1
|
Chung N, Yang C, Yang H, Shin J, Song CY, Min H, Kim JH, Lee K, Lee JR. Local delivery of platelet-derived factors mitigates ischemia and preserves ovarian function through angiogenic modulation: A personalized regenerative strategy for fertility preservation. Biomaterials 2025; 313:122768. [PMID: 39232332 DOI: 10.1016/j.biomaterials.2024.122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
As the most prominent and ideal modality in female fertility preservation, ovarian tissue cryopreservation, and transplantation often confront the challenge of ischemic damage and follicular loss from avascular transplantation. To surmount this impediment, we engineered a novel platelet-derived factors-encapsulated fibrin hydrogel (PFH), a paradigmatic biomaterial. PFH encapsulates autologous platelet-derived factors, utilizing the physiological blood coagulation cascade for precise local delivery of bioactive molecules. In our study, PFH markedly bolstered the success of avascular ovarian tissue transplantation. Notably, the quantity and quality of follicles were preserved with improved neovascularization, accompanied by decreased DNA damage, increased ovulation, and superior embryonic development rates under a Low-concentration Platelet-rich plasma-derived factors encapsulated fibrin hydrogel (L-PFH) regimen. At a stabilized point of tissue engraftment, gene expression analysis mirrored normal ovarian tissue profiles, underscoring the effectiveness of L-PFH in mitigating the initial ischemic insult. This autologous blood-derived biomaterial, inspired by nature, capitalizes on the blood coagulation cascade, and combines biodegradability, biocompatibility, safety, and cost-effectiveness. The adjustable properties of this biomaterial, even in injectable form, extend its potential applications into the broader realm of personalized regenerative medicine. PFH emerges as a promising strategy to counter ischemic damage in tissue transplantation, signifying a broader therapeutic prospect. (197 words).
Collapse
Affiliation(s)
- Nanum Chung
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Chungmo Yang
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea; Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heeseon Yang
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Jungwoo Shin
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Chae Young Song
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyewon Min
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, 13496, Republic of Korea.
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jung Ryeol Lee
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
2
|
Mercier A, Johnson J, Kallen AN. Prospective solutions to ovarian reserve damage during the ovarian tissue cryopreservation and transplantation procedure. Fertil Steril 2024; 122:565-573. [PMID: 39181229 DOI: 10.1016/j.fertnstert.2024.08.330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Birth rates continue to decline as more women experience fertility issues. Assisted reproductive technologies are available for patients seeking fertility treatment, including cryopreservation techniques. Cryopreservation can be performed on gametes, embryos, or gonadal tissue and can be used for patients who desire to delay in vitro fertilization treatment. This review focuses on ovarian tissue cryopreservation, the freezing of ovarian cortex containing immature follicles. Ovarian tissue cryopreservation is the only available treatment for the restoration of ovarian function in patients who undergo gonadotoxic treatments, and its wide adoption has led to its recent designation as "no longer experimental" by the American Society for Reproductive Medicine. Ovarian tissue cryopreservation and subsequent transplantation can restore native endocrine function and can support the possibility of pregnancy and live birth for the patient. Importantly, there are multiple steps in the procedure that put the ovarian reserve at risk of damage. The graft is highly susceptible to ischemic reperfusion injury and mass primordial follicle growth activation, resulting in a "burnout" phenomenon. In this review, we summarize current efforts to combat the loss of primordial follicles in grafts through improvements in freeze and thaw protocols, transplantation techniques, and pharmacologic adjuvant treatments. We conducted a review of the literature, with emphasis on emergent research in the last 5 years. Regarding freeze and thaw protocols, we discuss the widely accepted slow freezing approach and newer vitrification protocols. Discussion of improved transplantation techniques includes consideration of the transplantation location of the ovarian tissue and the importance of graft sites in promoting neovascularization. Finally, we discuss pharmacologic treatments being studied to improve tissue performance postgraft. Of note, there is significant research into the efficacy of adjuvants used to reduce ischemic injury, improve neovascularization, and inhibit hyperactivation of primordial follicle growth activations. Although the "experimental" label has been removed from ovarian tissue cryopreservation and subsequent transplantation, there is a significant need for further research to better understand sources of ovarian reserve damage to improve outcomes. Future research directions are provided as we consider how to reach the most hopeful results for women globally.
