1
|
Islam Shawon S, Nargis Reyda R, Qais N. Medicinal herbs and their metabolites with biological potential to protect and combat liver toxicity and its disorders: A review. Heliyon 2024; 10:e25340. [PMID: 38356556 PMCID: PMC10864916 DOI: 10.1016/j.heliyon.2024.e25340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
The liver is an essential organ that helps the body with immunity, metabolism, and detoxification, among other functions. Worldwide, liver illnesses are a leading cause of mortality and disability. There are few effective treatment choices, but they frequently have unfavorable side effects. Investigating the potential of medicinal plants and their bioactive phytoconstituents in the prevention and treatment of liver disorders has gained more attention in recent years. An assessment of the hepatoprotective potential of medicinal plants and their bioactive secondary metabolites is the goal of this thorough review paper. To determine their hepatoprotective activity, these plants were tested against liver toxicity artificially induced in rats, mice and rabbits by chemical agents such as carbon tetrachloride (CCl4), paracetamol (PCM), thioacetamide (TAA), N-nitrosodiethylamine, d-galactosamine/lipopolysaccharide, antitubercular medicines (rifampin, isoniazid) and alcohol. To find pertinent research publications published between 1989 and 2022, a comprehensive search of electronic bibliographic databases (including Web of Science, SpringerLink, ScienceDirect, Google Scholar, PubMed, Scopus, and others) was carried out. The investigation comprised 203 plant species from 81 families in total. A thorough discussion was mentioned regarding the hepatoprotective qualities of plants belonging to several families, such as Fabaceae, Asteraceae, Lamiaceae, and Euphorbiaceae. The plant groups Asteraceae and Fabaceae were the most frequently shown to have hepatoprotective properties. The phytochemical constituents namely flavonoids, phenolic compounds, and alkaloids exhibited the highest frequency of hepatoprotective action. Also, some possible mechanism of action of some active constituents from medicinal plants was discussed in brief which were found in some studies. In summary, the information on medicinal plants and their potentially hepatoprotective bioactive phytoconstituents has been consolidated in this review which emphasizes the importance of further research to explore the efficacy and safety of these natural remedies for various liver ailments.
Collapse
Affiliation(s)
- Shahparan Islam Shawon
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rashmia Nargis Reyda
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nazmul Qais
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
2
|
Santonocito D, Delli Carri M, Campisi A, Sposito G, Pellitteri R, Raciti G, Cardullo N, Aquino G, Basilicata MG, Pepe G, Pignatello R, Puglia C. Steroidal Alkaloids from Food Waste of Tomato Processing Inhibit Neuroblastoma Cell Viability. Int J Mol Sci 2023; 24:16915. [PMID: 38069237 PMCID: PMC10706926 DOI: 10.3390/ijms242316915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Nowadays, there is considerable attention toward the use of food waste from food processing as possible sources of compounds with health properties, such as anticancer activity. An example is tomato processing, which is responsible for generating a remarkable amount of waste (leaves, peel, seeds). Therefore, our goal was to evaluate the potential anticancer property of tomato extracts, in particular "Datterino" tomato (DT) and "Piccadilly" tomato (PT), and to study their phytochemical composition. Liquid chromatography with tandem mass spectrometry (LC/MS-MS) results showed that these extracts are rich in alkaloids, flavonoids, fatty acids, lipids, and terpenes. Furthermore, their potential anticancer activity was evaluated in vitro by MTT assay. In particular, the percentage of cell viability was assessed in olfactory ensheathing cells (OECs), a particular glial cell type of the olfactory system, and in SH-SY5Y, a neuroblastoma cell line. All extracts (aqueous and ethanolic) did not lead to any significant change in the percentage of cell viability on OECs when compared with the control. Instead, in SH-SY5Y we observed a significant decrease in the percentage of cell viability, confirming their potential anticancer activity; this was more evident for the ethanolic extracts. In conclusion, tomato leaves extracts could be regarded as a valuable source of bioactive compounds, suitable for various applications in the food, nutraceutical, and pharmaceutical fields.
