1
|
Jiang Y, Harberts J, Assadi A, Chen Y, Spatz JP, Duan W, Nisbet DR, Voelcker NH, Elnathan R. The Roles of Micro- and Nanoscale Materials in Cell-Engineering Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410908. [PMID: 39401098 DOI: 10.1002/adma.202410908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Indexed: 11/29/2024]
Abstract
Customizable manufacturing of ex vivo cell engineering is driven by the need for innovations in the biomedical field and holds substantial potential for addressing current therapeutic challenges; but it is still only in its infancy. Micro- and nanoscale-engineered materials are increasingly used to control core cell-level functions in cellular engineering. By reprogramming or redirecting targeted cells for extremely precise functions, these advanced materials offer new possibilities. This influences the modularity of cell reprogramming and reengineering, making these materials part of versatile and emerging technologies. Here, the roles of micro- and nanoscale materials in cell engineering are highlighted, demonstrating how they can be adaptively controlled to regulate cellular reprogramming and core cell-level functions, including differentiation, proliferation, adhesion, user-defined gene expression, and epigenetic changes. The current reprogramming routes used to achieve pluripotency from somatic cells and the significant potential of induced pluripotent stem cell technology for translational biomedical research are covered. Recent advances in nonviral intracellular delivery modalities for cell reprogramming and their constraints are evaluated. This paper focuses on emerging physical and combinatorial approaches of intracellular delivery for cell engineering, revealing the capabilities and limitations of these routes. It is showcased how these programmable materials are continually being explored as customizable tools for inducing biophysical stimulation. Harnessing the power of micro- and nanoscale-engineered materials will be a step change in the design of cell engineering, producing a suite of powerful tools for addressing potential future challenges in therapeutic cell engineering.
Collapse
Affiliation(s)
- Yuan Jiang
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Jann Harberts
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
| | - Artin Assadi
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Zhejiang, 325000, China
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Max Planck Schools, 69120, Heidelberg, Germany
| | - Wei Duan
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - David R Nisbet
- The Graeme Clark Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Parkville, Victoria, 3010, Australia
- Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Parkville, VIC, 3010, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
| | - Roey Elnathan
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
2
|
Gardashli M, Baron M, Huang C, Kaplan LD, Meng Z, Kouroupis D, Best TM. Mechanical loading and orthobiologic therapies in the treatment of post-traumatic osteoarthritis (PTOA): a comprehensive review. Front Bioeng Biotechnol 2024; 12:1401207. [PMID: 38978717 PMCID: PMC11228341 DOI: 10.3389/fbioe.2024.1401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The importance of mechanical loading and its relationship to orthobiologic therapies in the treatment of post-traumatic osteoarthritis (PTOA) is beginning to receive attention. This review explores the current efficacy of orthobiologic interventions, notably platelet-rich plasma (PRP), bone marrow aspirate (BMA), and mesenchymal stem/stromal cells (MSCs), in combating PTOA drawing from a comprehensive review of both preclinical animal models and human clinical studies. This review suggests why mechanical joint loading, such as running, might improve outcomes in PTOA management in conjunction with orthiobiologic administration. Accumulating evidence underscores the influence of mechanical loading on chondrocyte behavior and its pivotal role in PTOA pathogenesis. Dynamic loading has been identified as a key factor for optimal articular cartilage (AC) health and function, offering the potential to slow down or even reverse PTOA progression. We hypothesize that integrating the activation of mechanotransduction pathways with orthobiologic treatment strategies may hold a key to mitigating or even preventing PTOA development. Specific loading patterns incorporating exercise and physical activity for optimal joint health remain to be defined, particularly in the clinical setting following joint trauma.
