1
|
Quritum M, Abdella A, Amer H, El Desouky LM, El Tantawi M. Effectiveness of nanosilver fluoride and silver diamine fluoride in arresting early childhood caries: a randomized controlled clinical trial. BMC Oral Health 2024; 24:701. [PMID: 38890627 PMCID: PMC11184862 DOI: 10.1186/s12903-024-04406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND One of the most prevalent health problems affecting children worldwide is untreated caries in primary teeth. Agents to arrest caries are used to manage untreated decay in children in disadvantaged communities. Nano Silver Fluoride (NSF) overcomes the staining problems of Silver Diamine Fluoride (SDF). This study compared the clinical cariostatic effect of NSF to 38% SDF for arresting caries lesions. METHODS The study included 360 children younger than 4 years, with at least one active lesion, ICDAS score ≥ 3, recruited from nurseries in a rural area in Alexandria, Egypt, in 2022. They were randomly assigned to receive a single application of NSF at baseline, or two applications of SDF at baseline and after 6 months. The arrest of active carious lesions was assessed after 6 and 12 months using ICDAS criteria, and parents' satisfaction with child appearance was also assessed. Chi-Square test was used to compare the groups and multi-level multiple logistic regression was used to assess the effect of the intervention on caries arrest at lesion level and binary logistic regression was used to assess the effect at patient level. RESULTS 1853 active lesions were included in children whose mean (SD) age was 42.3 (8.2) months. The arrest rate was significantly higher in the NSF than the SDF group at lesion level (78.4% and 65.0% at 6 months and 71.3% and 56.3% at 12 months, p < 0.001). In regression analysis, NSF had significantly higher odds of caries arrest than SDF at lesion level (at 6 months, AOR = 2.57, 95% CI: 1.55, 4.26 and at 12 month, AOR = 3.27, 95% CI: 1.89, 5.67). Parents of children receiving NSF had significantly greater satisfaction with their children's dental appearance than those receiving SDF: (97.2% and 76.1%, respectively, p < 0.001). CONCLUSION NSF demonstrated greater effectiveness in arresting caries in preschool children without inducing black staining of teeth and with greater parental satisfaction than SDF. NSF can be an alternative to SDF in arresting caries especially in underprivileged communities. TRIAL REGISTRATION The trial was registered in the clinicaltrials.gov registry (#NCT05255913)-16/02/2022.
Collapse
Affiliation(s)
- Maryam Quritum
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Champolion St, 21527, Azarita, Alexandria, Egypt.
| | - Ahmed Abdella
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Champolion St, 21527, Azarita, Alexandria, Egypt
| | - Hala Amer
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Champolion St, 21527, Azarita, Alexandria, Egypt
| | - Lubna M El Desouky
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maha El Tantawi
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Champolion St, 21527, Azarita, Alexandria, Egypt
| |
Collapse
|
2
|
Sevagaperumal A, R JJ, Periyasamy S. Formulation and Evaluation of Characteristics, Remineralization Potential, and Antimicrobial Properties of Toothpaste Containing Nanohydroxyapatite and Nanosilver Particles: An In Vitro Study. Int J Clin Pediatr Dent 2024; 17:630-636. [PMID: 39391146 PMCID: PMC11463799 DOI: 10.5005/jp-journals-10005-2855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Aim and objectives The current study is aimed to evaluate the antimicrobial and remineralizing properties of toothpaste containing nanosilver and nanohydroxyapatite (NH-NS TP). Materials and methods The toothpaste was prepared by incorporating NH-NS TP into a toothpaste base. Following this, a physicochemical analysis of the prepared toothpaste was carried out. The toxicity against human gingival fibroblast (HGF-1) cells was assessed. The antimicrobial activity of the toothpaste was evaluated against Streptococcus mutans and Escherichia coli using the disk diffusion method. Subsequently, 15 selected human premolar teeth extracted for orthodontic purposes were used to measure the remineralization potential. The surfaces of the selected teeth were demineralized using a prepared demineralizing solution [323.4 mg of calcium chloride (CaCl2), M450 µL of calcium acetate (CH3COO)2Ca, 300 mg of potassium dihydrogen phosphate (KH2PO4) at pH 4.4-4.7] for 72 hours and were subjected to a toothbrush simulator applying the prepared toothpaste. The remineralization potential was evaluated by measuring the microhardness of the enamel surface before and after treatment with the toothpaste. Further, the remineralization potential was assessed based on scanning electron microscopy (SEM) imaging accompanied by energy-dispersive X-ray spectroscopy. Results The results showed that the NH-NS TP had significantly greater antimicrobial activity compared to the control toothpaste and no toxicity against HGF-1 up to 40 µg. Approximately, 7-9 mm inhibition zone against S. mutans and 4-6 mm inhibition against E. coli was achieved. Additionally, the toothpaste significantly increased (31.4%) the microhardness of the enamel surface, indicating its potential for remineralization. The SEM images revealed the presence of regular deposits, mostly pertaining to the demineralized spots, resulting in a regained smooth surface. Following this, physicochemical analysis of the prepared toothpaste was carried out, resulting in a pH of 7.38 and showing good extrusion, frothing, and organoleptic properties. Additionally, the toothpaste significantly increased the microhardness of the enamel surface, further indicating its potential for remineralization. Conclusion NH-NS TP may provide a promising approach for improving oral health by enhancing antimicrobial efficacy and promoting enamel remineralization, while exhibiting reduced toxicity. How to cite this article Sevagaperumal A, Joel JR Periyasamy S. Formulation and Evaluation of Characteristics, Remineralization Potential, and Antimicrobial Properties of Toothpaste Containing Nanohydroxyapatite and Nanosilver Particles: An In Vitro Study. Int J Clin Pediatr Dent 2024;17(6):630-636.
