Fu SX, Zuo P, Ye BC. A Novel Wick-Like Paper-Based Microfluidic Device for 3D Cell Culture and Anti-Cancer Drugs Screening.
Biotechnol J 2020;
16:e2000126. [PMID:
33460221 DOI:
10.1002/biot.202000126]
[Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/16/2020] [Indexed: 12/11/2022]
Abstract
Paper is increasingly recognized as a portable substrate for cell culture, due to its low-cost, flexible, and special porous property, which provides a native cellular 3D microenvironment. Therefore, paper-based microfluidics has been developed for cell culture and biomedical analysis. However, the inability of continuous medium supply limits the wide application of paper devices for cell culture. Herein, a paper-based microfluidic device is developed with novel folded paper strips as wick-like structure, which is used for medium self-driven perfusion. The paper with patterns of hydrophilic channel, culture areas, and hydrophobic barrier could be easily fabricated through wax-printing. After printing, the hydrophilic paper strip at the periphery of the lower layer is then folded at 90° and extended into the medium container for continuous automatic supply of medium to the cell culture area. Tumor cells cultured in the paper device are tested for anti-cancer drug screening. Visualized cell viability and chemical sensitivity testing can be achieved by colorimetry combined with simple smartphone imaging, effectively reducing precision instrument dependence. The wick paper-based microfluidic device for cell culture endows the method the advantages of lower cost, ease-of-operation, miniaturization, and shows a great potential for large-scale cell culture, antibody drug production, and efficient screening.
Collapse