1
|
Shi Y, He T, Zhong J, Mei X, Li Y, Li M, Zhang W, Ji D, Su L, Lu T, Zhao X. Classification and rapid non-destructive quality evaluation of different processed products of Cyperus rotundus based on near-infrared spectroscopy combined with deep learning. Talanta 2024; 268:125266. [PMID: 37832457 DOI: 10.1016/j.talanta.2023.125266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023]
Abstract
The quality of traditional Chinese medicine is very important for human health, but the traditional quality control method is very tedious, which leads to the substandard quality of many traditional Chinese medicine. In order to solve the problem of time-consuming and laborious traditional quality control methods, this study takes traditional Chinese medicine Cyperus rotundus as an example, a comprehensive strategy of near-infrared (NIR) spectroscopy combined with One-dimensional convolutional neural network (1D-CNN) and chaotic map dung beetle optimization (CDBO) algorithm combined with BP neural network (BPNN) is proposed. This strategy has the advantages of fast and non-destructive. It can not only qualitatively distinguish Cyperus rotundus and various processed products, but also quantitatively predict two bioactive components. In classification, 1D-CNN successfully distinguished four kinds of processed products of Cyperus rotundus with 100 % accuracy. Quantitatively, a CDBO algorithm is proposed to optimize the performance of the BPNN quantitative model of two terpenoids, and compared with the BP, whale optimization algorithm (WOA)-BP, sparrow optimization algorithm (SSA)-BP, grey wolf optimization (GWO)-BP and particle swarm optimization (PSO)-BP models. The results show that the CDBO-BPNN model has the smallest error and has a significant advantage in predicting the content of active components in different processed products. To sum up, it is feasible to use near infrared spectroscopy to quickly evaluate the effect of processing methods on the quality of Cyperus rotundus, which provides a meaningful reference for the quality control of traditional Chinese medicine with many other processing methods.
Collapse
Affiliation(s)
- Yabo Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Tianyu He
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Jiajing Zhong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Xi Mei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China.
| | - Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Mingxuan Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Wei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China.
| | - Xiaoli Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China.
| |
Collapse
|
2
|
Xue BX, He RS, Lai JX, Mireku-Gyimah NA, Zhang LH, Wu HH. Phytochemistry, data mining, pharmacology, toxicology and the analytical methods of Cyperus rotundus L. (Cyperaceae): a comprehensive review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023:1-46. [PMID: 37359712 PMCID: PMC10183317 DOI: 10.1007/s11101-023-09870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
Cyperus rotundus L. has been widely used in the treatment and prevention of numerous diseases in traditional systems of medicine around the world, such as nervous, gastrointestinal systems diseases and inflammation. In traditional Chinese medicine (TCM), its rhizomes are frequently used to treat liver disease, stomach pain, breast tenderness, dysmenorrheal and menstrual irregularities. The review is conducted to summarize comprehensively the plant's vernacular names, distribution, phytochemistry, pharmacology, toxicology and analytical methods, along with the data mining for TCM prescriptions containing C. rotundus. Herein, 552 compounds isolated or identified from C. rotundus were systematically collated and classified, concerning monoterpenoids, sesquiterpenoids, flavonoids, phenylpropanoids, phenolics and phenolic glycosides, triterpenoids and steroids, diterpenoids, quinonoids, alkaloids, saccharides and others. Their pharmacological effects on the digestive system, nervous system, gynecological diseases, and other bioactivities like antioxidant, anti-inflammatory, anti-cancer, insect repellent, anti-microbial activity, etc. were summarized accordingly. Moreover, except for the data mining on the compatibility of C. rotundus in TCM, the separation, identification and analytical methods of C. rotundus compositions were also systematically summarized, and constituents of the essential oils from different regions were re-analyzed using multivariate statistical analysis. In addition, the toxicological study progresses on C. rotundus revealed the safety property of this herb. This review is designed to serve as a scientific basis and theoretical reference for further exploration into the clinical use and scientific research of C. rotundus. Graphical Abstract Supplementary Information The online version contains supplementary materials available at 10.1007/s11101-023-09870-3.