Collapse
Affiliation(s)
- Annapoorani Sevagaperumal
- Department of Public Health Dentistry, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Jesanth Joel R
- Department of Public Health Dentistry, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Sugavanesh Periyasamy
- Department of Public Health Dentistry, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| |
Collapse
|
3
|
Dizaj SM, Kouhsoltani M, Pourreza K, Sharifi S, Abdolahinia ED. Preparation, Characterization, and Evaluation of the Anticancer Effect of Mesoporous Silica Nanoparticles Containing Rutin and Curcumin. Pharm Nanotechnol 2024; 12:269-275. [PMID: 37594097 DOI: 10.2174/2211738511666230818092706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/25/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
AIMS AND OBJECTIVE The aim of this study was the preparation of mesoporous silica nanoparticles co-loaded with rutin and curcumin (Rut-Cur-MSNs) and the assessment of its physicochemical properties as well as its cytotoxicity on the head and neck cancer cells (HN5). Besides, ROS generation of HN5 cells exposed to Rut-Cur-MSNs was evaluated. Several investigations showed that rutin and curcumin have potential effects as anticancer phytochemicals; however, their low aqueous solubility and poor bioavailability limited their applications. The assessment of physicochemical properties and anticancer effect of prepared nanoparticles was the objective of this study. METHODS The physicochemical properties of produced nanoparticles were evaluated. The toxicity of Rut-Cur-MSNs on HN5 cells was assessed. In addition, the ROS production in cells treated with Rut- Cur-MSNs was assessed compared to control untreated cells. RESULTS The results showed that Rut-Cur-MSNs have mesoporous structure, nanometer size and negative surface charge. The X-ray diffraction pattern showed that the prepared nanoparticles belong to the family of silicates named MCM-41. The cytotoxicity of Rut-Cur-MSNs at 24 h was significantly higher than that of rutin-loaded MSNs (Rut-MSNs) and curcumin-loaded MSNs (Cur-MSNs) (p<0.05). CONCLUSION The achieved results recommend that the prepared mesoporous silica nanoparticles containing rutin and curcumin can be a useful nanoformulation for the treatment of cancer. The produced nanomaterial in this study can be helpful for cancer therapy.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Kouhsoltani
- Oral and Maxillofacial Department of Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kosar Pourreza
- Oral and Maxillofacial Department of Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Dizaj SM, Rezaei Y, Namaki F, Sharifi S, Abdolahinia ED. Effect of Curcumin-containing Nanofibrous Gelatin-hydroxyapatite Scaffold on Proliferation and Early Osteogenic Differentiation of Dental Pulp Stem Cells. Pharm Nanotechnol 2024; 12:262-268. [PMID: 37592779 DOI: 10.2174/2211738511666230817102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/11/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND In recent years, the electrospinning method has received attention because of its usage in producing a mimetic nanocomposite scaffold for tissue regeneration. Hydroxyapatite and gelatin are suitable materials for producing scaffolds, and curcumin has the osteogenesis induction effect. AIMS This study aimed to evaluate the toxicity and early osteogenic differentiation stimulation of nanofibrous gelatin-hydroxyapatite scaffold containing curcumin on dental pulp stem cells (DPSCs). OBJECTIVE The objective of the present investigation was the evaluation of the proliferative effect and primary osteogenic stimulation of DPSCs with a nanofibrous gelatin-hydroxyapatite scaffold containing curcumin. Hydroxyapatite and gelatin were used as suitable and biocompatible materials to make a scaffold suitable for stimulating osteogenesis. Curcumin was added to the scaffold as an osteogenic differentiation- enhancing agent. METHODS The effect of nano-scaffold on the proliferation of DPSCs was evaluated. The activity of alkaline phosphatase (ALP) as the early osteogenic marker was considered to assess primary osteogenesis stimulation in DPSCs. RESULTS The nanofibrous gelatin-hydroxyapatite scaffold containing curcumin significantly increased the proliferation and the ALP activity of DPSCs (P<0.05). The proliferative effect was insignificant in the first 2 days, but the scaffold increased cell proliferation by more than 40% in the fourth and sixth days. The prepared scaffold increased the activity of the ALP of DPSCs by 60% compared with the control after 14 days (p<0.05). CONCLUSION The produced nanofibrous gelatin-hydroxyapatite scaffold containing curcumin can be utilized as a potential candidate in tissue engineering and regeneration of bone and tooth. FUTURE PROSPECTS The prepared scaffold in the present study could be a beneficial biomaterial for tissue engineering and the regeneration of bone and tooth soon.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yashar Rezaei
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Namaki
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Jiang Z, Fu L, Wei C, Fu Q, Pan S. Antibacterial micro/nanomotors: advancing biofilm research to support medical applications. J Nanobiotechnology 2023; 21:388. [PMID: 37875896 PMCID: PMC10599038 DOI: 10.1186/s12951-023-02162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Multi-drug resistant (MDR) bacterial infections are gradually increasing in the global scope, causing a serious burden to patients and society. The formation of bacterial biofilms, which is one of the key reasons for antibiotic resistance, blocks antibiotic penetration by forming a physical barrier. Nano/micro motors (MNMs) are micro-/nanoscale devices capable of performing complex tasks in the bacterial microenvironment by transforming various energy sources (including chemical fuels or external physical fields) into mechanical motion or actuation. This autonomous movement provides significant advantages in breaking through biological barriers and accelerating drug diffusion. In recent years, MNMs with high penetrating power have been used as carriers of antibiotics to overcome bacterial biofilms, enabling efficient drug delivery and improving the therapeutic effectiveness of MDR bacterial infections. Additionally, non-antibiotic antibacterial strategies based on nanomaterials, such as photothermal therapy and photodynamic therapy, are continuously being developed due to their non-invasive nature, high effectiveness, and non-induction of resistance. Therefore, multifunctional MNMs have broad prospects in the treatment of MDR bacterial infections. This review discusses the performance of MNMs in the breakthrough and elimination of bacterial biofilms, as well as their application in the field of anti-infection. Finally, the challenges and future development directions of antibacterial MNMs are introduced.
Collapse
Affiliation(s)
- Zeyu Jiang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Lejun Fu
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 230022, China
| | - Chuang Wei
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Shuhan Pan
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
6
|
Kumar R, Nagesh S, Mani SP. Preparation and Assessment of Antimicrobial Effect of Strontium and Copper Co-substituted Hydroxyapatite Nanoparticle-Incorporated Orthodontic Composite: A Preliminary In Vitro Study. Cureus 2023; 15:e47495. [PMID: 38021789 PMCID: PMC10663871 DOI: 10.7759/cureus.47495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Background and aims Enamel demineralization and white spot lesions (WSLs) during orthodontic treatment have always been a challenge to orthodontists. The advancement of nanotechnology has paved the way for the incorporation of bioactive compounds in orthodontic materials especially orthodontic composites for prevention and management of WSLs. The present study aims to prepare, characterize, and then incorporate copper and strontium doped nanohydroxyapatite into orthodontic composite material and test its antibacterial efficacy. Materials and methods The present in vitro study involved the preparation of the strontium and copper co-substituted hydroxyapatite (SrCuHA) nanoparticles (Nps) using the sol-gel method. The prepared Nps were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), and Fourier transform infrared spectroscopy (FTIR). The Nps were incorporated into a commercially available orthodontic composite. The antimicrobial properties of the SrCuHA Nps-incorporated composite were tested using the Agar well diffusion method against Staphylococcus aureus(S. aureus), Streptococcus mutans (S. mutans), and Escherichia coli (E. coli). Results The SrCuHA Nps were successfully prepared. EDAX, FTIR, and SEM analyses revealed the successful formation of the Nps. The SrCuHA-incorporated orthodontic composite at a higher concentration of 40 μl showed the maximum zone of inhibition (ZOI) against S. mutans. The control group showed the maximum ZOI against E. coli and the SrCuHA Nps-incorporated composite at 20 μl showed the maximum inhibition against S. aureus. Conclusion In the present study, successful preparation of SrCuHA Nps followed by incorporation in the orthodontic adhesive was done. The prepared nanoparticle was characterized and the SrCuHA Nps-incorporated orthodontic composite demonstrated comparable ZOI against S. mutans to the control.
Collapse
Affiliation(s)
- Raja Kumar
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Shweta Nagesh
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - S P Mani
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
7
|
Qu S, Ma X, Yu S, Wang R. Chitosan as a biomaterial for the prevention and treatment of dental caries: antibacterial effect, biomimetic mineralization, and drug delivery. Front Bioeng Biotechnol 2023; 11:1234758. [PMID: 37840659 PMCID: PMC10570529 DOI: 10.3389/fbioe.2023.1234758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Dental caries is a chronic, progressive disease caused by plaque, influenced by multiple factors and can damage the hard tissues of the teeth. In severe cases, it can also lead to the onset and development of other oral diseases, seriously affecting patients' quality of life. The creation of effective biomaterials for the prevention and treatment of dental caries has become one of the relentless goals of many researchers, with a focus on inhibiting the production of cariogenic plaque and retaining beneficial bacteria, guiding and promoting the reconstruction of dental hard tissues, and delaying the progression of existing caries. Chitosan is a natural cationic polymer extracted from the shells of crustaceans and shellfish. Since its discovery, chitosan has shown to have various biological functions such as antibacterial, biomimetic mineralization, drug delivery, etc., making it one of the most promising biopolymers for new caries prevention and materials of prostheses. Therefore, this article provides an overview of the anti-caries applications of chitosan, which mainly covers the basic research on the application of chitosan in caries prevention and treatment since 2010, with a focus on categorizing and summarizing the following characteristics of chitosan as a caries prevention material, including its antibacterial effect, biomimetic mineralization effect and delivery ability of caries prevention drugs and vaccines. It also explores the limitations of current research on chitosan as a caries prevention biomaterial and the difficulties that need to be focused on and overcome in the future to provide theoretical reference for the clinical implementation of chitosan as a caries prevention biomaterial.
