1
|
Yang M, Yang Z, Huang X, Li X, Chou F, Zeng S. Formononetin alleviates thermal injury-induced skin fibroblast apoptosis and promotes cell proliferation and migration. Burns 2025; 51:107256. [PMID: 39522140 DOI: 10.1016/j.burns.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024]
Abstract
The aim of this study was to explore the effect and mechanism of formononetin (FMNT) in thermal-injured fibroblast proliferation, apoptosis, and oxidative stress. After thermal injury, human skin fibroblast (HSF) cells showed inhibited proliferation, migration, extracellular matrix (ECM) synthesis; and increased apoptosis, reactive oxygen species (ROS) production, and inflammation. Specifically, after thermal injury, cell viability, migration distance, and protein levels of collagen I, collagen III, α-SMA, MMP1, and MMP3 were reduced; cell apoptosis rate and TUNEL-positive cell numbers were increased; the levels of Bax and cleaved caspase-3 were elevated, while Bcl-2 level was reduced. Moreover, the thermally injured HSF cells showed increased levels of ROS, MDA, LDH, TNF-α, and IL-1β, and decreased GSH, SOD, GSH-Px, and CAT. FMNT levels can partially eliminate the effects of thermal injury on HSF cells, as shown by promoting thermally injured HSF cell proliferation and migration, and inhibiting cell apoptosis, ROS production, and inflammation. FMNT exerted no significant effect on normal HSF cells. Additionally, the levels of the P13K/AKT/mTOR signaling-related proteins (p-P13K, p-AKT, and p-mTOR) were reduced in thermally injured HSF cells, whereas FMNT could promote p-P13K, p-AKT, and p-mTOR levels. FMNT can partially alleviate the thermal injury-induced inhibition of fibroblast proliferation and migration; FMNT also inhibited the apoptosis, ROS level, and inflammation in thermal-injured cells. The effects of FMNT may be mediated by regulating the P13K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Meiyue Yang
- Department of Stoma Wound Clinic, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Zhibo Yang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China.
| | - Xiangjun Huang
- Department of Vascular Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Xiaoping Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Fangqin Chou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Shuiqing Zeng
- Department of Pharmacy, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| |
Collapse
|
2
|
Wang P, Wang Z, Zhang Z, Cao H, Kong L, Ma W, Ren W. A review of the botany, phytochemistry, traditional uses, pharmacology, toxicology, and quality control of the Astragalus memeranaceus. Front Pharmacol 2023; 14:1242318. [PMID: 37680711 PMCID: PMC10482111 DOI: 10.3389/fphar.2023.1242318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Astragali Radix (Huangqi) is mainly distributed in the Northern Hemisphere, South America, and Africa and rarely in North America and Oceania. It has long been used as an ethnomedicine in the Russian Federation, Mongolia, Korea, Kazakhstan, and China. It was first recorded in the Shennong Ben Cao Jing and includes the effects of reinforcing healthy qi, dispelling pathogenic factors, promoting diuresis, reducing swelling, activating blood circulation, and dredging collaterals. This review systematically summarizes the botanical characteristics, phytochemistry, traditional uses, pharmacology, and toxicology of Astragalus to explore the potential of Huangqi and expand its applications. Data were obtained from databases such as PubMed, CNKI, Wan Fang Data, Baidu Scholar, and Google Scholar. The collected material also includes classic works of Chinese herbal medicine, Chinese Pharmacopoeia, Chinese Medicine Dictionary, and PhD and Master's theses. The pharmacological effects of the isoflavone fraction in Huangqi have been studied extensively; The pharmacological effects of Huangqi isoflavone are mainly reflected in its anti-inflammatory, anti-tumor, anti-oxidant, anti-allergic, and anti-diabetic properties and its ability to treat several related diseases. Additionally, the medicinal uses, chemical composition, pharmacological activity, toxicology, and quality control of Huangqi require further elucidation. Here, we provide a comprehensive review of the botany, phytochemistry, traditional uses, pharmacology, toxicology, and quality control of Astragalus to assist future innovative research and to identify and develop new drugs involving Huangqi.