, Ying XQ, Tan WZ, Tang BE. Calycosin Influences the Metabolism of Five Probe Drugs in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:429-434. [PMID: 32099327 PMCID: PMC6996205 DOI: 10.2147/dddt.s236221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/17/2019] [Indexed: 01/04/2023]
Abstract
Background Calycosin (CAL), a type of O-methylated isoflavone extracted from the herb Astralagusmembranaceus (AM), is a bioactive chemical with antioxidative, antiphlogistic and antineoplastic activities commonly used in traditional alternative Chinese medicine. AM has been shown to confer health benefits as an adjuvant in the treatment of a variety of diseases. Aim The main objective of this study was to determine whether CAL influences the cytochrome P450 (CYP450) system involved in drug metabolism. Methods Midazolam, tolbutamide, omeprazole, metoprolol and phenacetin were selected as probe drugs. Rats were randomly divided into three groups, specifically, 5% Carboxymethyl cellulose (CMC) for 8 days (Control), 5% CMC for 7 days + CAL for 1 day (single CAL) and CAL for 8 days (conc CAL), and metabolism of the five probe drugs evaluated using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Results No significant differences were observed for omeprazole and midazolam, compared to the control group. Tmax and t1/2 values of only one probe drug, phenacetin, in the conc CAL group were significantly different from those of the control group (Tmax h: 0.50±0.00 vs 0.23±0.15; control vs conc CAL). Cmax of tolbutamide was decreased about two-fold in the conc CAL treatment group (conc vs control: 219.48 vs 429.56, P<0.001). Conclusion Calycosin inhibits the catalytic activities of CYP1A2, CYP2D6 and CYP2C9. Accordingly, we recommend caution, particularly when combining CAL as a modality therapy with drugs metabolized by CYP1A2, CYP2D6 and CYP2C9, to reduce the potential risks of drug accumulation or ineffective treatment.
Collapse
Affiliation(s)
- Mei-Ling Wu
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Yi-Ping Lin
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Yan-Li Wei
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Hong-Jian Du
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Xiao-Qian Ying
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Wen-Zhuang Tan
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Bi-E Tang
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| |
Collapse
|
20
|
Wei L, Shi C, Zhang Y. Expression of miR-34a and Ki67 in nasopharyngeal carcinoma and the relationship with clinicopathological features and prognosis. Oncol Lett 2019; 19:1273-1280. [PMID: 31966057 PMCID: PMC6956418 DOI: 10.3892/ol.2019.11217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Expression levels of miR-34a and Ki67 in nasopharyngeal carcinoma (NPC) and the relationship with clinicopathological features and prognosis were studied. A prospective study was performed on 56 cases of NPC tissues and 56 cases of adjacent tissues collected in Xiangyang No. 1 People's Hospital. The expression levels of miR-34a, Ki67 in NPC and adjacent tissues were detected by RT-qPCR. The association among the expression levels of miR-34a and Ki67, the clinicopathological features and prognosis of patients was analyzed. The relative expression levels of miR-34a in 56 cases of NPC were lower than those of the adjacent tissues. The expression of miR-34a in NPC was significantly associated with bone metastasis and TNM staging (P<0.001). The relative expression of Ki67 in 56 cases of NPC was higher than that of the adjacent tissues. The expression of Ki67 in NPC was significantly associated with lymphatic metastasis and TNM staging (P<0.001). The 5-year survival of patients with low expression of miR-34a was significantly lower than that of patients with high expression, and the survival of patients with high expression of Ki67 was significantly lower than that of patients with low expression. According to Pearson's correlation analysis, Ki67 expression was negatively correlated with miR-34a expression in NPC tissues. In conclusion, the expression of Ki67 in NPC was upregulated, while the expression of miR-34a in NPC was downregulated. miR-34a expression in NPC was significantly associated with bone metastasis and TNM staging, and Ki67 expression in NPC was significantly associated with lymphatic metastasis and TNM staging. In addition, there was a negative correlation between miR-34a and Ki67 expression levels, and the two can be used as predictors of NPC-associated mortality. The expression levels of miR-34a and Ki67, as well as TNM staging were associated with the prognosis of NPC patients.