Collapse
Affiliation(s)
- Shanlin Qu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xiaolin Ma
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Shuo Yu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Rui Wang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
8
|
Alsherif AA, Farag MA, Helal MB. Efficacy of Nano Silver Fluoride and/or Diode Laser In Enhancing Enamel Anticariogenicity around orthodontic brackets. BDJ Open 2023; 9:22. [PMID: 37353492 DOI: 10.1038/s41405-023-00151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/25/2023] Open
Abstract
PURPOSE This in vitro study aimed to compare the anticariogenic effect of using diode laser irradiation and/or nano silver fluoride varnish around orthodontic brackets. MATERIALS AND METHODS 60 caries-free and intact premolars were randomly divided into 3 experimental groups as follow: (1) Group I (nano silver fluoride treated group, n = 20), (2) Group II (diode laser treated group, n = 20) and (3) Group III (combined nano silver fluoride and diode laser treated group, n = 20). Anticariogenicity was assessed using polarized light, scanning electron microscope, elemental and shear bond strength analyses. RESULTS PLM and SEM showed presence of few demineralized areas in group I. Group II revealed a dramatic increased demineralization. Group III disclosed almost typical homogenous surface enamel. elemental analysis showed a highly significant difference between Group III and II and a significant difference between Group III and I. Shear bond strength analysis revealed a significant difference between group I and II and between group III and II. The difference between group III and I was non-significant. CONCLUSION Both diode laser and nano silver fluoride positively affected dental enamel with the most superior enhancement in enamel criteria was achieved by surface pretreatment by combined nano silver fluoride varnish and diode laser irradiation.
Collapse
Affiliation(s)
- Aya Anwar Alsherif
- Faculty of Dentistry, Tanta University, El-Giesh St., Tanta, Gharbia, Egypt.
| | - Mohamed Ali Farag
- Faculty of Dentistry, Tanta University, El-Giesh St., Tanta, Gharbia, Egypt
| | | |
Collapse
|
9
|
Memar MY, Yekani M, Farajnia S, Ghadiri Moghaddam F, Nabizadeh E, Sharifi S, Maleki Dizaj S. Antibacterial and biofilm-inhibitory effects of vancomycin-loaded mesoporous silica nanoparticles on methicillin-resistant staphylococcus aureus and gram-negative bacteria. Arch Microbiol 2023; 205:109. [PMID: 36884153 DOI: 10.1007/s00203-023-03447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
The present study aimed to prepare and characterize vancomycin-loaded mesoporous silica nanoparticles (Van-MSNs) to detect inhibitory effects on the planktonic and biofilm forms of methicillin-resistant Staphylococcus aureus (MRSA) isolates, and study the biocompatibility and toxicity of Van-MSNs in vitro as well as antibacterial activity of Van-MSNs against Gram-negative bacteria. The inhibitory effects of Van-MSNs were investigated on MRSA using the determination of minimum inhibitory (MIC) and minimum biofilm-inhibitory concentrations (MBIC) as well as the effect on bacterial attachment. Biocompatibility was studied by examining the effect of Van-MSNs on the lysis and sedimentation rate of red blood cells (RBC). The interaction of Van-MSNs with human blood plasma was detected by the SDS-PAGE approach. The cytotoxic effect of the Van-MSNs on human bone marrow mesenchymal stem cells (hBM-MSCs) was evaluated by the MTT assay. The antibacterial effects of vancomycin and Van-MSNs on Gram-negative bacteria were also investigated using MIC determination using the broth microdilution method. Furthermore, bacteria outer membrane (OM) permeabilization was determined. Van-MSNs showed inhibitory effects on planktonic and biofilm forms of bacteria on all isolates at levels lower than MICs and MBICs of free vancomycin, but the antibiofilm effect of Van-MSNs was not significant. However, Van-MSNs did not affect bacterial attachment to surfaces. Van-loaded MSNs did not show a considerable effect on the lysis and sedimentation of RBC. A low interaction of Van-MSNs was detected with albumin (66.5 kDa). The hBM-MSCs viability in exposure to different levels of Van-MSNs was 91-100%. MICs of ≥ 128 µg/mL were observed for vancomycin against all Gram-negative bacteria. In contrast, Van-MSNs exhibited modest antibacterial activity inhibiting the tested Gram-negative bacterial strains, at concentrations of ≤ 16 µg/mL. Van-MSNs increased the OM permeability of bacteria that can increase the antimicrobial effect of vancomycin. According to our findings, Van-loaded MSNs have low cytotoxicity, desirable biocompatibility, and antibacterial effects and can be an option for the battle against planktonic MRSA.
Collapse
Affiliation(s)
- Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Luiz MT, di Filippo LD, Dutra JAP, Viegas JSR, Silvestre ALP, Anselmi C, Duarte JL, Calixto GMF, Chorilli M. New Technological Approaches for Dental Caries Treatment: From Liquid Crystalline Systems to Nanocarriers. Pharmaceutics 2023; 15:pharmaceutics15030762. [PMID: 36986624 PMCID: PMC10054708 DOI: 10.3390/pharmaceutics15030762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Dental caries is the most common oral disease, with high prevalence rates in adolescents and low-income and lower-middle-income countries. This disease originates from acid production by bacteria, leading to demineralization of the dental enamel and the formation of cavities. The treatment of caries remains a global challenge and the development of effective drug delivery systems is a potential strategy. In this context, different drug delivery systems have been investigated to remove oral biofilms and remineralize dental enamel. For a successful application of these systems, it is necessary that they remain adhered to the surfaces of the teeth to allow enough time for the removal of biofilms and enamel remineralization, thus, the use of mucoadhesive systems is highly encouraged. Among the systems used for this purpose, liquid crystalline systems, polymer-based nanoparticles, lipid-based nanoparticles, and inorganic nanoparticles have demonstrated great potential for preventing and treating dental caries through their own antimicrobial and remineralization properties or through delivering drugs. Therefore, the present review addresses the main drug delivery systems investigated in the treatment and prevention of dental caries.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Leonardo Delello di Filippo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | | | | | | | - Caroline Anselmi
- School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-903, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
- Correspondence: ; Tel.: +55-16-3301-6998
| |
Collapse
|
11
|
Yan R, Liu J, Dong Z, Peng Q. Nanomaterials-mediated photodynamic therapy and its applications in treating oral diseases. BIOMATERIALS ADVANCES 2022; 144:213218. [PMID: 36436431 DOI: 10.1016/j.bioadv.2022.213218] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Oral diseases, such as dental caries, periodontitis and oral cancer, have a very high morbidity over the world. Basically, many oral diseases are commonly related to bacterial infections or cell malignant proliferation, and usually located on the superficial positions. These features allow the convenient and efficient application of photodynamic therapy (PDT) for oral diseases, since PDT is ideally suitable for the diseases on superficial sites and has been widely used for antimicrobial and anticancer therapy. Photosensitizers (PSs) are an essential element in PDT, which induce the generation of a large number of reactive oxygen species (ROS) upon absorption of specific lights. Almost all the PSs are small molecules and commonly suffered from various problems in the PDT environment, such as low solubility and poor stability. Recently, reports on the nanomedicine-based PDT have been well documented. Various functionalized nanomaterials can serve either as the PSs carriers or the direct PSs, thus enhancing the PDT efficacy. Herein, we aim to provide a comprehensive understanding of the features of different oral diseases and discuss the potential applications of nanomedicine-based PDT in the treatment of some common oral diseases. Also, the concerns and possible solutions for nanomaterials-mediated PDT are discussed.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Alavi SE, Raza A, Gholami M, Giles M, Al-Sammak R, Ibrahim A, Ebrahimi Shahmabadi H, Sharma LA. Advanced Drug Delivery Platforms for the Treatment of Oral Pathogens. Pharmaceutics 2022; 14:2293. [PMID: 36365112 PMCID: PMC9692332 DOI: 10.3390/pharmaceutics14112293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/26/2023] Open