Collapse
Affiliation(s)
- Debora Santonocito
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (R.P.); (C.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Matteo Delli Carri
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.D.C.); (G.A.); (M.G.B.); (G.P.)
| | - Agatina Campisi
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (R.P.); (C.P.)
| | - Giovanni Sposito
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (R.P.); (C.P.)
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Giuseppina Raciti
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (R.P.); (C.P.)
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Giovanna Aquino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.D.C.); (G.A.); (M.G.B.); (G.P.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy
| | | | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.D.C.); (G.A.); (M.G.B.); (G.P.)
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (R.P.); (C.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Carmelo Puglia
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (A.C.); (G.S.); (R.P.); (C.P.)
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| |
Collapse
|
3
|
de Souza GR, De-Oliveira ACAX, Soares V, De-Souza TP, Barbi NS, Paumgartten FJR, da Silva AJR. Protective effects of a chemically characterized extract from solanum torvum leaves on acetaminophen-induced liver injury. Drug Chem Toxicol 2023; 46:122-135. [PMID: 35105269 DOI: 10.1080/01480545.2021.2012905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Distinct parts of Solanum torvum Swartz. (Solanaceae) are popularly used for a variety of therapeutic purposes. This study determined the phytochemical composition of a phenolic fraction of S. torvum leaf aqueous extract and investigated its antioxidant and liver-protective properties. A phenolic compound-enriched fraction, or phenolic fraction (STLAE-PF) of an infusion (STLAE) of S. torvum leaves, was tested in vitro (antagonism of H2O2 in cytotoxicity and DCF assays with HepG2/C3A cells), and in vivo for antioxidant activity and protective effects against acetaminophen (APAP)-induced liver injury in mice. Thirty-eight compounds (flavonoids, esters of hydroxycinnamic acid, and chlorogenic acid isomers) were tentatively identified (high-performance liquid chromatography coupled to high-resolution electrospray mass spectrometry) in the STLAE-PF fraction. In vitro assays in HepG2/C3A cells showed that STLAE-PF and some flavonoids contained in this phenolic fraction, at noncytotoxic levels, antagonized in a concentration-dependent manner the effects of a powerful oxidant agent (H2O2). In C57BL/6 mice, oral administration of STLAE (600 and 1,200 mg/kg bw) or STLAE-PF (300 mg/kg bw) prevented the rise in serum transaminases (ALT and AST), depletion of reduced glutathione (GSH) and elevation of thiobarbituric acid reactive species (TBARs) levels in the liver caused by APAP (600 mg/kg bw, i.p.). The hepatoprotective effects of STLAE-PF (300 mg/kg bw) against APAP-caused liver injury were comparable to those of N-acetyl-cysteine (NAC 300 or 600 mg/kg bw i.p.). These findings indicate that a phenolic fraction of S. torvum leaf extract (STLAE-PF) is a new phytotherapeutic agent potentially useful for preventing/treating liver injury caused by APAP overdosing.
Collapse
Affiliation(s)
- Gabriela R de Souza
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro
| | - Ana Cecilia A X De-Oliveira
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro
| | - Vitor Soares
- Institute for Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thamyris Perez De-Souza
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro
| | - Nancy S Barbi
- Department of Clinical and Toxicological Analyses, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco J R Paumgartten
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro
| | - Antonio J R da Silva
- Institute for Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Garcia-Manieri JAA, Correa VG, Backes E, de Sá-Nakanishi AB, Bracht L, Comar JF, Corrêa RCG, Peralta RM, Bracht A. A Critical Appraisal of the Most Recent Investigations on the Hepatoprotective Action of Brazilian Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3481. [PMID: 36559593 PMCID: PMC9785989 DOI: 10.3390/plants11243481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Conventional treatments for liver diseases are often burdened by side effects caused by chemicals. For minimizing this problem, the search for medicines based on natural products has increased. The objective of this review was to collect data on the potential hepatoprotective activity of plants of the Brazilian native flora. Special attention was given to the modes of extraction, activity indicators, and identification of the active compounds. The databases were Science direct, Pubmed, and Google Academic. Inclusion criteria were: (a) plants native to Brazil; (b) studies carried out during the last 15 years; (c) high-quality research. A fair number of communications met these criteria. Various parts of plants can be used, e.g., fruit peels, seeds, stem barks, and leaves. An outstanding characteristic of the active extracts is that they were mostly obtained from plant parts with low commercial potential, i.e., by-products or bio-residues. The hepatoprotective activities are exerted by constituents such as flavonoids, phenolic acids, vitamin C, phytosterols, and fructose poly- and oligosaccharides. Several Brazilian plants present excellent perspectives for the obtainment of hepatoprotective formulations. Very important is the economical perspective for the rural producers which may eventually increase their revenue by selling increasingly valued raw materials which otherwise would be wasted.