Collapse
Affiliation(s)
- Abigail Mercier
- Divisions of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Joshua Johnson
- Divisions of Reproductive Endocrinology and Infertility and Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Amanda N Kallen
- Divisions of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Vermont Larner College of Medicine, Burlington, Vermont.
| |
Collapse
|
3
|
Pouladvand N, Azarnia M, Zeinali H, Fathi R, Tavana S. An overview of different methods to establish a murine premature ovarian failure model. Animal Model Exp Med 2024. [PMID: 39219374 DOI: 10.1002/ame2.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
Premature ovarian failure (POF)is defined as the loss of normal ovarian function before the age of 40 and is characterized by increased gonadotropin levels and decreased estradiol levels and ovarian reserve, often leading to infertility. The incomplete understanding of the pathogenesis of POF is a major impediment to the development of effective treatments for this disease, so the use of animal models is a promising option for investigating and identifying the molecular mechanisms involved in POF patients and developing therapeutic agents. As mice and rats are the most commonly used models in animal research, this review article considers studies that used murine POF models. In this review based on the most recent studies, first, we introduce 10 different methods for inducing murine POF models, then we demonstrate the advantages and disadvantages of each one, and finally, we suggest the most practical method for inducing a POF model in these animals. This may help researchers find the method of creating a POF model that is most appropriate for their type of study and suits the purpose of their research.
Collapse
Affiliation(s)
- Negar Pouladvand
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahnaz Azarnia
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hadis Zeinali
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Tekin YB, Tumkaya L, Mercantepe T, Topal ZS, Samanci TC, Yilmaz HK, Rakici S, Topcu A. Evaluation of the protective effect of coenzyme Q10 against x-ray irradiation-induced ovarian injury. J Obstet Gynaecol Res 2024; 50:1242-1249. [PMID: 38757238 DOI: 10.1111/jog.15966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
AIM This study focused on the anti-oxidant and anti-apoptotic effects of CoQ10 in ovaries exposed to pelvic radiation. METHODS Thirty-two female rats were randomly assigned into four groups. Group I (control group), Group II: Only 2 Gy pelvic x-ray irradiation (IR) was administered as a single fractioned dose. Group III: 30 mg/kg CoQ10 was administered by oral gavage +2 Gy pelvic IR. Group IV: 150 mg/kg CoQ10 was administered by oral gavage +2 Gy pelvic IR. CoQ10 treatment was started 7 days before pelvic IR and completed 7 days later. The rats in Group III and IV were treated with CoQ10 for a total of 14 days. RESULTS Histopathological analysis showed severe damage to the ovarian tissue in the radiation group, while both doses of CoQ10 showed normal histological structure. Likewise, while there was a high level of staining in the IR group for necrosis and apoptosis, the CoQ10 treated ones were like the control group. Tissue Malondialdehyde (MDA) levels were like the control group in the low-dose CoQ10 group, while the MDA levels of the high dose CoQ10 group were similar to the radiation group. CONCLUSION Usage of low-dose CoQ10 has a radioprotective effect on radiation-induced ovarian damage. Although the use of high doses is morphologically radioprotective, no antioxidative effect was observed in the biochemical evaluation.