Collapse
Affiliation(s)
- Linqi Wei
- Department of Otolaryngology, Head and Neck Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Chao Shi
- Department of Otolaryngology, Head and Neck Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Yonghong Zhang
- Department of Otolaryngology, Head and Neck Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
21
|
Liu C, Wang K, Zhuang J, Gao C, Li H, Liu L, Feng F, Zhou C, Yao K, Deng L, Wang L, Li J, Sun C. The Modulatory Properties of Astragalus membranaceus Treatment on Triple-Negative Breast Cancer: An Integrated Pharmacological Method. Front Pharmacol 2019; 10:1171. [PMID: 31680955 PMCID: PMC6802460 DOI: 10.3389/fphar.2019.01171] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 09/12/2019] [Indexed: 01/09/2023] Open
Abstract
Background: Studies have shown that the natural products of Astragalus membranaceus (AM) can effectively interfere with a variety of cancers, but their mechanism of action on breast cancer remains unclear. Triple-negative breast cancer (TNBC) is associated with a severely poor prognosis due to its invasive phenotype and lack of biomarker-driven-targeted therapies. In this study, the potential mechanism of the target composition acting on TNBC was explored by integrated pharmacological models and in vitro experiments. Materials and Methods: Based on the Gene Expression Omnibus (GEO) database and the relational database of Traditional Chinese Medicines (TCMs), the drug and target components were initially screened to construct a common network module, and multiattribute analysis was then used to characterize the network and obtain key drug-target information. Furthermore, network topology analysis was used to characterize the betweenness and closeness of key hubs in the network. Molecular docking was used to evaluate the affinity between compounds and targets and obtain accurate combination models. Finally, in vitro experiments verified the key component targets. The cell counting kit-8 (CCK-8) assay, invasion assay, and flow cytometric analysis were used to assess cell viability, invasiveness, and apoptosis, respectively, after Astragalus polysaccharides (APS) intervention. We also performed western blot analysis of key proteins to probe the mechanisms of correlated signaling pathways. Results: We constructed “compound-target” (339 nodes and 695 edges) and “compound-disease” (414 nodes and 6458 edges) networks using interaction data. Topology analysis and molecular docking were used as secondary screens to identify key hubs of the network. Finally, the key component APS and biomarkers PIK3CG, AKT, and BCL2 were identified. The in vitro experimental results confirmed that APS can effectively inhibit TNBC cell activity, reduce invasion, promote apoptosis, and then counteract TNBC symptoms in a dose-dependent manner, most likely by inhibiting the PIK3CG/AKT/BCL2 pathway. Conclusion: This study provides a rational approach to discovering compounds with a polypharmacology-based therapeutic value. Our data established that APS intervenes with TNBC cell invasion, proliferation, and apoptosis via the PIK3CG/AKT/BCL2 pathway and could thus offer a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Cun Liu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kejia Wang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Jing Zhuang
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Chundi Gao
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Liu
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Fubin Feng
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Chao Zhou
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Kang Yao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Laijun Deng
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Lu Wang
- Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, China
| | - Jia Li
- College of Basic Medicine, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Department of Basic Medical Science, Qingdao University, Qingdao, China.,Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
22
|
Jia X, Niu P, Xie C, Liu H. Long noncoding RNA PXN-AS1-L promotes the malignancy of nasopharyngeal carcinoma cells via upregulation of SAPCD2. Cancer Med 2019; 8:4278-4291. [PMID: 31173488 PMCID: PMC6675719 DOI: 10.1002/cam4.2227] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 01/19/2023] Open
Abstract
Accumulating evidences highlight the critical roles of long noncoding RNAs (lncRNAs) in a variety of cancers. LncRNA PXN‐AS1‐L was previously shown to exert oncogenic roles in hepatocellular carcinoma. However, the expression, role, and molecular mechanism of PXN‐AS1‐L in nasopharyngeal carcinoma (NPC) malignancy remain unknown. Here, we determined that PXN‐AS1‐L is upregulated in NPC tissues and cell lines. Increased expression of PXN‐AS1‐L predicts worse prognosis of NPC patients. PXN‐AS1‐L overexpression promotes NPC cell proliferation, migration, and invasion in vitro, and NPC tumor growth in vivo. PXN‐AS1‐L silencing suppresses NPC cell proliferation, migration, and invasion in vitro. Mechanistically, PXN‐AS1‐L directly interacts with SAPCD2 mRNA 3′‐untranslated region, prevents the binding of microRNAs‐AGO silencing complex to SAPCD2 mRNA, and upregulates the mRNA and protein level of SAPCD2. SAPCD2 is also increased in NPC tissues. The expression of SAPCD2 is significantly positively associated with that of PXN‐AS1‐L in NPC tissues. Gain‐of‐function and loss‐of‐function experiments demonstrated that SAPCD2 also promotes NPC cell proliferation, migration, and invasion. Furthermore, depletion of SAPCD2 significantly reverses the roles of PXN‐AS1‐L in promoting NPC cell proliferation, migration, and invasion in vitro, and NPC tumor growth in vivo. In conclusion, lncRNA PXN‐AS1‐L is upregulated in NPC and promoted NPC malignancy by upregulating SAPCD2 via direct RNA‐RNA interaction.