Collapse
Affiliation(s)
- Mahammad Gardashli
- Department of Education, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Max Baron
- Department of Education, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Charles Huang
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Lee D Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| |
Collapse
|
3
|
Guo R, Fan J. Extracellular Vesicles Derived from Auricular Chondrocytes Facilitate Cartilage Differentiation of Adipose-Derived Mesenchymal Stem Cells. Aesthetic Plast Surg 2023; 47:2823-2832. [PMID: 36849663 DOI: 10.1007/s00266-023-03292-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE Adipose-derived mesenchymal stem cell (ADSC)-based therapies have been utilized for cartilage regeneration because of their multi-lineage differentiation ability. However, commonly used cartilage inducers such as the transforming growth factor beta-3 (TGF-β3) may be prone to cartilage dedifferentiation and hypertrophy. The directional differentiation of elastic cartilage is limited nowadays. Extracellular vesicles (EVs) have been reported to influence the specific differentiation of mesenchymal stem cells (MSCs) by reflecting the composition of the parental cells. However, the role of auricular chondrogenic-derived EVs (AC-EVs) in elastic chondrogenic differentiation of ADSCs has not yet been reported. RESULTS AC-EVs isolated from the external ears of swine exhibited a positive effect on cell proliferation and migration. Furthermore, AC-EVs efficiently promoted chondrogenic differentiation of ADSCs in pellet culture, as shown by the elevated levels of COL2A1, ACAN, and SOX-9 expression. Moreover, there was a significantly higher expression of elastin and a lower expression of the fibrotic marker COL1A1 in comparison with that achieved with TGF-β3. The staining results demonstrated that AC-EVs promoted the deposition of cartilage-specific matrix, which is in good concordance with the real-time polymerase chain reaction (RT-PCR) results. CONCLUSIONS Auricular chondrogenic-derived EVs are a crucial component in elastic chondrogenic differentiation and other biological behaviors of ADSCs, which may be a useful ingredient for cartilage tissue engineering and external ear reconstruction. NO LEVEL ASSIGNED This journal requires that authors 42 assign a level of evidence to each submission to which 43 Evidence-Based Medicine rankings are applicable. This 44 excludes Review Articles, Book Reviews, and manuscripts 45 that concern Basic Science, Animal Studies, Cadaver 46 Studies, and Experimental Studies. For a full description of 47 these Evidence-Based Medicine ratings, please refer to the 48 Table oôf Contents or the online Instructions to Authors 49 www.springer.com/00266 .
Collapse
Affiliation(s)
- Rui Guo
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Jincai Fan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| |
Collapse
|
4
|
Sun J, Chan YT, Ho KWK, Zhang L, Bian L, Tuan RS, Jiang Y. "Slow walk" mimetic tensile loading maintains human meniscus tissue resident progenitor cells homeostasis in photocrosslinked gelatin hydrogel. Bioact Mater 2023; 25:256-272. [PMID: 36825224 PMCID: PMC9941420 DOI: 10.1016/j.bioactmat.2023.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/14/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Meniscus, the cushion in knee joint, is a load-bearing tissue that transfers mechanical forces to extracellular matrix (ECM) and tissue resident cells. The mechanoresponse of human tissue resident stem/progenitor cells in meniscus (hMeSPCs) is significant to tissue homeostasis and regeneration but is not well understood. This study reports that a mild cyclic tensile loading regimen of ∼1800 loads/day on hMeSPCs seeded in 3-dimensional (3D) photocrosslinked gelatin methacryloyl (GelMA) hydrogel is critical in maintaining cellular homeostasis. Experimentally, a "slow walk" biomimetic cyclic loading regimen (10% tensile strain, 0.5 Hz, 1 h/day, up to 15 days) is applied to hMeSPCs encapsulated in GelMA hydrogel with a magnetic force-controlled loading actuator. The loading significantly increases cell differentiation and fibrocartilage-like ECM deposition without affecting cell viability. Transcriptomic analysis reveals 332 mechanoresponsive genes, clustered into cell senescence, mechanical sensitivity, and ECM dynamics, associated with interleukins, integrins, and collagens/matrix metalloproteinase pathways. The cell-GelMA constructs show active ECM remodeling, traced using a green fluorescence tagged (GFT)-GelMA hydrogel. Loading enhances nascent pericellular matrix production by the encapsulated hMeSPCs, which gradually compensates for the hydrogel loss in the cultures. These findings demonstrate the strong tissue-forming ability of hMeSPCs, and the importance of mechanical factors in maintaining meniscus homeostasis.
Collapse
Key Words
- 3D cell-based constructs
- 3D, Three-dimensional
- BMSCs, Bone marrow derived mesenchymal stem cells
- Biomimetic cyclic loading
- CFUs, Colony forming units
- Col I, Collagen type I
- Col II, Collagen type II
- DS, Degree of substitution
- ECM, Extracellular matrix
- Extracellular matrix
- GAGs, Glycosaminoglycans
- GFT-GelMA, Green fluorescence-tagged GelMA
- GelMA hydrogel
- GelMA, Gelatin methacryloyl
- Human meniscus progenitor cells
- MeHA, Methacrylated hyaluronic acid
- PCM, Pericellular matrix
- PI, Propidium iodide
- PPI, Protein-protein interaction
- hMeSPCs, Human meniscus stem/progenitor cells
Collapse
Affiliation(s)
- Jing Sun
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Yau Tsz Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Ki Wai Kevin Ho
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, And Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Liming Bian
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China,Corresponding author. Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China.