Collapse
Affiliation(s)
- Yesim Bayoglu Tekin
- Department of Gynecology and Obstetrics, Faculty of Medicine, Health Sciences University, Trabzon, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Zehra Suzan Topal
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tuğba Celik Samanci
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Hulya Kilic Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sema Rakici
- Department of Radiation Oncology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
5
|
Baki KB, Sapmaz T, Sevgin K, Topkaraoglu S, Erdem E, Tekayev M, Guler EM, Beyaztas H, Bozali K, Aktas S, Irkorucu O, Sapmaz E. Curcumin and gallic acid have a synergistic protective effect against ovarian surface epithelium and follicle reserve damage caused by autologous intraperitoneal ovary transplantation in rats. Pathol Res Pract 2024; 258:155320. [PMID: 38728794 DOI: 10.1016/j.prp.2024.155320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The objective of this study to examine the effects of curcumin and gallic acid use against oxidative stress damage in the autologous intraperitoneal ovarian transplantation model created in rats on ovarian follicle reserve, ovarian surface epithelium, and oxidant-antioxidant systems. 42 adult female Sprague Dawley rats (n=7) were allocated into 6 groups. Group 1 served as the control. In Group 2, rats underwent ovarian transplantation (TR) to their peritoneal walls. Group 3 received corn oil (CO) (0.5 ml/day) one day before and 14 days after transplantation. Group 4 was administered curcumin (CUR) (100 mg/kg/day), Group 5 received gallic acid (GA) (20 mg/kg/day), and Group 6 was treated with a combination of curcumin and gallic acid via oral gavage after transplantation. Rats were sacrificed on the 14th postoperative day, and blood along with ovaries were collected for analysis. The removed ovaries were analyzed at light microscopic, fluorescence microscopic, and biochemical levels. In Group 2 and Group 3, while serum and tissue Total Oxidant Levels (TOS) and Oxidative Stress Index (OSI) increased, serum Total Antioxidant Levels (TAS) decreased statistically significantly (p˂0.05) compared to the other groups (Groups 1, 4, 5, and 6). The ovarian follicle reserve was preserved and the changes in the ovarian surface epithelium and histopathological findings were reduced in the antioxidant-treated groups (Groups 4, 5, and 6). In addition, immunofluorescence examination revealed that the expression of Cytochrome C and Caspase 3 was stronger and Ki-67 was weaker in Groups 2 and 3, in comparison to the groups that were given antioxidants. It can be said that curcumin and gallic acid have a histological and biochemical protective effect against ischemia-reperfusion injury due to ovarian transplantation, and this effect is stronger when these two antioxidants are applied together compared to individual use.
Collapse
Affiliation(s)
- Kubra Basol Baki
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Histology and Embryology, Istanbul 34668, Türkiye; Bezmialem Vakif University, Medical Faculty, Department of Histology and Embryology, Istanbul, Türkiye
| | - Tansel Sapmaz
- University of Health Sciences, Hamidiye Faculty of Medicine, Department of Histology and Embryology, Istanbul 34668, Türkiye.
| | - Kubra Sevgin
- University of Health Sciences, International Faculty of Medicine, Department of Histology and Embryology, Istanbul 34668, Türkiye
| | - Sude Topkaraoglu
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Histology and Embryology, Istanbul 34668, Türkiye; University of Health Sciences, Hamidiye Faculty of Medicine, Department of Histology and Embryology, Istanbul 34668, Türkiye
| | - Esra Erdem
- University of Health Sciences, Vocational School of Health Services, Department of Medical Services and Techniques, Pathology Laboratory Techniques Program, Istanbul 34668, Türkiye
| | - Muhammetnur Tekayev
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Histology and Embryology, Istanbul 34668, Türkiye
| | - Eray Metin Guler
- University of Health Sciences, Hamidiye Faculty of Medicine, Haydarpasa Numune Health Application and Research Center, Department of Medical Biochemistry, Istanbul, Türkiye; University of Health Sciences, Hamidiye Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Türkiye
| | - Hakan Beyaztas
- University of Health Sciences, Hamidiye Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Türkiye
| | - Kubra Bozali
- University of Health Sciences, Hamidiye Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Türkiye
| | - Selman Aktas
- University of Health Sciences, Hamidiye Faculty of Medicine, Department of Biostatistics and Medical Informatics, Istanbul, Türkiye
| | - Oktay Irkorucu
- University of Sharjah, College of Medicine, Department of Clinical Sciences, Sharjah, United Arab Emirates
| | - Ekrem Sapmaz
- University of Health Sciences, Adana City Training and Research Hospital, Department of Gynecology and Obstetrics, Adana, Türkiye
| |
Collapse
|
6
|
Sanamiri K, Soleimani Mehranjani M, Shahhoseini M, Shariatzadeh SMA. The effect of platelet lysate on mouse ovarian structure, function and epigenetic modifications after autotransplantation. Reprod Biomed Online 2023; 46:446-459. [PMID: 36690568 DOI: 10.1016/j.rbmo.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