Abstract
The oral cavity is a complex ecosystem accommodating various microorganisms (e.g., bacteria and fungi). Various factors, such as diet change and poor oral hygiene, can change the composition of oral microbiota, resulting in the dysbiosis of the oral micro-environment and the emergence of pathogenic microorganisms, and consequently, oral infectious diseases. Systemic administration is frequently used for drug delivery in the treatment of diseases and is associated with the problems, such as drug resistance and dysbiosis. To overcome these challenges, oral drug delivery systems (DDS) have received considerable attention. In this literature review, the related articles are identified, and their findings, in terms of current therapeutic challenges and the applications of DDSs, especially nanoscopic DDSs, for the treatment of oral infectious diseases are highlighted. DDSs are also discussed in terms of structures and therapeutic agents (e.g., antibiotics, antifungals, antiviral, and ions) that they deliver. In addition, strategies (e.g., theranostics, hydrogel, microparticle, strips/fibers, and pH-sensitive nanoparticles), which can improve the treatment outcome of these diseases, are highlighted.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Max Gholami
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Michael Giles
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Rayan Al-Sammak
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Ali Ibrahim
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Lavanya A. Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| |
Collapse
|
13
|
Shahi S, Sharifi S, Khalilov R, Dizaj SM, Abdolahinia ED. Gelatin-hydroxyapatite Fibrous Nanocomposite for Regenerative Dentistry and bone Tissue Engineering. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2208200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aims:
This study aimed to prepare and physicochemically evaluate as well as assess the cytotoxicity and stimulation of early osteogenic differentiation of dental pulp stem cells of gelatin-hydroxyapatite (Gel-HA) fibrous nanocomposite scaffold.
Background:
Recently, the electrospinning approach in nanotechnology has been considered due to its application in the preparation of biomimetic nanofibers for tissue engineering.
Objective:
The main objective of this study was to evaluate Gel-HA fibrous nanocomposite for regenerative dentistry and bone tissue engineering material.
Methods:
The nano-scaffold was prepared via the electrospinning method. Then, the physicochemical properties (particle size, surface charge, morphology, hydrophilicity, specific surface area, crystalline state and the characterization of functional groups) and the proliferative effects of nano-scaffolds on dental pulp stem cells were assessed. The alkaline phosphatase activity was assessed for evaluation of early osteogenic differentiation of dental pulp stem cells.
Results:
The prepared nano-scaffolds had a negative surface charge (-30 mv±1.3), mono-dispersed nano-scale diameter (98 nm±1.2), crystalline state and fibrous uniform morphology without any bead (structural defects). The nanofibrous scaffold showed increased hydrophobicity compared to gelatin nanofibers. Based on Brunauer-Emmett-Teller analysis, the specific surface area, pore volume and pore diameter of Gel-HA nanofibers decreased compared to gelatin nanofibers. The Gel-HA nano-fibers showed the proliferative effect and increased the alkaline phosphatase activity of cells significantly (P<0.05).
Conclusion:
The prepared Gel-HA nanofibers can be considered potential candidates for application in bone tissue engineering and regenerative dentistry.
Other:
Gel-HA nanofibers could be a potential material for bone regeneration and regenerative dentistry in the near future.
Collapse
|
14
|
A Study of Zn-Ca Nanocomposites and Their Antibacterial Properties. Int J Mol Sci 2022; 23:ijms23137258. [PMID: 35806263 PMCID: PMC9266431 DOI: 10.3390/ijms23137258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023] Open
Abstract
This study aimed to develop Ca2+ doped ZnO nanoparticles (NPs) and investigate their antibacterial properties against microorganisms of dental interest. Zn-Ca NPs were synthesized by the sol-gel method with different concentrations of Ca2+ (1, 3, and 5 wt. %) and subsequently characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis spectroscopy and Fourier transform infrared spectroscopy (FT-IR). The Kirby–Bauer method was used to measure antibacterial effects. NPs showed the wurzite phase of ZnO and bandgap energies (Eg) from 2.99 to 3.04 eV. SEM analysis showed an average particle size of 80 to 160 nm. The treatments that presented the best antibacterial activity were Zn-Ca 3% and Zn-Ca 5%. ZnO NPs represent an alternative to generate and improve materials with antibacterial capacity for dental applications.
Collapse
|
15
|
Effect of Adding Silica Nanoparticles on the Physicochemical Properties, Antimicrobial Action, and the Hardness of Dental Stone Type 4. Int J Dent 2022; 2022:4762017. [PMID: 35531574 PMCID: PMC9072056 DOI: 10.1155/2022/4762017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/11/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022] Open
Abstract
This study was conducted to investigate the effect of adding silica nanoparticles on the physicochemical properties, antimicrobial action, and the hardness of dental stone type 4. Dental stone type 4 powder was physically mixed with nanoparticle powder at weight percentages (0, 0.5, 1, and 2 percent). The required amount of powder was added to water according to the manufacturer's instructions. The prepared set materials were subjected to the physicochemical studies; Fourier transmission infrared spectroscopy (FTIR) was taken up to investigate the functional groups and X-ray diffraction (XRD) was used to evaluate the crystallinity. Also, scanning electron microscopy (SEM) was used to examine the morphology of the prepared samples. Agar diffusion test was carried out for the prepared samples against the Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) to test the average growth inhibition zones. Finally, the Vickers surface hardness test was performed for each group using a hardness tester. The adding silica nanoparticles to dental stone type 4 increased the diameter of inhibition zones for the groups in both bacteria significantly (p < 0.05). The results showed that adding silica nanoparticles to dental stone type 4 increased the diameter of inhibition zones for the groups in both bacteria significantly (p < 0.0001). There was a significant difference between all groups and the 0% group in both bacteria (p < 0.0001). Besides, the adding of silica nanoparticles to dental stone type 4 increased the surface hardness significantly (p = 0.0057) without any effect on physicochemical properties. The 0% and the 0.5% groups had significant differences with the 2% group (p = 0.0046 and p = 0.0205 respectively). Then, at least 2% silica nanoparticles are needed for a significant increase. Clinical trials are needed to enlarge for dental stone type 4 containing silica nanoparticles in the future.