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Yang C, Wang J, Chen L, Xu T, Ming R, Hu Z, Fang L, Wang X, Li Q, Sun C, Liu C, Lin N. Tongluo Shenggu capsule promotes angiogenesis to ameliorate glucocorticoid-induced femoral head necrosis via upregulating VEGF signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154629. [PMID: 36608500 DOI: 10.1016/j.phymed.2022.154629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tongluo Shenggu Capsule (TLSGC) is a product of Traditional Chinese patent medicine that has been effective in glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) clinically for many years. It is made from water extracts of a well-used herbal and dietary supplement-pigeon pea leaves. Nevertheless, the material basis and pharmacological mechanisms of TLSGC ameliorating GIONFH needed to be better defined. PURPOSE To investigate the material basis and pharmacological mechanisms of TLSGC to ameliorate GIONFH. METHODS The chemical compositions in TLSGC were characterized using the LC-MS system. Based on integrating the relevant targets of TLSGC in MedChem Studio software and GIONFH-related genes in our previous work, a "drug targets-disease genes" interaction network was constructed. The candidate targets of TLSGC ameliorating GIONFH were filtrated by topological characteristic parameters and further experimental validated based on methylprednisolone-induced rat model and dexamethasone-inhibited human umbilical vein endothelial cells (HUVECs). RESULTS A total of 33 chemical compositions were characterized in TLSGC. Based on these compositions and GIONFH-related genes, 122 hub genes were selected according to topological parameters calculation. Biological functions were mainly enriched in four over-expressed modules of vascular damage, inflammation and apoptosis, bone metabolism and energy metabolism. The hub genes had the maximum enrichment degree in the VEGF-VEGFR2-PKC-Raf1-MEK-ERK signaling axis of the VEGF pathway. Experimentally, the therapeutic effects of TLSGC against GIONFH in rats were proved by micro-CT and pathological examination. Then, the protective effects of TLSGC on vascular damage were determined using angiography, CD31 immunohistochemistry, vascular function indicators in vivo, aortic ring test ex vivo, and the HUVECs activities in vitro including migration, invasion and tube formation. Mechanically, TLSGC effectively suppressed the downregulation of VEGF and VEGFR2 and their downstream targets, including Raf-1, PKC, p-MEK, and p-ERK proteins both in vivo and in vitro. CONCLUSION TLSGC could promote angiogenesis by upregulating the VEGF-VEGFR2-PKC-Raf-1-MEK-ERK signaling axis, thereby exerting an apparent curative effect on GIONFH.
Collapse
Affiliation(s)
- Chao Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Jinxia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Lin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Tengteng Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Ruirui Ming
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Zhixing Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Luochangting Fang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Xiaoxiao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Qun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Congcong Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China.
| |
Collapse
|
4
|
Li H, Jiang R, Lou L, Jia C, Zou L, Chen M. Formononetin Improves the Survival of Random Skin Flaps Through PI3K/Akt-Mediated Nrf2 Antioxidant Defense System. Front Pharmacol 2022; 13:901498. [PMID: 35662691 PMCID: PMC9160463 DOI: 10.3389/fphar.2022.901498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Random-pattern skin flap is widely used in plastic and reconstructive surgery. However, its clinical effect is limited by ischemia necrosis occurs at the distal part of flap. Previous studies have proved that the protective effect of formononetin was associated with its antioxidant, anti-inflammatory ability. However, further research is still needed on the effect of formononetin on flap viability. The purpose of our study was to investigate the effect of formononetin on flap survival and the underlying mechanisms. Two doses (25 mg/kg, 50 mg/kg)of formononetin were administered for seven consecutive days on flap model. Flap tissues were collected on postoperative day 7. Our results revealed that formononetin promoted skin flap viability in a dose-dependent manner. Using immunohistochemical staining and western blot, we found that formononetin significantly reduced oxidative stress and inflammation. Hematoxylin and eosin (H and E) staining, laser Doppler images and immunofluorescence staining showed the enhancement of angiogenesis after formononetin treatment. Mechanistically, we demonstrated that the antioxidation of formononetin was mediated by activation and nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2), while down-regulating cytoplasmic Kelch-like ECH-associated protein 1 (Keap1) expression. Co-treatment with formononetin and LY294002 (15 mg/kg), a potent Phosphatidylinositol-3-kinase (PI3K) inhibitor, which aborted nuclear Nrf2 expression and phosphorylated Akt, indicating that formononetin-mediated Nrf2 activation was related to PI3K/Akt pathway. Overall, our findings revealed that formononetin increased angiogenesis, reduced oxidative stress and inflammation, thus promoting flap survival. We highlighted the antioxidant effects of formononetin since the Nrf2 system was activated. Therefore, formononetin might be a promising candidate drug that can enhance survival of skin flaps.