RESEARCH QUESTION What are the effects of platelet lysate on structure, function and epigenetic modifications of heterotopically transplanted mouse ovarian tissues? DESIGN Mice were divided into three groups (n = 17 per group): control (mice with no ovariectomy, grafting or treatment), autograft and autograft plus platelet lysate (3 ml/kg at the graft sites). Inflammatory markers, serum malondialdehyde (MDA) concentration and total antioxidant capacity were assessed on day 7 after transplantation. Twenty-eight days after transplantation, stereological and hormonal analyses were conducted. Chromatin immunoprecipitation and quantitative real-time polymerase chain reaction were also used to quantify the epigenetic modifications of maturation genes, parallel to their expression. RESULTS The total volume of the ovary, cortex and medulla, and the number of different types of follicles, the concentration of interleukin (IL)-10, progesterone and oestradiol and total antioxidant capacity significantly decreased in the autograft group compared with the control group (P < 0.001); these parameters significantly increased in the autograft plus platelet lysate group compared with the autograft group (P < 0.001). The concentrations of tumour necrosis factor alpha, IL-6 and MDA increased significantly in the autograft group compared with the control group (P < 0.001); in the autograft plus platelet lysate group, these parameters significantly decreased compared with the autograft group (P < 0.001). In the autograft plus platelet lysate group, the expression levels of Gdf-9 (P < 0.0021), Igf-1 (P < 0.0048) and Igf-2 (P < 0.0063) genes also increased along with a lower incorporation of MeCP2 in the promoter regions (P < 0.001) compared with the autograft group. CONCLUSIONS Platelet lysate can contribute to follicular survival by improving folliculogenesis and increasing the expression of oocyte maturation genes.
Collapse
Affiliation(s)
- Khadijeh Sanamiri
- Department of Biology, Faculty of Science, Arak University, Arak, 381-5688138, Iran
| | | | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 19395-4644, Iran
| | | |
Collapse
|
7
|
Li Y, Hu Y, Zhu S, Tuo Y, Cai B, Long T, Zhao W, Ye X, Lu X, Long L. Protective Effects of Reduced Glutathione and Ulinastatin on Xeno-transplanted Human Ovarian Tissue Against Ischemia and Reperfusion Injury. Cell Transplant 2021; 30:963689721997151. [PMID: 33784205 PMCID: PMC8013881 DOI: 10.1177/0963689721997151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recently, transplantation of cryopreserved ovarian tissue is the method for fertility preservation for oncologic and nononcologic reasons. The main challenge of ovarian cryopreservation followed by transplantation is that ischemia reperfusion injury (IRI) induced the loss of follicles. The aim of this study was to evaluate the effects of glutathione (GSH), ulinastatin (UTI) or both (GSH+UTI) on preventing ischemia reperfusion-induced follicles depletion in ovarian grafts. Ovarian fragments were collected from 20 women aged 29±6 years. Frozen-thawed human ovarian tissue was xenografted into SCID mice, at the same time GSH, UTI and GSH+UTI was administrated respectively. The ovarian grafts were collected at the 1st, 3rd, 7th, 14th, 28th, 56th, and 85th day after xenotransplantation. Follicle survival rate was measured by H&E staining and Live/Dead staining. Angiogenic activity and macrophage recruitment was evidenced by immunohistochemical staining. The oxidative stress and inflammatory cytokines in human ovarian xenografts were measured by real-time PCR. The results indicated that after the treatments of GSH, UTI and GSH+UTI in the hosts, follicular survival in ovarian grafts were improved. The level of VEGF, CD31, and antioxidant enzymes superoxide dismutase 1 and superoxide dismutase 2 in ovarian grafts were increased. Accumulation of macrophages, level of IL6 and TNF-α, as well as malondialdehyde was decreased in ovarian grafts from treated groups. In conclusion, administration of GSH, UTI and GSH+UTI decreased the depletion of follicles in human grafts post-transplantation by inhibiting IRI-induced antiangiogenesis, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yubin Li
- The Reproductive Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- These authors contributed equally to this work
| | - Yue Hu
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- These authors contributed equally to this work
| | - Shunye Zhu
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Tuo
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bin Cai
- The Reproductive Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tengfei Long
- Department of Gynecology and Obstetrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guanghzou, China
| | - Wen Zhao
- The Reproductive Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoxin Ye
- University of New South Wales, Sydney, High St. Kensington, New South Wales, Australia
| | - XiaoFang Lu
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- These authors contributed equally to this work
- XiaoFang Lu, Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Lingli Long
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- These authors contributed equally to this work
- Lingli Long, Translation Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
8
|
Dolmans MM, Donnez J, Cacciottola L. Fertility Preservation: The Challenge of Freezing and Transplanting Ovarian Tissue. Trends Mol Med 2020; 27:777-791. [PMID: 33309205 DOI: 10.1016/j.molmed.2020.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Cancer treatments are increasingly effective, but can result in iatrogenic premature ovarian insufficiency. Ovarian tissue cryopreservation is the only option available to preserve fertility in prepubertal girls and young women who require immediate chemotherapy. Ovarian tissue transplantation has been shown to restore hormonal cycles and fertility, but a large proportion of the follicle reserve is lost as a consequence of exposure to hypoxia. Another crucial concern is the risk of reimplanting malignant cells together with the grafted tissue. In this review, the authors advance some challenging propositions, from prevention of chemotherapy-related gonadotoxicity to ovarian tissue cryopreservation and transplantation, including the artificial ovary approach.