Collapse
Affiliation(s)
- Bian-Xia Xue
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617 People’s Republic of China
| | - Ru-Shang He
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617 People’s Republic of China
| | - Jia-Xin Lai
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617 People’s Republic of China
| | - Nana Ama Mireku-Gyimah
- Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| | - Li-Hua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617 People’s Republic of China
| | - Hong-Hua Wu
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617 People’s Republic of China
| |
Collapse
|
3
|
Shi Y, Mei X, Li Y, Li M, Ji D, Su L, Mao C, Lu T. Study on the quality difference of Cyperus rotundus before and after vinegar processing based on ultra-high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry and molecular network combined with color parameters. J Sep Sci 2023; 46:e2200990. [PMID: 36827079 DOI: 10.1002/jssc.202200990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
Cyperus rotundus is the dry rhizome of the Cyperaceae plant Cyperus. Although there are two types of processed products in clinics, their quality differences are not clear, and the identification methods are more complex. In this study, the chemical composition of different processed products of Cyperus rotundus was characterized using ultra-high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry and molecular network analysis, to identify the potential chemical markers and to establish a quick and simple color-based discrimination method. Among the 65 compounds analyzed, 12 showed significant differences. Observing the color, the surface brightness (L*) of Cyperus rotundus decreased after vinegar processing, while red (a*) and yellow (b*) values increased. These color values correlated significantly with chemical compositions. Finally, a color discriminant function was established and verified for raw Cyperus rotundus and vinegar-processing Cyperus rotundus. Based on this study, Cyperus rotundus' quality can be effectively controlled and provides a method for the comprehensive characterization of chemical components and chemical markers of other traditional Chinese medicine and processed products, as well as new ideas and methods in identification and quality evaluation.
Collapse
Affiliation(s)
- Yabo Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Xi Mei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Mingxuan Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
4
|
El-Wakil ES, Shaker S, Aboushousha T, Abdel-Hameed ESS, Osman EEA. In vitro and in vivo anthelmintic and chemical studies of Cyperus rotundus L. extracts. BMC Complement Med Ther 2023; 23:15. [PMID: 36658562 PMCID: PMC9850539 DOI: 10.1186/s12906-023-03839-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Trichinellosis, a zoonosis caused by the genus Trichinella, is a widespread foodborne disease. Albendazole, one of the benzimidazole derivatives, is used for treating human trichinellosis, but with limited efficacy in killing the encysted larvae and numerous adverse effects. Cyperus rotundus L. is a herbal plant with a wide range of medicinal uses, including antiparasitic, and is frequently used in traditional medicine to treat various illnesses. METHODS LC-ESI-MS was used to identify the active phytoconstituents in the methanol extract (MeOH ext.) of the aerial parts of C. rotundus and its derivate fractions ethyl acetate (EtOAc fr.), petroleum ether (pet-ether fr.), and normal butanol (n-BuOH fr.). The in vivo therapeutic effects of C. rotundus fractions of the extracts were evaluated using the fraction that showed the most promising effect after detecting their in vitro anti-Trichinella spiralis potential. RESULTS C. rotundus extracts are rich in different phytochemicals, and the LC-ESI-MS of the 90% methanol extract identified 26 phenolic compounds classified as phenolic acids, flavonoids, and organic acids. The in vitro studies showed that C. rotundus extracts had a lethal effect on T. spiralis adults, and the LC50 were 156.12 µg/ml, 294.67 µg/ml, 82.09 µg/ml, and 73.16 µg/ml in 90% MeOH ext., EtOAc fr., pet-ether fr. and n-BuOH fr., respectively. The n-BuOH fr. was shown to have the most promising effects in the in vitro studies, which was confirmed by scanning electron microscopy. The in vivo effects of n-BuOH fr. alone and in combination with albendazole using a mouse model were evaluated by counting adults in the small intestine and larvae in the muscles, in addition to the histopathological changes in the small intestine and the muscles. In the treated groups, there was a significant decrease in the number of adults and larvae compared to the control group. Histopathologically, treated groups showed a remarkable improvement in the small intestine and muscle changes. Remarkably, maximal therapeutic effects were detected in the combination therapy compared to each monotherapy. CONCLUSION Accordingly, C. rotundus extracts may have anti-T. spiralis potential, particularly when combined with albendazole, and they may be used as synergistic to anti-T. spiralis medication therapy.