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China,Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China,Corresponding author. Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China.
| |
Collapse
|
5
|
Kim J, Bae H, Han HS, Lee J. Ultrasonic Enhancement of Chondrogenesis in Mesenchymal Stem Cells by Bolt-Clamped Langevin Transducers. MICROMACHINES 2023; 14:202. [PMID: 36677263 PMCID: PMC9865917 DOI: 10.3390/mi14010202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
We recently investigated the design and fabrication of Langevin-type transducers for therapeutic ultrasound. Effect of ultrasonic energy arising from the transducer on biological tissue was examined. In this study, the transducer was set to radiate acoustic energy to mesenchymal stem cells (MSCs) for inducing differentiation into cartilage tissue. The average chondrogenic ratio in area was 20.82% in the control group, for which no external stimulation was given. Shear stress was applied to MSCs as the contrast group, which resulted in 42.66% on average with a 25.92% minimum rate; acoustic pressure from the flat tip causing transient cavitation enhanced chondrogenesis up to 52.96%. For the round tip excited by 20 Vpp, the maximum differentiation value of 69.43% was found, since it delivered relatively high acoustic pressure to MSCs. Hence, the results from this study indicate that ultrasound pressure at the kPa level can enhance MSC chondrogenesis compared to the tens of kHz range by Langevin transducers.
Collapse
Affiliation(s)
- Jinhyuk Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Hyuncheol Bae
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyuk-Soo Han
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jungwoo Lee
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
6
|
Zhang D, Su Y, Sun P, Liu X, Zhang L, Ling X, Fan Y, Wu K, Shi Q, Liu J. A TGF-loading hydrogel scaffold capable of promoting chondrogenic differentiation for repairing rabbit nasal septum cartilage defect. Front Bioeng Biotechnol 2022; 10:1057904. [DOI: 10.3389/fbioe.2022.1057904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022] Open
Abstract
Hydrogel-based tissue engineering has been widely used to repair cartilage injury. However, whether this approach can be applied to treat nasal septum cartilage defects remains unclear. In this study, three gelatin methacrylate-based scaffolds loaded with transforming growth factor (TGF)-β1 (GelMA-T) were prepared, and their effects on repair of nasal septum cartilage defects were examined. In vitro, the GelMA-T scaffolds showed good biocompatibility and promoted the chondrogenic differentiation of bone mesenchymal stem cells. Among three scaffolds, the 10% GelMA-T scaffold promoted chondrogenic differentiation most effectively, which significantly improved the expression of chondrocyte-related genes, including Col II, Sox9, and ACAN. In vivo, 10% GelMA-T scaffolds and 10% GelMA-T scaffolds loaded with bone mesenchymal stem cells (BMSCs; 10% GelMA-T/BMSCs) were transplanted into a nasal septum cartilage defect site in a rabbit model. At 4, 12, and 24 weeks after surgery, the nasal septum cartilage defects exhibited more complete repair in rabbits treated with the 10% GelMA-T/BMSC scaffold as demonstrated by hematoxylin & eosin, safranine-O, and toluidine blue staining. We showed that GelMA-T/BMSCs can be applied in physiological and structural repair of defects in nasal septum cartilage, providing a potential strategy for repairing cartilage defects in the clinic.
Collapse
|
7
|
Li H, Li M, Ran X, Cui J, Wei F, Yi G, Chen W, Luo X, Chen Z. The Role of Zinc in Bone Mesenchymal Stem Cell Differentiation. Cell Reprogram 2022; 24:80-94. [PMID: 35172118 DOI: 10.1089/cell.2021.0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zinc is an essential trace element for bone growth and bone homeostasis in the human body. Bone mesenchymal stem cells (BMSCs) are multipotent progenitors existing in the bone marrow stroma with the capability of differentiating along multiple lineage pathways. Zinc plays a paramount role in BMSCs, which can be spurred differentiating into osteoblasts, chondrocytes, or adipocytes, and modulates the formation and activity of osteoclasts. The expression of related genes also changed during the differentiation of various cell phenotypes. Based on the important role of zinc in BMSC differentiation, using zinc as a therapeutic approach for bone remodeling will be a promising method. This review explores the role of zinc ion in the differentiation of BMSCs into various cell phenotypes and outlines the existing research on their molecular mechanism.