Collapse
Affiliation(s)
| | - Vanesa Gesser Correa
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Emanueli Backes
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | | | - Lívia Bracht
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | | | - Rúbia Carvalho Gomes Corrêa
- Programa de Pós-Graduação em Tecnologias Limpas, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Universidade Cesumar—UNICESUMAR, Maringá 87050-900, Brazil
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rosane Marina Peralta
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Adelar Bracht
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| |
Collapse
|
5
|
Antunes C, Arbo MD, Konrath EL. Hepatoprotective Native Plants Documented in Brazilian Traditional Medicine Literature: Current Knowledge and Prospects. Chem Biodivers 2022; 19:e202100933. [PMID: 35421282 DOI: 10.1002/cbdv.202100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/14/2022] [Indexed: 11/11/2022]
Abstract
The native flora of Brazil covers a large biodiversity of plants, some of which have important pharmacological properties. Ethnobotanical studies have established that the folk use of plants for hepatobiliary disorders is very common in Brazil. This review aimed to compile, describe and discuss the main native Brazilian medicinal plants used as hepatoprotective agents listed on 25 books by authors from various regions in the country. Based on the 153 species found, a comprehensive analysis of the most relevant scientific studies is presented, including Piper umbellatum, Echinodorus macrophyllus, Fevillea trilobata and Achyrocline satureioides. Some medicinal plants share both a large number of citations and scientific evidence to corroborate their hepatoprotective effects, including Solanum paniculatum, Baccharis crispa and Phyllanthus niruri, which could be of interest to develop new phytomedicines. Additionally, some active ingredients are indicated as being responsible for the liver protective effects described, particularly phenolic compounds (flavonoids, coumestans and lignans).
Collapse
Affiliation(s)
- Carolina Antunes
- Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), 90610-000, Porto Alegre-RS, Brazil
| | - Marcelo Dutra Arbo
- Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), 90610-000, Porto Alegre-RS, Brazil
| | - Eduardo Luis Konrath
- Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), 90610-000, Porto Alegre-RS, Brazil
| |
Collapse
|
6
|
Mugaranja KP, Kulal A. Investigation of effective natural inhibitors for starch hydrolysing enzymes from Simaroubaceae plants by molecular docking analysis and comparison with in-vitro studies. Heliyon 2022; 8:e09360. [PMID: 35600433 PMCID: PMC9118686 DOI: 10.1016/j.heliyon.2022.e09360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/22/2021] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
The present study aims to find the effective natural enzyme inhibitors against alpha-amylase and alpha-glucosidase from the array of compounds identified in plants of the Simaroubaceae family using molecular docking and ADME/Toxicity studies. Among the 218 compounds docked against seven enzymes, buddlenol-A and citrusin-B showed the best binding energies (kcal/mol) of -7.830 and -7.383 against human salivary alpha-amylase and pancreatic alpha-amylase respectively. The other two compounds 9-hydroxycanthin-6-one and bruceolline-B had the best binding energy of -6.461 and -7.576 against N-terminal and C-terminal maltase glucoamylase respectively. Whereas the binding energy of prosopine (-6.499) and fisetinidol (-7.575) was considered as the best against N-terminal and C-terminal sucrase-isomaltase respectively. Picrasidine-X showed the best binding energy (-7.592) against yeast alpha-glucosidase. The study revealed that the seven compounds which showed the best binding energy against respective enzymes are considered as the 'lead hit compounds'. Even though the 'lead hit compounds' are not obeying all the laws of ADMET, the drug-likeness properties of 9-hydroxycanthin-6-one, fisetinidol, picrasidine-X, and prosopine were considerable. Also, kaempferol-3-O-pentoside was the recent compound identified from the Simarouba glauca plant extract found to be one among the top five lead hit compounds against four enzymes. This study provides valuable insight into the direction of developing natural compounds as potential starch hydrolysing enzyme inhibitors for managing type 2 diabetes.