Collapse
|
16
|
Abuzenada B, Sonbul H. Bionanocomposites in caries prevention and treatment: A systematic review. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2022; 14:S13-S18. [PMID: 36110829 PMCID: PMC9469295 DOI: 10.4103/jpbs.jpbs_128_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/03/2022] Open
Abstract
Objective: The aim of this systematic review was to assess the therapeutic effect of remineralizing and antibacterial potential of resin-based nanocomposites compared with conventional composite with/without fluoride release in naturally occurring and post-orthodontic carious lesions. Data Sources: The literature search covered the electronic databases, such as PubMed, EBSCO, and Google scholar, from 2012 to 2021. Only articles published in English were included. Randomized controlled trials (RCT) and in-vitro studies were included. All studies which met eligibility criteria were reviewed by two independent reviewers. Study Selection: The processes involved in the selection of studies were presented in Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines for study screening. Finally, based on the eligibility criteria, 13 studies were selected. The remineralizing effects of nanocomposites were compared with conventional composites in clinical trials and in-vitro studies. Conclusion: Nanotechnological interventions could be used to improve the therapeutic efficiency in reducing demineralization and growth of the biofilm. Further well-designed clinical trials with long-term follow-up are essential to elucidate the clinical relevance of remineralizing agents.
Collapse
|
17
|
Evaluation the properties of orthodontic adhesive incorporated with nano-hydroxyapatite particles. Saudi Dent J 2021; 33:1190-1196. [PMID: 34938065 PMCID: PMC8665179 DOI: 10.1016/j.sdentj.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/03/2020] [Accepted: 01/03/2021] [Indexed: 11/23/2022] Open
Abstract
Objective This research was designed to study the effects of calcium hydroxyapatite nanoparticle incorporation on polymerization as well as the shear bond strength for Heliosit adhesive. Materials and methods Calcium hydroxyapatite nanoparticles were prepared from natural products using the sol-gel method, and were inspected using a transmission electron microscope. The nanoparticles were added to the conventional orthodontic adhesive at 2% wt and 4% wt concentrations. The degree of conversion for each test group was measured using a Fourier transform infrared spectroscopy device. Each adhesive group was used for bonding metal brackets to the premolar buccal enamel surface. The shear bond strength of all samples was measured. Results A significant difference was found among all the study groups (p ≤ 0.05) in terms of the degree of conversion and shear bond strength. The 2% wt nanoparticle group showed the highest values for both variables. The lowest value was recorded within the 4% wt nanoparticle group in comparison to the control group. Conclusions Calcium hydroxyapatite nanoparticle incorporation with a conventional Heliosit adhesive resin to a limited concentration has improved the mechanical properties of orthodontic adhesive.
Collapse
|
18
|
Samiei M, Alipour M, Khezri K, Saadat YR, Forouhandeh H, Abdolahinia ED, Vahed SZ, Sharifi S, Dizaj SM. Application of collagen and mesenchymal stem cells in regenerative dentistry. Curr Stem Cell Res Ther 2021; 17:606-620. [PMID: 34931969 DOI: 10.2174/1574888x17666211220100521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/28/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
Collagen is an important macromolecule of extracellular matrix (ECM) in bones, teeth, and temporomandibular joints. Mesenchymal stem cells (MSCs) interact with the components of the ECM such as collagen, proteoglycans, glycosaminoglycans (GAGs), and several proteins on behalf of variable matrix elasticity and bioactive cues. Synthetic collagen-based biomaterials could be effective scaffolds for regenerative dentistry applications due to mimicking of host tissues' ECM. These biomaterials are biocompatible, biodegradable, readily available, and non-toxic to cells whose capability promotes cellular response and wound healing in the craniofacial region. Collagen could incorporate other biomolecules to induce mineralization in calcified tissues such as bone and tooth. Moreover, the addition of these molecules or other polymers to collagen-based biomaterials could enhance mechanical properties, which is important in load-bearing areas such as the mandible. A literature review was performed via reliable internet database (mainly PubMed) based on MeSH keywords. This review first describes the properties of collagen as a key protein in the structure of hard tissues. Then, it introduces different types of collagens, the correlation between collagen and MSCs, and the methods used to modify collagen in regenerative dentistry including recent progression on the regeneration of periodontium, dentin-pulp complex, and temporomandibular joint by applying collagen. Besides, the prospects and challenges of collagen-based biomaterials in the craniofacial region pointes out.
Collapse
Affiliation(s)
- Mohammad Samiei
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Haleh Forouhandeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Polysaccharide-Based Micro- and Nanosized Drug Delivery Systems for Potential Application in the Pediatric Dentistry. Polymers (Basel) 2021; 13:polym13193342. [PMID: 34641160 PMCID: PMC8512615 DOI: 10.3390/polym13193342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
The intensive development of micro- and nanotechnologies in recent years has offered a wide horizon of new possibilities for drug delivery in dentistry. The use of polymeric drug carriers turned out to be a very successful technique for formulating micro- and nanoparticles with controlled or targeted drug release in the oral cavity. Such innovative strategies have the potential to provide an improved therapeutic approach to prevention and treatment of various oral diseases not only for adults, but also in the pediatric dental practice. Due to their biocompatibility, biotolerance and biodegradability, naturally occurring polysaccharides like chitosan, alginate, pectin, dextran, starch, etc., are among the most preferred materials for preparation of micro- and nano-devices for drug delivery, offering simple particle-forming characteristics and easily tunable properties of the formulated structures. Their low immunogenicity and low toxicity provide an advantage over most synthetic polymers for the development of pediatric formulations. This review is focused on micro- and nanoscale polysaccharide biomaterials as dental drug carriers, with an emphasis on their potential application in pediatric dentistry.
Collapse
|
20
|
Naguib GH, Nassar HM, Hamed MT. Antimicrobial properties of dental cements modified with zein-coated magnesium oxide nanoparticles. Bioact Mater 2021; 8:49-56. [PMID: 34541386 PMCID: PMC8424389 DOI: 10.1016/j.bioactmat.2021.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/29/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to test the antimicrobial properties of dental cements modified with magnesium oxide (MgO) nanoparticles. Zein-modified MgO nanoparticles (zMgO) in concentrations (0.0, 0.3, 0.5, and 1.0%) were mixed with dental cements (Fuji II, Rely X Temp E, Ionoglass Cem, Es Temp NE, and System P link). Eight discs were fabricated from each zMgO-cement pair for a total of 32 specimens for each cement. Characterization of the dental cements incorporating zMgO was done by X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). The antimicrobial properties of the mixtures were tested using direct contact and agar diffusion assays against Streptococcus mutans, Staphylococcus aureus, Enterococcus faecalis, and Candida albicans. Data was analyzed using two-way analysis of variance and LSD post hoc test at 0.05 significance level. XRD spectra showed sharp peaks of zMgO indicating its high crystalline nature, while the amorphous dental cements with zMgO had broad peaks. FESEM analysis showed a uniform distribution of the zMgO nanoparticles in the cement. There were significant inhibition zone values associated with all concentrations of zMgO-cement mixtures tested compared to controls (p < 0.001) with a dose-response recorded only with Fuji II. Optical density values were significantly lower in zMgO groups compared to controls for all microorganisms. The effect was most prominent with Rely X against C. albicans and S. aureus. Dental cements containing zMgO showed significant antimicrobial properties that were dependent on the specific initial cement substrate. Antimicrobial nanoparticles (NPs) are widely used in dental materials to improve their biological properties. Magnesium Oxide (MgO) NPs are novel antimicrobial agents. Incorporation of MgO NPs in dental cements aids in minimizing bacterial colonization at the restoration margin. Zein polymer facilitates the dispersion of MgO NPs and avoid its agglomeration. Zein polymer effectively enhances the performance of MgO NPs.