Collapse
Affiliation(s)
- Haoliang Li
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Renhao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Lejing Lou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chao Jia
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Linfang Zou
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Mochuan Chen
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Mochuan Chen,
| |
Collapse
|
5
|
Zhou Z, Zhou H, Zou X, Wang X, Yan M. Formononetin regulates endothelial nitric oxide synthase to protect vascular endothelium in deep vein thrombosis rats. Int J Immunopathol Pharmacol 2022; 36:3946320221111117. [PMID: 35731855 PMCID: PMC9228649 DOI: 10.1177/03946320221111117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/08/2022] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Formononetin is a bioactive isoflavone that has numerous medicinal benefits. We explored the feasibility and its mechanism of formononetin on treating acute deep vein thrombosis (DVT) in rats. MATERIALS AND METHODS Inferior vena cava (IVC) stenosis was performed to establish the DVT rat model. First, different doses of formononetin were used to observe the feasibility of formononetin on treating DVT. In sham and DVT groups, rats were orally treated with vehicle. In the remaining groups, formononetin (10 mg/kg, 20 mg/kg, and 40 mg/kg) was orally treated once a day for 7 days at 24 h after IVC. After 7 days, the levels of thrombosis and inflammation related factors in plasma were measured. The expression of endothelial nitric oxide synthase (eNOS) was analyzed by western blot and immunofluorescence. Molecular docking was used to evaluate the interaction between the formononetin and eNOS. Further, the NOS inhibitor (L-NAME) was used to explore the mechanism of formononetin for DVT. RESULT After treatment with formononetin, the average weights of thrombosis were decreased, and the levels of thrombosis and inflammation related factors were also significantly decreased. Additionally, phosphorylation of eNOS was increased with the formononetin administration. There is a good activity of formononetin to eNOS (total score = -6.8). However, the effects of 40 mg/kg formononetin were concealed by the NOS inhibitor (L-NAME). CONCLUSION Formononetin reduces vascular endothelium injury induced by DVT through increasing eNOS in rats, which provides a potential drug for treatment of venous thrombosis.
Collapse
Affiliation(s)
- Zhongxiao Zhou
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Haimeng Zhou
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Xin Zou
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Xiaowei Wang
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Mengjun Yan
- Yantai Raphael Biotechnology Co.,Ltd, Yantai, China
| |
Collapse
|
6
|
Zhou H, Cao L, Wang C, Fang C, Wu H, Liu C. miR-877-3p inhibits tumor growth and angiogenesis of osteosarcoma through Fibroblast Growth Factor 2 signaling. Bioengineered 2021; 13:8174-8186. [PMID: 34738872 PMCID: PMC9162015 DOI: 10.1080/21655979.2021.1982305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Osteosarcoma (OS) is the most common high-grade malignant bone tumor in teenagers. MicroRNAs can function as posttranscriptional regulators of gene expression, playing critical roles in cancer dev-877-3p in OS. Quantitative real-time RT-PCR was carried out for detecting miR-877-3p expression in OS. The effects of miR-877-3p on proliferation was analyzed via MTT, colony formation, and flow cytometry assays. Angiogenesis of endothelial cells were investigated by wound healing and tube formation assay. Gene profiling based on PCR array and luciferase reporter assay were conducted to determine target genes of miR-877-3p. In-vivo study was used to determine the effects of miR-877-3p on the tumor growth. The expression of miR-877-3p was markedly downregulated in OS tissues and cell lines. Low expression of miR-877-3p predicts poor prognosis of OS patients. miR-877-3p overexpression was found to inhibit the proliferation of OS cell lines. The angiogenesis assays showed that miR-877-3p attenuated the angiogenesis. Further mechanism studies showed that miR-877-3p can reduce (Fibroblast Growth Factor 2) FGF2 expression in OS cells by binding to the 3’UTR end of FGF2. Moreover, increased expression of miR-877-3p was responsible for the inhibition of tumor growth and angiogenesis. Taken together, our findings indicated that miR-877-3p might exhibit tumor suppressive role by targeting FGF2 signaling, which may serve as potential target for OS.