Collapse
Affiliation(s)
- Kirana P. Mugaranja
- Biological Sciences Division, Poornaprajna Institute of Scientific Research, Bidalur Post, Devanahalli, Bangalore Rural, 562110, India
- Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ananda Kulal
- Biological Sciences Division, Poornaprajna Institute of Scientific Research, Bidalur Post, Devanahalli, Bangalore Rural, 562110, India
| |
Collapse
|
7
|
Xiang J, Wang J, Xie H, Liu Y, Bai Y, Che Q, Cao H, Huang G, Guo J, Su Z. Protective effect and mechanism of chitooligosaccharides on acetaminophen-induced liver injury. Food Funct 2021; 12:9979-9993. [PMID: 34494629 DOI: 10.1039/d1fo00953b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Currently, drug-induced liver injury caused by acetaminophen (APAP) is the second leading cause of human liver transplantation. The only clinical antidote treatment for APAP-induced liver injury is N-acetyl-L-cysteine (NAC), which has many side effects. Chitooligosaccharides (COS) are processed from naturally occurring chitin through chemical desalting and deproteinization, biological enzymatic hydrolysis and other processes. In this study, we constructed in vitro and in vivo models of APAP-induced liver injury to study COS of two molecular weights (MWs), which are COST (MW ≤ 1000 Da) and COSM (MW ≤ 3000 Da). The results showed that COST and COSM can significantly reduce the levels of serum ALT and AST and liver MDA, TNF-α, IL-1β and IL-6, and increase the levels and activity of GSH, SOD, GSH-Px and CAT. A mechanistic study found that COST and COSM can significantly reduce the expression of liver CYP2E1, Keap1, p-ASK1/ASK1, p-MKK4/MKK4, p-JNK/JNK, Caspase-3 and Bax and increase the expression of Nrf2, HO-1, eNOS, SOD and Bcl-XL. COST and COSM can inhibit toxic APAP metabolism, inhibit oxidative damage and the apoptosis pathway, increase activation of the liver antioxidant pathway, and ultimately ameliorate APAP-induced liver oxidative damage.
Collapse
Affiliation(s)
- Junwei Xiang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jin Wang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yongjian Liu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Guangzhou 510663, China
| | - Hua Cao
- Guangdong Cosmetics Engineering & Technology Research Center, School of Chemistry and Chemical Engneering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guidong Huang
- Department of Pharmacy, Affiliated Hospital of Guilin Medical University, 15#, Lequn Road, Guilin, Guangxi Zhuang Autonomous Region, 541001, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Rengasamy KRR, Mahomoodally MF, Joaheer T, Zhang Y. A Systematic Review of Traditionally Used Herbs and Animal-Derived Products as Potential Analgesics. Curr Neuropharmacol 2021; 19:553-588. [PMID: 32781962 PMCID: PMC8206464 DOI: 10.2174/1570159x18666200808151522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/10/2020] [Accepted: 06/21/2020] [Indexed: 11/25/2022] Open
Abstract
Pain is a distressing but fundamental manifestation that prepares the body for potentially detrimental stimuli while ensuring its protection. Plant and animal products have traditionally been used to relieve pain for centuries. However, no attempt has been made to compile a single report of plant and animal products possessing analgesic properties. This review enadeavours to recover data from published articles to establish a collective literature review on folk remedies from plant and animal sources used as analgesics and in the treatment of pain-related conditions, identifying gaps in existing knowledge and future works. Relevant information was systematically retrieved using the PRISMA method. In this review, in total, 209 plants were found to be either used raw or prepared by decoctions or maceration. Administration was either oral or topical, and they were predominantly used in Asian countries. In vivo studies of plants with analgesic properties, which were tested using different methods including acetic-induced writhing test, hotplate test, tail-flick test, and formalin-induced pain test, were compiled. Animal products with analgesic properties were obtained mainly from compounds present in venom; their bioactive compounds were also identified. In the literature search, certain gaps were noted, which could be reviewed in future studies. For instance, there was a disparity of information regarding the traditional uses of medicinal plants. In this review, an attempt was made to critically assess and describe the pharmacological properties and bioactive composition of indigenous plants, some animal species, and animal venom by scrutinizing databases and looking for published articles. Therefore, it can be concluded that the compounds obtained from these sources can serve as important ingredients in therapeutic agents to alleviate pain once their limitations are assessed and improved upon. In the literature search, certain gaps were noted, which could be reviewed in future studies.