Collapse
Affiliation(s)
- Eman S. El-Wakil
- grid.420091.e0000 0001 0165 571XDepartment of Parasitology, Theodor Bilharz Research Institute, Kornaish El-Nile St, 12411 Giza, Egypt
| | - Shimaa Shaker
- grid.420091.e0000 0001 0165 571XDepartment of Parasitology, Theodor Bilharz Research Institute, Kornaish El-Nile St, 12411 Giza, Egypt
| | - Tarek Aboushousha
- grid.420091.e0000 0001 0165 571XDepartment of Pathology, Theodor Bilharz Research Institute, Kornaish El-Nile St, 12411 Giza, Egypt
| | - El-Sayed S. Abdel-Hameed
- grid.420091.e0000 0001 0165 571XDepartment of Medicinal Chemistry, Theodor Bilharz Research Institute, Kornaish El-Nile St, 12411 Giza, Egypt
| | - Ezzat E. A. Osman
- grid.420091.e0000 0001 0165 571XDepartment of Medicinal Chemistry, Theodor Bilharz Research Institute, Kornaish El-Nile St, 12411 Giza, Egypt
| |
Collapse
|
5
|
Lu J, Li W, Gao T, Wang S, Fu C, Wang S. The association study of chemical compositions and their pharmacological effects of Cyperi Rhizoma (Xiangfu), a potential traditional Chinese medicine for treating depression. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114962. [PMID: 34968659 DOI: 10.1016/j.jep.2021.114962] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/13/2021] [Accepted: 12/26/2021] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cyperi Rhizoma (CR) derives from the rhizome or tuber of Cyperus rotundus L. of Cyperaceae. It is an herbal medicine which has been widely used in different healthcare systems like in China, India, Iran, and Japan. In Chinese medicine, CR could promote the flow of Qi in the Liver and Sanjiao channels, regulate menstruation and alleviate pain. Clinically, CR is used for depression, flatulence, hypochondriac pain, and dysmenorrhea. Thus, it has a long history and significant curative effect for the treatment of various Qi stagnation symptoms. AIM OF THIS REVIEW This review focuses on explaining the major antidepressant mechanisms of CR, and assessing the shortcomings of existing work. Besides, clinical applications, pharmacological effects and their corresponding chemical compositions and quality control of CR have been researched. MATERIALS AND METHODS The search terms "Cyperus rotundus L." was used to obtain the literatures from electronic databases such as Web of Science, ScienceDirect, PubMed, and China National Knowledge Infrastructure (CNKI). The information provided in this review to illustrate material basis of CR were only limited to papers which reported on the chemical compositions and pharmacological effects simultaneously. RESULT The study showed that CR has significant application in Qi stagnation, like depressed liver, stomach, and bowel disorders, etc. in different countries or districts. Aqueous extract, EtOH extract, essential oil, total oligomeric flavonoids and five other extracts were effective constituents displaying pharmacological activities such as antibacterial, antioxidant, neuroprotective, antihemolytic, and anti-inflammatory effect. 41 kinds of specific components like α-cyperone, nootkatone exhibited corresponding pharmacological activities mentioned above. Different concentrations of ethanol extract, essential oil, decoction of CR and monomer composition like α-cyperone, rotunduside G had anti-depressant effects. CONCLUSIONS In the present study, we have provided scientific information and research developments on traditional uses, phytochemical compositions and corresponding pharmacological activities, and quality control status on CR. The antidepression effect and its corresponding chemical compositions were generalized separately. The pharmacological activities studies should be more focused on the reflection of traditional clinical values. CR could be a significant potential herbal medicine to develop antidepressant drugs with lower side effects.