Collapse
Affiliation(s)
- Ghada H. Naguib
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Corresponding author. Dr. Ghada Naguib Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, P.O.Box 80209, Jeddah, 21589, Saudi Arabia.
| | - Hani M. Nassar
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed T. Hamed
- Department of Oral and Maxillofacial Prosthodontics, King Abdulaziz University, Faculty of Dentistry, Jeddah, Saudi Arabia
- Department of Fixed Prosthodontics, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Kavetskyy T, Alipour M, Smutok O, Mushynska O, Kiv A, Fink D, Farshchi F, Ahmadian E, Hasanzadeh M. Magneto-immunoassay of cancer biomarkers: Recent progress and challenges in biomedical analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Makvandi P, Josic U, Delfi M, Pinelli F, Jahed V, Kaya E, Ashrafizadeh M, Zarepour A, Rossi F, Zarrabi A, Agarwal T, Zare EN, Ghomi M, Kumar Maiti T, Breschi L, Tay FR. Drug Delivery (Nano)Platforms for Oral and Dental Applications: Tissue Regeneration, Infection Control, and Cancer Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004014. [PMID: 33898183 PMCID: PMC8061367 DOI: 10.1002/advs.202004014] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/12/2020] [Indexed: 05/09/2023]
Abstract
The oral cavity and oropharynx are complex environments that are susceptible to physical, chemical, and microbiological insults. They are also common sites for pathological and cancerous changes. The effectiveness of conventional locally-administered medications against diseases affecting these oral milieus may be compromised by constant salivary flow. For systemically-administered medications, drug resistance and adverse side-effects are issues that need to be resolved. New strategies for drug delivery have been investigated over the last decade to overcome these obstacles. Synthesis of nanoparticle-containing agents that promote healing represents a quantum leap in ensuring safe, efficient drug delivery to the affected tissues. Micro/nanoencapsulants with unique structures and properties function as more favorable drug-release platforms than conventional treatment approaches. The present review provides an overview of newly-developed nanocarriers and discusses their potential applications and limitations in various fields of dentistry and oral medicine.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Chemistry Department, Faculty of ScienceShahid Chamran University of AhvazAhvaz6153753843Iran
| | - Uros Josic
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaVia San Vitale 59Bologna40125Italy
| | - Masoud Delfi
- Department of Chemical SciencesUniversity of Naples “Federico II”Complesso Universitario Monte S. Angelo, Via CintiaNaples80126Italy
| | - Filippo Pinelli
- Department of Chemistry, Materials and Chemical EngineeringPolitecnico di Milano Technical UniversityMilano20133Italy
| | - Vahid Jahed
- Biomedical Engineering Division, Faculty of Chemical EngineeringTarbiat Modares UniversityTehranIran
| | - Emine Kaya
- Faculty of DentistryIstanbul Okan UniversityTuzla CampusTuzlaIstanbul34959Turkey
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci UniversityOrta Mahalle, Üniversite Caddesi No. 27, OrhanlıTuzlaIstanbul34956Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Atefeh Zarepour
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical EngineeringPolitecnico di Milano Technical UniversityMilano20133Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Tarun Agarwal
- Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| | | | - Matineh Ghomi
- Chemistry Department, Faculty of ScienceShahid Chamran University of AhvazAhvaz6153753843Iran
| | - Tapas Kumar Maiti
- Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaVia San Vitale 59Bologna40125Italy
| | - Franklin R Tay
- The Dental College of GeorgiaAugusta University1430 John Wesley Gilbert DriveAugustaGA30192USA
- The Graduate SchoolAugusta UniversityAugustaGA30912USA
| |
Collapse
|
23
|
Vasiliu S, Racovita S, Gugoasa IA, Lungan MA, Popa M, Desbrieres J. The Benefits of Smart Nanoparticles in Dental Applications. Int J Mol Sci 2021; 22:2585. [PMID: 33806682 PMCID: PMC7961614 DOI: 10.3390/ijms22052585] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Dentistry, as a branch of medicine, has undergone continuous evolution over time. The scientific world has focused its attention on the development of new methods and materials with improved properties that meet the needs of patients. For this purpose, the replacement of so-called "passive" dental materials that do not interact with the oral environment with "smart/intelligent" materials that have the capability to change their shape, color, or size in response to an externally stimulus, such as the temperature, pH, light, moisture, stress, electric or magnetic fields, and chemical compounds, has received much attention in recent years. A strong trend in dental applications is to apply nanotechnology and smart nanomaterials such as nanoclays, nanofibers, nanocomposites, nanobubbles, nanocapsules, solid-lipid nanoparticles, nanospheres, metallic nanoparticles, nanotubes, and nanocrystals. Among the nanomaterials, the smart nanoparticles present several advantages compared to other materials, creating the possibility to use them in various dental applications, including preventive dentistry, endodontics, restoration, and periodontal diseases. This review is focused on the recent developments and dental applications (drug delivery systems and restoration materials) of smart nanoparticles.
Collapse
Affiliation(s)
- Silvia Vasiliu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania;
| | - Stefania Racovita
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania;
| | - Ionela Aurica Gugoasa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (I.A.G.); (M.P.)
| | | | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (I.A.G.); (M.P.)
- Academy of Romanian Scientists, Splaiul Independentei Street No. 54, 050085 Bucuresti, Romania
| | - Jacques Desbrieres
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Materiaux (IPREM), Pau and Pays de l’Adour University (UPPA), UMR CNRS 5254, Helioparc Pau Pyrenees, 2, av. President Angot, 64053 Pau CEDEX 09, France
| |
Collapse
|
24
|
de Oliveira MA, da C Vegian MR, Brighenti FL, Salvador MJ, Koga-Ito CY. Antibiofilm effects of Thymus vulgaris and Hyptis spicigera essential oils on cariogenic bacteria. Future Microbiol 2021; 16:241-255. [PMID: 33625248 DOI: 10.2217/fmb-2020-0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aim: The inhibitory and antibiofilm effects of Thymus vulgaris (EOTv) and Hyptis spicigera essential oils (EOHs) on cariogenic microorganisms were evaluated. Materials & methods: The chemical characterization of EOTv was performed by gas chromatography/mass spectrometry. Streptococcus mutans, Streptococcus gordonii, Streptococcus sanguinis, Streptococcus mitis, Streptococcus sobrinus, Lactobacillus acidophilus and Actinomyces naeslundii were used for agar diffusion assays and determination of minimal inhibitory and minimal bactericide concentrations. In addition, 20 streptococci and lactobacilli clinical isolates were also tested. The effects of essential oil on microbial initial biofilm formation and on preformed microcosm biofilm formed from human saliva were studied. Results & conclusion: Both essential oils had inhibitory effects on the cariogenic species and reduced the bacterial adherence to dental enamel. Essential oils were able to disrupt preformed microcosm biofilms. Thymus vulgaris and Hyptis spicigera essential oils have potential to be used in the development of formulations to the control of cariogenic biofilms.