Collapse
Affiliation(s)
- Hailin Zhou
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Cao
- Department of Orthopedics, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Cheng Wang
- Department of Orthopedics, Shanghai Songjiang District Central Hospital, Shanghai, China.,Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Chi Fang
- Department of Gynecologic Oncology, Fudan University, Shanghai Cancer Center, Shanghai, China
| | - HaiHui Wu
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Liu
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, China
| |
Collapse
|
7
|
Zhang B, Hao Z, Zhou W, Zhang S, Sun M, Li H, Hou N, Jing C, Zhao M. Formononetin protects against ox-LDL-induced endothelial dysfunction by activating PPAR-γ signaling based on network pharmacology and experimental validation. Bioengineered 2021; 12:4887-4898. [PMID: 34369277 PMCID: PMC8806800 DOI: 10.1080/21655979.2021.1959493] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Formononetin (FMNT), a flavonoid identified from the Chinese herb Astragalus membranaceus, possesses anti-inflammatory or anti-oxidative properties in different human diseases. This study aims to comprehensively elucidate the function of FMNT in atherosclerosis and its underlying mechanisms. Online public databases were used to identify the drug-disease targets. Protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were applied to explore the potential targets and signaling pathways involved in FMNT against atherosclerosis. Human umbilical vein endothelial cells (HUVECs) were exposed to oxidized low-density lipoprotein (ox-LDL) to construct an atherosclerosis cell model in vitro. Endothelial cell function was assessed via examining cell proliferation, inflammatory factors, oxidative markers, reactive oxygen species (ROS), and apoptosis. Western blot was performed to detect the expression of cyclooxygenase-2 (COX-2), endothelial nitric oxide synthase (eNOS), cleaved caspase-3, and peroxisome proliferator-activated receptor-γ (PPAR-γ). A total of 39 overlapping target genes of FMNT and atherosclerosis were identified. Through the PPI network analysis, 14 hub genes were screened and found to be closely relevant to inflammation, oxidative stress, and apoptosis. Results of KEGG pathway assays indicated that lots of targets were enriched in PPAR signaling. Functionally, FMNT could protect against ox-LDL-induced inflammatory reaction, oxidative stress, and apoptosis in HUVECs. Moreover, FMNT attenuated ox-LDL-mediated inactivation of PPAR-γ signaling. GW9662, a PPAR-γ antagonist, reversed the inhibitory effect of FMNT on ox-LDL-induced endothelial injury. In conclusion, FMNT alleviates ox-LDL-induced endothelial injury in HUVECs by stimulating PPAR-γ signaling, providing a theoretical basis for employing FMNT as a potential drug to combat atherosclerosis. Abbreviations: FMNT: formononetin; PPI: protein–protein interaction; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; HUVECs: human umbilical vein endothelial cells; ox-LDL: oxidized low-density lipoprotein; COX-2: cyclooxygenase-2; eNOS: endothelial nitric oxide synthase; PPAR-γ: peroxisome proliferator-activated receptor-γ; CVD: cardiovascular disease; TCM: traditional Chinese medicines; OGDR: oxygen-glucose deprivation/reoxygenation; ROS: reactive oxygen species; FBS: fetal bovine serum; CCK-8: cell counting kit-8; EdU: 5-Ethynyl-2ʹ-deoxyuridine; SOD: antioxidant enzymes superoxide dismutase; MDA: malondialdehyde; DCFH-DA: 2ʹ,7ʹ-dichlorofluorescein-diacetate; PVDF: polyvinylidene fluoride; ANOVA: one-way analysis of variance; PPARs: peroxisome proliferation-activated receptors
Collapse
Affiliation(s)
- Baohua Zhang
- Department of Health Care, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhongwei Hao
- Department of Cardiovascular Medicine, No. 906 Hospital of PLA, Ningbo, China
| | - Wenli Zhou
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shan Zhang
- Department of Fuxing Road Outpatient, Jingnan Medical District, Chinese PLA General Hospital Beijing, Beijing, China
| | - Mingyan Sun
- Department of Health Care, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Honglei Li
- Department of Fuxing Road Outpatient, Jingnan Medical District, Chinese PLA General Hospital Beijing, Beijing, China