Collapse
Affiliation(s)
- Huiyun Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Muzhe Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xun Ran
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Juncheng Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Fu Wei
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Guoliang Yi
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Wei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xuling Luo
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhiwei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
8
|
Wang L, Zheng F, Song R, Zhuang L, Yang M, Suo J, Li L. Integrins in the Regulation of Mesenchymal Stem Cell Differentiation by Mechanical Signals. Stem Cell Rev Rep 2021; 18:126-141. [PMID: 34536203 DOI: 10.1007/s12015-021-10260-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Mesenchymal stem cells (MSCs) can sense and convert mechanical stimuli signals into a chemical response. Integrins are involved in the mechanotransduction from inside to outside and from outside to inside, and ultimately affect the fate of MSCs responding to different mechanical signals. Different integrins participate in different signaling pathways to regulate MSCs multi-differentiation. In this review, we summarize the latest advances in the effects of mechanical signals on the differentiation of MSCs, the importance of integrins in mechanotransduction, the relationship between integrin heterodimers and different mechanical signals, and the interaction among mechanical signals. We put forward our views on the prospect and challenges of developing mechanical biology in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lei Wang
- Department of Gastrointestinal Surgery, Jilin University First Hospital, Jilin University, 130021, Changchun, People's Republic of China
| | - Fuwen Zheng
- Norman Bethune College of Medicine, Jilin University, 130021, Changchun, People's Republic of China
| | - Ruixue Song
- Norman Bethune College of Medicine, Jilin University, 130021, Changchun, People's Republic of China
| | - Lequan Zhuang
- Norman Bethune College of Medicine, Jilin University, 130021, Changchun, People's Republic of China
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, 130021, Changchun, People's Republic of China.
| | - Jian Suo
- Department of Gastrointestinal Surgery, Jilin University First Hospital, Jilin University, 130021, Changchun, People's Republic of China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 130021, Changchun, People's Republic of China.
| |
Collapse
|
9
|
Chen H, Li S, Xiao H, Wu B, Zhou L, Hu J, Lu H. Effect of Exercise Intensity on the Healing of the Bone-Tendon Interface: A Mouse Rotator Cuff Injury Model Study. Am J Sports Med 2021; 49:2064-2073. [PMID: 33989078 DOI: 10.1177/03635465211011751] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Injuries at the bone-tendon interface (BTI) are common findings in clinical practice. Rehabilitation procedures after BTI surgery are important but are controversial. PURPOSE To investigate the effects of different exercise intensities on BTI healing by means of an established mouse rotator cuff injury model. STUDY DESIGN Controlled laboratory study. METHODS A total of 150 specific pathogen free male C57BL/6 mice, with supraspinatus insertion injury, were randomly assigned to 1 of 5 groups according to postoperative rehabilitation of different exercise intensities: (1) control group, (2) low-intensity exercise group, (3) moderate-intensity exercise group, (4) high-intensity exercise group, and (5) increasing-intensity exercise group (IG). The specimens were harvested 4 or 8 weeks postoperatively for microarchitectural, histological, molecular biological, and mechanical evaluations. RESULTS Histological test results showed that the degrees of tissue fusion and polysaccharide protein distribution at the healing interface at 4 and 8 weeks after surgery were significantly better in the IG than in the other 4 groups. Synchrotron radiation micro-computed tomography showed that the quantity of subchondral bone at the enthesis (bone volume/total volume fraction, trabecular thickness, trabecular number) was higher and trabecular separation was lower in the IG than in the other 4 groups. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed that the healing interface in the IG expressed more transcription factors, such as sox 9, runx 2, and scleraxis, than the interfaces in the other groups. Although no significant difference was seen in the cross-sectional area between the groups at postoperative weeks 4 and 8 (P > .05), the tensile load, ultimate strength, and stiffness of the specimens in the IG were significantly better than those in the other 4 groups (P < .05). CONCLUSION The rehabilitation program with increasing-intensity exercise was beneficial for BTI healing. CLINICAL RELEVANCE The results of this study provide evidence supporting the use of a simple and progressive exercise rehabilitation program after rotator cuff surgery.