Collapse
Affiliation(s)
- Marie-Madeleine Dolmans
- Gynecology Department, Cliniques universitaires St-Luc, Brussels, Belgium; Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| | - Jacques Donnez
- Prof. Em. Catholic University of Louvain, Brussels, Belgium; Société de Recherche pour l'Infertilité (SRI), Brussels, Belgium
| | - Luciana Cacciottola
- Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
9
|
Topcu A, Balik G, Atak M, Mercantepe T, Uydu HA, Tumkaya L. An investigation of the effects of metformin on ovarian ischemia-reperfusion injury in rats. Eur J Pharmacol 2019; 865:172790. [PMID: 31730761 DOI: 10.1016/j.ejphar.2019.172790] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 01/08/2023]
Abstract
Damage to the ovaries or tissue torsion can significantly reduce the ovarian reserve and thus cause severe gynecological and hormonal deficiencies. The discovery of new agents is always needed in the treatment of this condition. Metformin (MET) has been shown to be beneficial in attenuating ovarian ischemia-reperfusion injury. Fifty-six female Sprague Dawley rats were divided into seven groups. Group 1 represented the control group (C), Group 2, the ischemia group (I), and Group 3, the ischemia/reperfusion group (I/R). Group 4, the ischemia (I)+250 group, and Group 5, the ischemia (I)+500 group, received 250 mg/kg and 500 mg/kg MET, respectively. Group 6, the ischemia/reperfusion (I/R)+250 group, and Group 7, the ischemia/reperfusion (I/R)+500 group, received 250 mg/kg and 500 mg/kg MET, respectively. Tissue malondialdehyde (MDA), glutathione (GSH), and tumor necrosis factor-alpha (TNF-α) levels in ovarian tissue increased following I/R, while estradiol (E2) levels decreased. Moreover, infiltration and diffuse edematous areas were observed in addition to diffuse vascular congestion and hemorrhage findings. Caspase-3 and nuclear factor kappa B (NF-κβ) expression levels also increased. MDA and TNF-α concentrations decreased in the MET treatment groups, while GSH and E2 levels increased. The findings showed that I/R causes ovarian damage through the induction of oxidative stress, inflammation, and apoptosis. However, MET application was effective in preventing damage in ovarian tissue by reducing levels of reactive oxygen species, proinflammatory cytokines, caspase-3 and NF-κβ.
Collapse
Affiliation(s)
- Atilla Topcu
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Pharmacology, 53100, Rize, Turkey.
| | - Gulsah Balik
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Gynecology and Obstetrics, 53100, Rize, Turkey
| | - Mehtap Atak
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Medical Biochemistry, 53100, Rize, Turkey
| | - Tolga Mercantepe
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Histology and Embryology, 53100, Rize, Turkey
| | - Huseyin Avni Uydu
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Medical Biochemistry, 53100, Rize, Turkey
| | - Levent Tumkaya
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Histology and Embryology, 53100, Rize, Turkey
| |
Collapse
|