| | - Naijing Hou
- Department of Health Care, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Cui Jing
- Department of Health Care, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Mingxing Zhao
- Department of Health Care, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Huang D, Wang X, Zhu Y, Gong J, Liang J, Song Y, Zhang Y, Liu L, Wei C. Bazi Bushen Capsule Alleviates Post-Menopausal Atherosclerosis via GPER1-Dependent Anti-Inflammatory and Anti-Apoptotic Effects. Front Pharmacol 2021; 12:658998. [PMID: 34248622 PMCID: PMC8267998 DOI: 10.3389/fphar.2021.658998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/07/2021] [Indexed: 01/16/2023] Open
Abstract
Bazi Bushen capsule (BZBS), as a Chinese medicine used to relieve fatigue, has been proven effective for the treatment of atherogenesis through antilipid effects. To investigate the potential mechanism of BZBS in the anti-atherosclerotic effect, Ovx/ApoE-/- mice were applied to investigate the anti-atherosclerotic efficiency and potential mechanism of BZBS. Therapeutic effect was evaluated based on the number of CD68+ and CD3+ cells, the level of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and the ratio of cleaved caspase-3/caspase-3, as well as increasing ratio of Bcl2/Bax. Human umbilical vein endothelial cells (HUVECs) were chosen to evaluate the role of GPER1. Treatment with BZBS reduced lipid deposition by reducing the numbers of CD68+ and CD3+ cells, the level of ICAM-1 and VCAM-1, and the ratio of cleaved caspase-3/caspase-3, and increasing the ratio of Bcl2/Bax as compared with the control group. In si-GPER1-treated HUVECs, the anti-apoptotic effect of BZBS was decreased. This study revealed that BZBS exhibited a clear effect against atherogenesis via GPER1-dependent anti-inflammatory and anti-apoptotic mechanisms. We believe that this manuscript is informative and useful for researchers pursuing the related alleviation of post-menopausal AS via anti-inflammatory and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Dan Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xindong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yunhong Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Juexiao Gong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Junqing Liang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Yanfei Song
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Yiyan Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Linsheng Liu
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cong Wei
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
9
|
Edible Flowers Extracts as a Source of Bioactive Compounds with Antioxidant Properties—In Vitro Studies. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Edible plants began to play an important role in past decade as a part of therapy, a recovery process or a healthy life style. The availability and relatively low price of the raw material, as well as proven bioactive health benefits, are key to consumers’ choice of nutrients. The red clover (Trifolium pratense) is a popular plant with healthy properties such as antiseptic and analgesic effects. The less known white clover (Trifolium repens), a fodder and honey plant, has anti-rheumatic and anti-diabetic properties. Both species may serve as a potential source of bioactive substances with antioxidant properties as a food additive or supplement. The study material consisted of flower extracts of Trifolium repens and Trifolium pratense. The total content of polyphenols and DPPH (2.2-diphenyl-1-picrylhydrazyl) and ferric reducing antioxidant power (FRAP) were measured using spectrophotometry methods. Oxidative stress in THP1 cells was induced via sodium fluoride. Subsequently, flower extracts were added and their influences on proliferation, antioxidant potential and the activity of antioxidant enzymes were evaluated. The extracts have a high total content of polyphenols as well as high antioxidant potential. We also demonstrated positive extracts impact on cells proliferation, high antioxidant potential and increasing activity of antioxidant enzymes on cell cultures under high oxidative stress induced by fluoride. Both red clover and the less known white clover may serve as valuable sources of antioxidants in the everyday diet.