Collapse
Affiliation(s)
- Junrong Lu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, Sichuan, China; West China School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Wenbing Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Institute of Qinghai-Tibetan plateau, Southwest Minzu University, Chengdu, 610225, Sichuan, China.
| | - Tianhui Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, Sichuan, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, SAR, China.
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, Sichuan, China.
| | - Shu Wang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Lima Bezerra JJ, Saturnino de Oliveira JR, Lúcia de Menezes Lima V, Vanusa da Silva M, Cavalcante de Araújo DR, Morais de Oliveira AF. Evaluation of the anti-inflammatory, antipyretic and antinociceptive activities of the hydroalcoholic extract of Rhynchospora nervosa (Vahl) Boeckeler (Cyperaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114811. [PMID: 34763042 DOI: 10.1016/j.jep.2021.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhynchospora nervosa (Vahl) Boeckeler (Cyperaceae), popularly known as "capim-estrela", is a native species widely distributed in Brazil. The whole plant has been used in local traditional medicine in the form of teas or syrups to treat inflammation, flu, nasal congestion, fever, swelling, and venereal disease. This is the first study to investigate the pharmacological properties of this species. AIM OF THE STUDY The present study aimed to evaluate the in vivo anti-inflammatory, antipyretic and antinociceptive potential of the lyophilized hydroalcoholic extract of R. nervosa in heterogenic Swiss mice. In addition to pharmacological studies, the total phenol and flavonoid contents of the extract were determined. MATERIAL AND METHODS The anti-inflammatory effect was evaluated through carrageenan-induced paw edema and peritonitis models. For the antinociceptive assay, the number of acetic acid-induced writhing responses in the animals was counted. Antipyretic activity was tested by yeast-induced pyrexia in mice and evaluated for 4 h. Nitric oxide (NO) concentration and leukocyte migration in the peritoneal fluid were quantified. The acute toxicity of the extract was also calculated. Quantitative analyses of total phenols and flavonoids in the extract were performed by spectrophotometric methods. RESULTS In short, the lyophilized hydroalcoholic extract of R. nervosa showed low acute toxicity in the preclinical tests (LD50 = 3807 mg/kg). A significant anti-inflammatory effect was observed, with an average reduction of carrageenan-induced paw edema of 96.37%. Comparatively, indomethacin inhibited the development of the carrageenin paw edema by 97.52%. In the peritonitis test, a significant reduction in NO levels was recorded. A reduction in the number of white cells, notably monocytes, was also observed, confirming the anti-inflammatory effect. Writhing was reduced by 86.53%, which indicates antinociceptive activity. As for antipyretic activity, no positive effects of the extract were observed. The lyophilized hydroalcoholic extract of R. nervosa presented a high content of phenolic compounds (322.47 μg GAE/mg) and total flavonoids (440.50 μg QE/mg). CONCLUSION The lyophilized hydroalcoholic extract of R. nervosa showed significant in vivo anti-inflammatory and antinociceptive activity in mice. These preliminary findings support the indication of the use of this species in folk medicine in Brazil for the treatment of inflammation.