Collapse
Affiliation(s)
- Maria Ac de Oliveira
- Department of Environmental Engineering & Oral Biopathology Graduate Program, Institute of Science & Technology, São Paulo State University - UNESP, São José dos Campos, Brazil
| | - Mariana R da C Vegian
- Department of Environmental Engineering & Oral Biopathology Graduate Program, Institute of Science & Technology, São Paulo State University - UNESP, São José dos Campos, Brazil
| | - Fernanda L Brighenti
- Department of Morphology & Pediatric Dentistry, Araraquara Dental School, São Paulo State University - UNESP, Araraquara, Brazil
| | - Marcos J Salvador
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Cristiane Y Koga-Ito
- Department of Environmental Engineering & Oral Biopathology Graduate Program, Institute of Science & Technology, São Paulo State University - UNESP, São José dos Campos, Brazil
| |
Collapse
|
25
|
Xu X, Dai Z, Zhang Z, Kou X, You X, Sun H, Guo H, Liu M, Zhu H. Fabrication of oral nanovesicle in-situ gel based on Epigallocatechin gallate phospholipid complex: Application in dental anti-caries. Eur J Pharmacol 2021; 897:173951. [PMID: 33607105 DOI: 10.1016/j.ejphar.2021.173951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 11/20/2022]
Abstract
The conventional anti-caries agents exhibit many shortcomings such as poor stability, low efficacy or short residence time in the oral environment, it is urgent to develop efficacy treatments to prevent dental caries. As the most active polyphenols from tea, Epigallocatechin gallate (EGCG) shows remarkable anti-cariogenic bioactivity. However, the poor stability and low bioavailability of EGCG limit its potential application. This study aimed to fabricate nanovesicles in-situ gel based on EGCG phospholipid complex in order to increase its stability and efficacy. The formation of EGCG phospholipid complex was characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The ethanol injection method was used to prepare the EGCG-loaded nanovesicles, an optimal ratio of Poloxamer407 (P407) and Poloxamer188 (P188) as in-situ gel matrix was selected to fabricate oral nanovesicles in-situ gel. EGCG-loaded nanovesicle in-situ gel based on the phospholipid complex had uniform spherical shape without any agglomeration. The discrete nanoparticle with a size (131.44 ± 4.24 nm) and a negative zeta potential value at -30.7 ± 0.5 mV possessed good physical stability and high entrapment efficiency (83.66 ± 3.2%). The formulation exhibited a strong antibacterial activity on S. mutans, which could reduce acid production and tooth surface adhesion. In addition, EGCG formulation could inhibit the formation of glucan and biofilm from S. mutans by suppressing the activity of glycosyltransferase enzymes (GTF). In conclusion, the EGCG-loaded nanovesicle in-situ gel holds great promise as an efficient anti-cariogenic formulation for topical oral delivery.
Collapse
Affiliation(s)
- Xiaodi Xu
- School of Food and Biological Engineering, Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zihan Dai
- School of Stomatology, Zhengzhou University, Zhengzhou, China
| | - Zilin Zhang
- School of Food and Biological Engineering, Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Xianyong Kou
- School of Food and Biological Engineering, Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Xiangyu You
- School of Food and Biological Engineering, Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hongmei Sun
- School of Food and Biological Engineering, Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Huilin Guo
- School of Food and Biological Engineering, Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Mingxing Liu
- School of Food and Biological Engineering, Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hongda Zhu
- School of Food and Biological Engineering, Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
26
|
Chitosan enhances the antimicrobial photodynamic inactivation mediated by Photoditazine® against Streptococcus mutans. Photodiagnosis Photodyn Ther 2020; 32:102001. [DOI: 10.1016/j.pdpdt.2020.102001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
|
27
|
Dissanayake SSM, Ekambaram M, Li KC, Harris PWR, Brimble MA. Identification of Key Functional Motifs of Native Amelogenin Protein for Dental Enamel Remineralisation. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25184214. [PMID: 32937944 PMCID: PMC7571260 DOI: 10.3390/molecules25184214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/04/2023]
Abstract
Dental caries or tooth decay is a preventable and multifactorial disease that affects billions of people globally and is a particular concern in younger populations. This decay arises from acid demineralisation of tooth enamel resulting in mineral loss from the subsurface. The remineralisation of early enamel carious lesions could prevent the cavitation of teeth. The enamel protein amelogenin constitutes 90% of the total enamel matrix protein in teeth and plays a key role in the biomineralisation of tooth enamel. The physiological importance of amelogenin has led to the investigation of the possible development of amelogenin-derived biomimetics against dental caries. We herein review the literature on amelogenin, its primary and secondary structure, comparison to related species, and its’ in vivo processing to bioactive peptide fragments. The key structural motifs of amelogenin that enable enamel remineralisation are discussed. The presence of several motifs in the amelogenin structure (such as polyproline, N- and C-terminal domains and C-terminal orientation) were shown to play a critical role in the formation of particle shape during remineralization. Understanding the function/structure relationships of amelogenin can aid in the rational design of synthetic polypeptides for biomineralisation, halting enamel loss and leading to improved therapies for tooth decay.
Collapse
Affiliation(s)
- Shama S. M. Dissanayake
- School of Chemical Sciences, 23 Symonds St, The University of Auckland, Auckland 1142, New Zealand;
| | - Manikandan Ekambaram
- Paediatric Dentistry, Biomaterials, Faculty of Dentistry, The University of Otago, Dunedin 9016, New Zealand; (M.E.); (K.C.L.)
| | - Kai Chun Li
- Paediatric Dentistry, Biomaterials, Faculty of Dentistry, The University of Otago, Dunedin 9016, New Zealand; (M.E.); (K.C.L.)
| | - Paul W. R. Harris
- School of Chemical Sciences, 23 Symonds St, The University of Auckland, Auckland 1142, New Zealand;
- School of Biological Sciences, 3b Symonds St, The University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, 3b Symonds St, The University of Auckland, Auckland 1142, New Zealand
- Correspondence: (P.W.R.H.); (M.A.B.); Tel.: +64-9-373-7599 (P.W.R.H. & M.A.B.); Fax: +64-9-373-7422 (P.W.R.H. & M.A.B.)
| | - Margaret A. Brimble
- School of Chemical Sciences, 23 Symonds St, The University of Auckland, Auckland 1142, New Zealand;
- School of Biological Sciences, 3b Symonds St, The University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, 3b Symonds St, The University of Auckland, Auckland 1142, New Zealand
- Correspondence: (P.W.R.H.); (M.A.B.); Tel.: +64-9-373-7599 (P.W.R.H. & M.A.B.); Fax: +64-9-373-7422 (P.W.R.H. & M.A.B.)
| |
Collapse
|
28
|
Therapeutic Use of Silver Nanoparticles in the Prevention and Arrest of Dental Caries. Bioinorg Chem Appl 2020; 2020:8882930. [PMID: 32855631 PMCID: PMC7443198 DOI: 10.1155/2020/8882930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Dental caries is one of the major diseases of the oral cavity affecting humans worldwide. Different alternatives have been used for its control, but its incidence and prevalence are still high. On the other hand, silver has been used for centuries due to its antimicrobial properties. With advances in nanotechnology, the use and research in nanomaterials has increased, recently, and silver nanoparticles have become an essential part of the dental practice, giving materials physical and chemical improvements in their properties, used for their antibacterial capacity preventing and arresting dental caries. The objective of this review was to examine the use of silver nanoparticles, in the treatment of dental caries in the remineralization of teeth hard tissues, as well as the antimicrobial potential, cytotoxicity, and long-term effectiveness.