Collapse
Affiliation(s)
- Xiaodong Jia
- Department of Otolaryngology, Henan Province People's Hospital of Henan University, Zhengzhou, China
| | - Po Niu
- Department of Radiotherapy, Henan Province People's Hospital of Henan University, Zhengzhou, China
| | - Cuncun Xie
- Department of Otolaryngology, Henan Province People's Hospital of Henan University, Zhengzhou, China
| | - Hongjian Liu
- Department of Otolaryngology, Henan Province People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
23
|
Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J. Bioactive Ingredients in Chinese Herbal Medicines That Target Non-coding RNAs: Promising New Choices for Disease Treatment. Front Pharmacol 2019; 10:515. [PMID: 31178721 PMCID: PMC6537929 DOI: 10.3389/fphar.2019.00515] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Chinese herbal medicines (CHMs) are widely used in China and have long been a powerful method to treat diseases in Chinese people. Bioactive ingredients are the main components extracted from herbs that have therapeutic properties. Since artemisinin was discovered to inhibit malaria by Nobel laureate Youyou Tu, extracts from natural plants, particularly bioactive ingredients, have aroused increasing attention among medical researchers. The bioactive ingredients of some CHMs have been found to target various non-coding RNA molecules (ncRNAs), especially miRNAs, lncRNAs, and circRNAs, which have emerged as new treatment targets in numerous diseases. Here we review the evidence that, by regulating the expression of ncRNAs, these ingredients exert protective effects, including pro-apoptosis, anti-proliferation and anti-migration, anti-inflammation, anti-atherosclerosis, anti-infection, anti-senescence, and suppression of structural remodeling. Consequently, they have potential as treatment agents in diseases such as cancer, cardiovascular disease, nervous system disease, inflammatory bowel disease, asthma, infectious diseases, and senescence-related diseases. Although research has been relatively limited and inadequate to date, the promising choices and new alternatives offered by bioactive ingredients for the treatment of the above diseases warrant serious investigation.
Collapse
Affiliation(s)
- Yan Dong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hengwen Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialiang Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Wei C, Lei L, Hui H, Tao Z. MicroRNA-124 regulates TRAF6 expression and functions as an independent prognostic factor in colorectal cancer. Oncol Lett 2019; 18:856-863. [PMID: 31289563 PMCID: PMC6540425 DOI: 10.3892/ol.2019.10358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
An increasing number of studies have confirmed that miR-124 exhibits a suppressive role in glioblastoma, cervical cancer and breast cancer; however, the function of miR-124 in colorectal cancer (CRC) has not been completely elucidated. In the present study, miR-124 expression was confirmed by reverse transcription-quantitative PCR in 80 colorectal tissues and para-cancerous tissues. The influence of altered miR-124 expression was analyzed by statistical approaches including Cox multivariate regression analysis and the Kaplan-Meier method, and the target genes of miR-124 were confirmed by luciferase reporter assays. Immunohistochemical techniques were also performed in order to measure the expression levels of target proteins. miR-124 expression was observed to be decreased in colorectal tissue samples, and this phenomenon was correlated with adverse clinical indicators and poor patient survival time. Luciferase reporter assays indicated that miR-124 directly regulated TNF receptor associated factor 6 (TRAF6) 3′-untranslated region (UTR). Hence, it was proposed that miR-124 dysregulation may negatively influence the expression of TRAF6 and therefore serve as a biomarker of epithelial-mesenchymal transition in CRC tissues. In summary, the present study demonstrated that miR-124 regulates the expression of TRAF6, and may potentially function as an independent prognostic factor and therapeutic target in patients with CRC.
Collapse
Affiliation(s)
- Chen Wei
- Key Laboratory for Molecular Diagnosis of Hubei Province, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China.,Department of Gastrointestinal Surgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Liu Lei
- Department of Gastrointestinal Surgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Huang Hui
- Department of Gastrointestinal Surgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Zhang Tao
- Department of Gastrointestinal Surgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|