Collapse
|
10
|
Zhou H, He Y, Zheng Z, Liu Z, Song F, Liu S. Quantitative analysis and pharmacokinetic comparison of multiple bioactive components in rat plasma after oral administration of Qi-Shen-Ke-Li formula and its single-herb extracts using ultra-high-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 2020; 34:e4959. [PMID: 32726460 DOI: 10.1002/bmc.4959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/14/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
Qi-Shen-Ke-Li (QSKL), a traditional Chinese formula prepared from six herbs, has long been used for the treatment of coronary heart disease and chronic heart failure. However, the herbal combination mechanism and underlying material basis of this multi-herbal formula are not clear. In this study, an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to simultaneously determine multiple bioactive compounds in QSKL was established and validated. Using the developed method, 18 bioactive components in rat plasma after oral administration of QSKL formula and its single herb extracts were quantified. Based on these results, pharmacokinetic (PK) parameters (T1/2 , Tmax , Cmax , AUC0-48h , and AUC0-∞ ) of the 18 bioactive components were analyzed and compared using PKSlover 2.0 PK software. The experimental data suggested that significant changes in PK profiles were observed between the QSKL formula and its single-herb extracts. The herbal combination in QSKL significantly influences the system exposure and the PK behaviors of the 18 bioactive components, indicating multicomponent interactions among the herbs. This study provides insight into the herbal combination mechanism and underlying material basis of the QSKL formula.
Collapse
Affiliation(s)
- Hui Zhou
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Pharmacy and Food Science, Zhuhai College of Jilin University, Zhuhai, China
| | - Yang He
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Pharmacy and Food Science, Zhuhai College of Jilin University, Zhuhai, China
| | - Zhong Zheng
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
11
|
Zheng W, Wu J, Gu J, Weng H, Wang J, Wang T, Liang X, Cao L. Modular Characteristics and Mechanism of Action of Herbs for Endometriosis Treatment in Chinese Medicine: A Data Mining and Network Pharmacology-Based Identification. Front Pharmacol 2020; 11:147. [PMID: 32210799 PMCID: PMC7069061 DOI: 10.3389/fphar.2020.00147] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is a common benign disease in women of reproductive age. It has been defined as a disorder characterized by inflammation, compromised immunity, hormone dependence, and neuroangiogenesis. Unfortunately, the mechanisms of endometriosis have not yet been fully elucidated, and available treatment methods are currently limited. The discovery of new therapeutic drugs and improvements in existing treatment schemes remain the focus of research initiatives. Chinese medicine can improve the symptoms associated with endometriosis. Many Chinese herbal medicines could exert antiendometriosis effects via comprehensive interactions with multiple targets. However, these interactions have not been defined. This study used association rule mining and systems pharmacology to discover a method by which potential antiendometriosis herbs can be investigated. We analyzed various combinations and mechanisms of action of medicinal herbs to establish molecular networks showing interactions with multiple targets. The results showed that endometriosis treatment in Chinese medicine is mainly based on methods of supplementation with blood-activating herbs and strengthening qi. Furthermore, we used network pharmacology to analyze the main herbs that facilitate the decoding of multiscale mechanisms of the herbal compounds. We found that Chinese medicine could affect the development of endometriosis by regulating inflammation, immunity, angiogenesis, and other clusters of processes identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The antiendometriosis effect of Chinese medicine occurs mainly through nervous system–associated pathways, such as the serotonergic synapse, the neurotrophin signaling pathway, and dopaminergic synapse, among others, to reduce pain. Chinese medicine could also regulate VEGF signaling, toll-like reporter signaling, NF-κB signaling, MAPK signaling, PI3K-Akt signaling, and the HIF-1 signaling pathway, among others. Synergies often exist in herb pairs and herbal prescriptions. In conclusion, we identified some important targets, target pairs, and regulatory networks, using bioinformatics and data mining. The combination of data mining and network pharmacology may offer an efficient method for drug discovery and development from herbal medicines.
Collapse
Affiliation(s)
- Weilin Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayi Wu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiangyong Gu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Heng Weng
- Department of Big Medical Data, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuefang Liang
- Department of Gynecology, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixing Cao
- Team of Application of Chinese Medicine in Perioperative Period, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|