Collapse
|
29
|
Lima RA, de Souza SLX, Lima LA, Batista ALX, de Araújo JTC, Sousa FFO, Rolim JPML, Bandeira TDJPG. Antimicrobial effect of anacardic acid-loaded zein nanoparticles loaded on Streptococcus mutans biofilms. Braz J Microbiol 2020; 51:1623-1630. [PMID: 32562202 DOI: 10.1007/s42770-020-00320-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/11/2020] [Indexed: 11/25/2022] Open
Abstract
Bacterial biofilms play a key role in the pathogenesis of major oral diseases. Nanoparticles open new paths for drug delivery in complex structures such as biofilms. This study evaluated the antimicrobial effect of zein nanoparticles containing anacardic acid (AA) extracted from cashew shells of Anacardium occidentale on in vitro Streptococcus mutans biofilm formation and mature biofilms. The minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC), and antibiofilm assays were performed. Streptococcus mutans UA159 biofilms were formed on saliva-coated hydroxyapatite disk for 5 days. To evaluate the preventive effect on biofilm formation, before contact with the inoculum, the disks were immersed once for 2 min in (1) hydroethanolic solution; (2) blank zein nanoparticles; (3) zein nanoparticles containing AA; and (4) 0.12% chlorhexidine gluconate. To determine the effect against mature biofilms, the disks containing 5-day preformed biofilms were further treated using the same procedure. The bacterial viability and dry weight were determined for both assays and used to compare the groups using ANOVA followed by Tukey's test (p < 0.05). Both MIC and MBC for AA-loaded zein nanoparticles were 0.36 μg/mL. Groups 3 and 4 were very effective in inhibiting S. mutans biofilm formation, as no colony-forming units were detected. In contrast, for mature biofilms, no difference in bacterial viability (p = 0.28) or dry weight (p = 0.09) was found between the treatments. Therefore, the AA-based nanoformulation presented very high inhibitory and bactericidal activities against planktonic S. mutans, and the results indicate a strong antiplaque effect. However, the formulation showed no antimicrobial effect on the established biofilm.
Collapse
Affiliation(s)
- Ramille Araújo Lima
- Centro Universitário Christus (UNICHRISTUS), Rua João Adolfo Gurgel, 133, Cocó, Fortaleza, CE, 60190-060, Brazil
| | | | - Lais Aragão Lima
- Centro Universitário Christus (UNICHRISTUS), Rua João Adolfo Gurgel, 133, Cocó, Fortaleza, CE, 60190-060, Brazil
| | - Ana Larissa Ximenes Batista
- Centro Universitário Christus (UNICHRISTUS), Rua João Adolfo Gurgel, 133, Cocó, Fortaleza, CE, 60190-060, Brazil
| | | | | | | | | |
Collapse
|
30
|
Menikheim SD, Lavik EB. Self-healing biomaterials: The next generation is nano. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1641. [PMID: 32359015 DOI: 10.1002/wnan.1641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/16/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
Abstract
The U.S. Agency for Healthcare Research and Quality estimates that there are over 1 million total hip and total knee replacements each year in the U.S. alone. Twenty five percent of those implants will experience aseptic loosening, and bone cement failure is an important part of this. Bone cements are based on poly(methyl methacrylate) (PMMA) systems that are strong but brittle polymers. PMMA-based materials are also essential to modern dental fillings, and likewise, the failure rates are high with lifetimes of 3-10 years. These brittle polymers are an obvious target for self-healing systems which could reduce revision surgeries and visits to dentist. Self-healing polymers have been described in the literature since 1996 and examples from Roman times are known, but their application in medicine has been challenging. This review looks at the development of self-healing biomaterials for these applications and the challenges that lie between development and the clinic. Many of the most promising formulations involve introducing nanoscale components which offer substantial potential benefits over their microscale counterparts especially in composite systems. There is substantial promise for translation, but issues with toxicity, robustness, and reproducibility of these materials in the complex environment of the body must be addressed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Sydney D Menikheim
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Erin B Lavik
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Wu Q, Mei ML, Wu X, Shi S, Xu Y, Chu CH, Chen Y. Remineralising effect of 45S5 bioactive glass on artificial caries in dentine. BMC Oral Health 2020; 20:49. [PMID: 32046691 PMCID: PMC7014937 DOI: 10.1186/s12903-020-1038-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/06/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND This study investigated the remineralisation effect of bioactive glass on artificial dentine caries. METHODS Dentine disks with artificial caries were treated with bioactive glass (group BAG), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) (group CPP-ACP), sodium fluoride glycerol (group F) or deionized water (group W). All disks were subjected to pH cycling for 28 days subsequently. The topography, microhardness and remineralisation depth of the dentine carious lesion were assessed by atomic force microscopy (AFM), microhardness testing and confocal laser scanning microscope (CLSM), respectively. RESULTS AFM images indicated mineral depositions on the surface of the carious lesion in group BAG. The changes of Vickers hardness number (ΔVHN, mean ± SD) after pH cycling were 9.67 ± 3.60, 6.06 ± 3.83, 5.00 ± 2.19 and - 1.90 ± 2.09 (p < 0.001) in group BAG, group CPP-ACP, group F and group W, respectively. The remineralisation depth (mean ± SD) of the carious lesion in group BAG, group CPP-ACP, group F and group W were 165 ± 11 μm, 111 ± 11 μm, 75 ± 6 μm and 0 μm (p < 0.001), respectively. CONCLUSION Bioactive glass possessed a promising remineralisation effect on artificial dentine caries and could be a therapeutic choice for caries management.
Collapse
Affiliation(s)
- Qiong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Polyclinics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - May Lei Mei
- Faculty of Dentistry, University of Otago, Dunedin, 9054, New Zealand.
| | - Xin Wu
- Department of Stomatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shuya Shi
- Department of Stomatology, Affiliated hospital of Jiangnan University, Wuxi, China
| | - Yuting Xu
- Stomatological Hospital Affiliated to Soochow University, Suzhou, China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yaming Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China. .,Department of Polyclinics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
32
|
Noori AJ, Kareem FA. The effect of magnesium oxide nanoparticles on the antibacterial and antibiofilm properties of glass-ionomer cement. Heliyon 2019; 5:e02568. [PMID: 31667407 PMCID: PMC6812241 DOI: 10.1016/j.heliyon.2019.e02568] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/17/2019] [Accepted: 09/30/2019] [Indexed: 10/28/2022] Open
Abstract
Objectives This study examined the antibacterial and antibiofilm properties of conventional glass-ionomer cement (GIC) modified by the addition of magnesium oxide (MgO) nanoparticles. Materials and methods MgO nanoparticles were characterised by XRD, FTIR, and SEM analysis and tested for its activity against Streptococcus mutans and Streptococcus sobrinus. MgO nanoparticles were incorporated into GIC powder (Ketac Molar Easymix) at different concentrations and the antibacterial and antibiofilm activity was evaluated using agar disk diffusion and biofilm-CFU counting assays. ANOVA and Tukey's post hoc tests were used for the analysis, and the level of significance was set at p < 0.05. Results MgO nanoparticles showed antibacterial activity against both microorganisms (MIC = 500 μg/ml and MBC = 1000 μg/ml). A significant difference in the zones of inhibition was detected (p < 0.005). The effect was evident in the 2.5% MgO nanoparticle modified GIC while the CFU counting biofilm assay showed the effect of the added nanoparticles from 1% with a significant difference between the tested material groups (p < 0.005). Conclusions The MgO nanoparticle modified GIC showed effective antibacterial and antibiofilm activity against two cariogenic microorganisms and could be considered for further development as a biocompatible antibacterial dental restorative cement.
Collapse
Affiliation(s)
- Arass Jalal Noori
- Department of Pedodontics, Orthodontics and Preventive Dentistry, College of Dentistry, University of Sulaimani, Sulaymaniyah, 46001, Iraq
| | - Fadil Abdullah Kareem
- Department of Pedodontics, Orthodontics and Preventive Dentistry, College of Dentistry, University of Sulaimani, Sulaymaniyah, 46001, Iraq
| |
Collapse
|