Collapse
Affiliation(s)
- José Jailson Lima Bezerra
- Universidade Federal de Pernambuco, Departamento de Botânica, Av. da Engenharia, S/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | | | - Vera Lúcia de Menezes Lima
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Av. da Engenharia, S/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | - Márcia Vanusa da Silva
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Av. da Engenharia, S/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | | | | |
Collapse
|
7
|
Taheri Y, Herrera-Bravo J, Huala L, Salazar LA, Sharifi-Rad J, Akram M, Shahzad K, Melgar-Lalanne G, Baghalpour N, Tamimi K, Mahroo-Bakhtiyari J, Kregiel D, Dey A, Kumar M, Suleria HAR, Cruz-Martins N, Cho WC. Cyperus spp.: A Review on Phytochemical Composition, Biological Activity, and Health-Promoting Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4014867. [PMID: 34539969 PMCID: PMC8443348 DOI: 10.1155/2021/4014867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Cyperaceae are a plant family of grass-like monocots, comprising 5600 species with a cosmopolitan distribution in temperate and tropical regions. Phytochemically, Cyperus is one of the most promising health supplementing genera of the Cyperaceae family, housing ≈950 species, with Cyperus rotundus L. being the most reported species in pharmacological studies. The traditional uses of Cyperus spp. have been reported against various diseases, viz., gastrointestinal and respiratory affections, blood disorders, menstrual irregularities, and inflammatory diseases. Cyperus spp. are known to contain a plethora of bioactive compounds such as α-cyperone, α-corymbolol, α-pinene, caryophyllene oxide, cyperotundone, germacrene D, mustakone, and zierone, which impart pharmacological properties to its extract. Therefore, Cyperus sp. extracts were preclinically studied and reported to possess antioxidant, anti-inflammatory, antimicrobial, anticancer, neuroprotective, antidepressive, antiarthritic, antiobesity, vasodilator, spasmolytic, bronchodilator, and estrogenic biofunctionalities. Nonetheless, conclusive evidence is still sparse regarding its clinical applications on human diseases. Further studies focused on toxicity data and risk assessment are needed to elucidate its safe and effective application. Moreover, detailed structure-activity studies also need time to explore the candidature of Cyperus-derived phytochemicals as upcoming drugs in pharmaceuticals.
Collapse
Affiliation(s)
- Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis Huala
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Khuram Shahzad
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Guiomar Melgar-Lalanne
- Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n. Col Industrial Ánimas, 91192 Xalapa, Veracruz, Mexico
| | - Navid Baghalpour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Katayoun Tamimi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Mahroo-Bakhtiyari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dorota Kregiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | | | - Natália Cruz-Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
8
|
Miski M. Next Chapter in the Legend of Silphion: Preliminary Morphological, Chemical, Biological and Pharmacological Evaluations, Initial Conservation Studies, and Reassessment of the Regional Extinction Event. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10010102. [PMID: 33418989 PMCID: PMC7825337 DOI: 10.3390/plants10010102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 05/04/2023]
Abstract
Silphion was an ancient medicinal gum-resin; most likely obtained from a Ferula species growing in the Cyrene region of Libya ca. 2500 years ago. Due to its therapeutic properties and culinary value, silphion became the main economic commodity of the Cyrene region. It is generally believed that the source of silphion became extinct in the first century AD. However, there are a few references in the literature about the cultivated silphion plant and its existence up to the fifth century. Recently, a rare and endemic Ferula species that produces a pleasant-smelling gum-resin was found in three locations near formerly Greek villages in Anatolia. Morphologic features of this species closely resemble silphion, as it appears in the numismatic figures of antique Cyrenaic coins, and conform to descriptions by ancient authors. Initial chemical and pharmacological investigations of this species have confirmed the medicinal and spice-like quality of its gum-resin supporting a connection with the long-lost silphion. A preliminary conservation study has been initiated at the growth site of this rare endemic Ferula species. The results of this study and their implications on the regional extinction event, and future development of this species will be discussed.
Collapse
Affiliation(s)
- Mahmut Miski
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey
| |
Collapse
|
9
|
Babiaka SB, Moumbock AFA, Günther S, Ntie-Kang F. Natural products in Cyperus rotundus L. (Cyperaceae): an update of the chemistry and pharmacological activities. RSC Adv 2021. [DOI: 10.1039/d1ra00478f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cyperus rotundus L. (Nutgrass, family Cyperaceae) is a notorious weed which is widespread in temperate tropical and subtropical regions of the world.
Collapse
Affiliation(s)
| | - Aurélien F. A. Moumbock
- Institute of Pharmaceutical Sciences
- Albert-Ludwigs-Universitӓt Freiburg
- D-79104 Freiburg
- Germany
| | - Stefan Günther
- Institute of Pharmaceutical Sciences
- Albert-Ludwigs-Universitӓt Freiburg
- D-79104 Freiburg
- Germany
| | - Fidele Ntie-Kang
- Department of Chemistry
- University of Buea
- Buea
- Cameroon
- Institute of Pharmacy
| |
Collapse
|