Collapse
Affiliation(s)
- Kannan R R Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.,Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam,Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, North West Province, South Africa
| | - Mohamad Fawzi Mahomoodally
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Teshika Joaheer
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
9
|
Balkrishna A, Sakat SS, Ranjan R, Joshi K, Shukla S, Joshi K, Verma S, Gupta A, Bhattacharya K, Varshney A. Polyherbal Medicine Divya Sarva-Kalp-Kwath Ameliorates Persistent Carbon Tetrachloride Induced Biochemical and Pathological Liver Impairments in Wistar Rats and in HepG2 Cells. Front Pharmacol 2020; 11:288. [PMID: 32269524 PMCID: PMC7109321 DOI: 10.3389/fphar.2020.00288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Divya Sarva-Kalp-Kwath (SKK) is a poly-herbal ayurvedic medicine formulated using plant extracts of Boerhavia diffusa L. (Nyctaginaceae), Phyllanthus niruri L. (Euphorbiaceae), and Solanum nigrum L. (Solanaceae), described to improve liver function and general health. In the present study, we have explored the hepatoprotective effects of SKK in ameliorating carbon tetrachloride (CCl4) induced liver toxicity using in-vitro and in-vivo test systems. Chemical analysis of SKK using Liquid Chromatography-Mass Spectroscopy (LC-MS-QToF) and High-Performance Liquid Chromatography (HPLC) revealed the presence of different bioactive plant metabolites, known to impart hepatoprotective effects. In human hepatocarcinoma (HepG2) cells, co-treatment of SKK with CCl4 effectively reduced the hepatotoxicity induced by the latter. These effects were confirmed by studying parameters such as loss of cell viability; release of hepatic injury enzymatic biomarkers- aspartate aminotransferase (AST), and alkaline phosphatase (ALP); and changes in reactive oxygen species and in mitochondrial membrane potentials. In-vivo safety analysis in Wistar rats showed no loss in animal body weight, or change in feeding habits after repeated oral dosing of SKK up to 1,000 mg/kg/day for 28 days. Also, no injury-related histopathological changes were observed in the animal's blood, liver, kidney, heart, brain, and lung. Pharmacologically, SKK played a significant role in modulating CCl4 induced hepatic injuries in the Wistar rats at a higher dose. In the 9 weeks' study, SKK (200 mg/kg) reduced the CCl4 stimulated increase in the release of enzymes (ALT, AST, and ALP), bilirubin, total cholesterol, and uric acid levels in the Wistar rats. It also reduced the CCl4 stimulated inflammatory lesions such as liver fibrosis, lymphocytic infiltration, and hyper-plasticity. In conclusion, SKK showed pharmacological effects in improving the CCl4 stimulated liver injuries in HepG2 cells and in Wistar rats. Furthermore, no adverse effects were observed up to 10× higher human equivalent dose of SKK during 28-days repeated dose exposure in Wistar rats. Based on the literature search on the identified plant metabolites, SKK was found to act in multiple ways to ameliorate CCl4 induced hepatotoxicity. Therefore, polyherbal SKK medicine has shown remarkable potentials as a possible alternative therapeutics for reducing liver toxicity induced by drugs, and other toxins.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India.,Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, India
| | - Sachin Shridhar Sakat
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Ravikant Ranjan
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Kheemraj Joshi
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Sunil Shukla
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Kamal Joshi
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Sudeep Verma
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Abhishek Gupta
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India.,Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, India
| |
Collapse
|
10
|