Collapse
Affiliation(s)
- Huabin Chen
- Department of Sports Medicine & Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| | - Shengcan Li
- Department of Sports Medicine & Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| | - Han Xiao
- Department of Sports Medicine & Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| | - Bing Wu
- Department of Sports Medicine & Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| | - Li Zhou
- Department of Sports Medicine & Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
- Department of Orthopedic Center, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine & Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China
| |
Collapse
|
10
|
Abusharkh HA, Mallah AH, Amr MM, Mendenhall J, Gozen BA, Tingstad EM, Abu-Lail NI, Van Wie BJ. Enhanced matrix production by cocultivated human stem cells and chondrocytes under concurrent mechanical strain. In Vitro Cell Dev Biol Anim 2021; 57:631-640. [PMID: 34129185 DOI: 10.1007/s11626-021-00592-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
Conventional treatments of osteoarthritis have failed to re-build functional articular cartilage. Tissue engineering clinical treatments for osteoarthritis, including autologous chondrocyte implantation, provides an alternative approach by injecting a cell suspension to fill lesions within the cartilage in osteoarthritic knees. The success of chondrocyte implantation relies on the availability of chondrogenic cell lines, and their resilience to high mechanical loading. We hypothesize we can reduce the numbers of human articular chondrocytes necessary for a treatment by supplementing cultures with human adipose-derived stem cells, in which stem cells will have protective and stimulatory effects on mixed cultures when exposed to high mechanical loads, and in which coculture will enhance production of requisite extracellular matrix proteins over those produced by stretched chondrocytes alone. In this work, adipose-derived stem cells and articular chondrocytes were cultured separately or cocultivated at ratios of 3:1, 1:1, and 1:3 in static plates or under excessive cyclic tensile strain of 10% and results were compared to culturing of both cell types alone with and without cyclic strain. Results indicate 75% of chondrocytes in engineered articular cartilage can be replaced with stem cells with enhanced collagen over all culture conditions and glycosaminoglycan content over stretched cultures of chondrocytes. This can be done without observing adverse effects on cell viability. Collagen and glycosaminoglycan secretion, when compared to chondrocyte alone under 10% strain, was enhanced 6.1- and 2-fold, respectively, by chondrocytes cocultivated with stem cells at a ratio of 1:3.
Collapse
Affiliation(s)
- Haneen A Abusharkh
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, 1505 NE Stadium Way, Pullman, WA, 99164-6515, USA
| | - Alia H Mallah
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Mahmoud M Amr
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Juana Mendenhall
- Department of Chemistry, Morehouse College, Atlanta, GA, 30314, USA
| | - Bulent A Gozen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, USA
| | - Edwin M Tingstad
- Inland Orthopedic Surgery and Sports Medicine Clinic, Pullman, WA, 99163, USA
| | - Nehal I Abu-Lail
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Bernard J Van Wie
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, 1505 NE Stadium Way, Pullman, WA, 99164-6515, USA.
| |
Collapse
|
11
|
Recent Developed Strategies for Enhancing Chondrogenic Differentiation of MSC: Impact on MSC-Based Therapy for Cartilage Regeneration. Stem Cells Int 2021; 2021:8830834. [PMID: 33824665 PMCID: PMC8007380 DOI: 10.1155/2021/8830834] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Articular cartilage is susceptible to damage, but its self-repair is hindered by its avascular nature. Traditional treatment methods are not able to achieve satisfactory repair effects, and the development of tissue engineering techniques has shed new light on cartilage regeneration. Mesenchymal stem cells (MSCs) are one of the most commonly used seed cells in cartilage tissue engineering. However, MSCs tend to lose their multipotency, and the composition and structure of cartilage-like tissues formed by MSCs are far from those of native cartilage. Thus, there is an urgent need to develop strategies that promote MSC chondrogenic differentiation to give rise to durable and phenotypically correct regenerated cartilage. This review provides an overview of recent advances in enhancement strategies for MSC chondrogenic differentiation, including optimization of bioactive factors, culture conditions, cell type selection, coculture, gene editing, scaffolds, and physical stimulation. This review will aid the further understanding of the MSC chondrogenic differentiation process and enable improvement of MSC-based cartilage tissue engineering.