Petreanu M, Maia P, da Rocha Pittarello JL, Loch LC, Monache FD, Perez AL, Solano-Arias G, Filho VC, de Souza MM, Niero R. Antidepressant-like effect and toxicological parameters of extract and withanolides isolated from aerial parts of Solanum capsicoides All. (Solanaceae). Naunyn Schmiedebergs Arch Pharmacol 2019; 392:979-990. [PMID: 30982080 DOI: 10.1007/s00210-019-01648-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/22/2019] [Indexed: 11/28/2022]
Abstract
The present work describes the evaluation of the antidepressant-like activity of the extract, fractions, and compounds obtained from the aerial parts of Solanum capsicoides. The methanolic extract (MESC) obtained by conventional maceration was partitioned with solvents of increasing polarities yielding the respective fractions of hexane (HE), dichloromethane (DCM), and ethyl acetate (EA). The dichloromethane and ethyl acetate fractions were submitted to chromatographic and spectroscopic techniques, leading to the isolation and identification of cilistadiol (1), astragalin (2), and cilistol A (3). In relation to the antidepressant activity, the extract was active against the forced swimming test (FST) at a concentration of 300 mg/kg an ED50 (deffective dose that reduces 50% of immobility time) of 120.3 (117.3-123.4) mg/kg. Similar values were observed when evaluated in the tail suspension test (TST). In addition, the results showed no influence on motor behavior when evaluated in the open field test (OFT). Based on the observed profile of the MESC, dichloromethane fraction presenting the best profile, in both FST and TST test. Likewise, the fraction also did not present motor impairment when evaluated by the OFT test. Considering that the dichloromethane fraction was more effective, the isolated compounds cilistadiol and cilistol A were evaluated in the same experimental models. In FST, both compounds had a significant antidepressant-like effect, with ED50 values of 0.22 (0.16-0.28) and 1.03 (0.89-1.18) μmol/kg, respectively. When evaluated in the TST, showed ED50 values of 0.30 (0.18-0.52) and 1.49 (1.27-1.73) μmol/kg, respectively. The isolated compounds also did not present significant differences in the motor behavior when evaluated on OFT test in comparison with the control group. No toxicological parameters were observed until the highest dose of MESC (2000 mg/kg), demonstrating safety in the use of this plant.
Collapse
Affiliation(s)
- Marcel Petreanu
- Programa de Pós-Graduação em Ciências Farmacêuticas and Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Rua Uruguai, 458, Itajaí, Santa Catarina, 88303-901, Brazil
| | - Paula Maia
- Programa de Pós-Graduação em Ciências Farmacêuticas and Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Rua Uruguai, 458, Itajaí, Santa Catarina, 88303-901, Brazil
| | - Janieire L da Rocha Pittarello
- Programa de Pós-Graduação em Ciências Farmacêuticas and Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Rua Uruguai, 458, Itajaí, Santa Catarina, 88303-901, Brazil
| | - Lucimara C Loch
- Programa de Pós-Graduação em Ciências Farmacêuticas and Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Rua Uruguai, 458, Itajaí, Santa Catarina, 88303-901, Brazil
| | - Franco Delle Monache
- Programa de Pós-Graduação em Ciências Farmacêuticas and Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Rua Uruguai, 458, Itajaí, Santa Catarina, 88303-901, Brazil
| | - Alice L Perez
- Centro de Investigación en Productos Naturales (CIPRONA), Universidad de Costa Rica (UCR), San José, Costa Rica
| | - Godofredo Solano-Arias
- Centro de Investigación en Productos Naturales (CIPRONA), Universidad de Costa Rica (UCR), San José, Costa Rica
| | - Valdir Cechinel Filho
- Programa de Pós-Graduação em Ciências Farmacêuticas and Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Rua Uruguai, 458, Itajaí, Santa Catarina, 88303-901, Brazil
| | - Márcia Maria de Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas and Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Rua Uruguai, 458, Itajaí, Santa Catarina, 88303-901, Brazil
| | - Rivaldo Niero
- Programa de Pós-Graduação em Ciências Farmacêuticas and Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Rua Uruguai, 458, Itajaí, Santa Catarina, 88303-901, Brazil.
| |
Collapse
|