Collapse
|
12
|
Tsvetkova AV, Vakhrushev IV, Basok YB, Grigor'ev AM, Kirsanova LA, Lupatov AY, Sevastianov VI, Yarygin KN. Chondrogeneic Potential of MSC from Different Sources in Spheroid Culture. Bull Exp Biol Med 2021; 170:528-536. [PMID: 33725253 DOI: 10.1007/s10517-021-05101-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 10/21/2022]
Abstract
We performed a comparative study of the proliferative potential of human mesenchymal stromal cells (MSC) from three sources (tooth pulp, adipose tissue, and Wharton's jelly) in spheroid culture; human chondroblasts served as the positive control. Histological examination revealed signs of chondrogenic differentiation in all studied cell cultures and the differences in the volume and composition of the extracellular matrix. Spheroids formed by MSC from the tooth pulp and Wharton's jelly were characterized by low content of extracellular matrix and glycosaminoglycans. Spheroids from adipose tissue MSC contained maximum amount of the extracellular matrix and high content of glycosaminoglycans. Chondrocytes produced glycosaminoglycan-enriched matrix. Type II collagen was produced by chondrocytes (to a greater extent) and adipose tissue MSC (to a lesser extent). The results of our study demonstrate that MSC from the adipose tissue under conditions of spheroid culturing exhibited maximum chondrogenic potential.
Collapse
Affiliation(s)
- A V Tsvetkova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia.
| | - I V Vakhrushev
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - Yu B Basok
- V. I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A M Grigor'ev
- V. I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L A Kirsanova
- V. I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A Yu Lupatov
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - V I Sevastianov
- V. I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
13
|
Duan ZW, Lu H. Effect of Mechanical Strain on Cells Involved in Fracture Healing. Orthop Surg 2021; 13:369-375. [PMID: 33496077 PMCID: PMC7957396 DOI: 10.1111/os.12885] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/08/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022] Open
Abstract
Secondary fracture healing is a complex multi‐stage process in which the mechanical environment plays a key role. The use of an appropriate mechanical stimulation such as strain is conducive to tissue formation between fracture ends, thus aiding the healing process. However, if the strain is too large or too small, the biological behavior of the cells involved in bone healing will be affected, resulting in non‐union or delayed healing. In this review, we summarize the current state of knowledge regarding the effect of strain on cells that play a role in the fracture‐healing process. Overall, the related literature suggests that selection of an adequate strain promotes fracture healing through the stimulation of angiogenesis and osteogenesis, along with inhibition of osteoclast differentiation and bone resorption. However, standardized methods for the application of mechanical stimulation are lacking, and a unified consensus on the mechanism by which strain promotes cell differentiation has not yet been reached. These issues, therefore, deserve further investigation.
Collapse
Affiliation(s)
- Zheng-Wei Duan
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Lu
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Chen Y, Ouyang X, Wu Y, Guo S, Xie Y, Wang G. Co-culture and Mechanical Stimulation on Mesenchymal Stem Cells and Chondrocytes for Cartilage Tissue Engineering. Curr Stem Cell Res Ther 2020; 15:54-60. [PMID: 31660820 DOI: 10.2174/1574888x14666191029104249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 02/08/2023]
Abstract
Defects in articular cartilage injury and chronic osteoarthritis are very widespread and common, and the ability of injured cartilage to repair itself is limited. Stem cell-based cartilage tissue engineering provides a promising therapeutic option for articular cartilage damage. However, the application of the technique is limited by the number, source, proliferation, and differentiation of stem cells. The co-culture of mesenchymal stem cells and chondrocytes is available for cartilage tissue engineering, and mechanical stimulation is an important factor that should not be ignored. A combination of these two approaches, i.e., co-culture of mesenchymal stem cells and chondrocytes under mechanical stimulation, can provide sufficient quantity and quality of cells for cartilage tissue engineering, and when combined with scaffold materials and cytokines, this approach ultimately achieves the purpose of cartilage repair and reconstruction. In this review, we focus on the effects of co-culture and mechanical stimulation on mesenchymal stem cells and chondrocytes for articular cartilage tissue engineering. An in-depth understanding of the impact of co-culture and mechanical stimulation of mesenchymal stem cells and chondrocytes can facilitate the development of additional strategies for articular cartilage tissue engineering.
Collapse
Affiliation(s)
- Yawen Chen
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Xinli Ouyang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Yide Wu
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Shaojia Guo
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Yongfang Xie
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Guohui Wang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| |
Collapse
|
15
|
Rahmani Del Bakhshayesh A, Babaie S, Tayefi Nasrabadi H, Asadi N, Akbarzadeh A, Abedelahi A. An overview of various treatment strategies, especially tissue engineering for damaged articular cartilage. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1089-1104. [DOI: 10.1080/21691401.2020.1809439] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Babaie
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Xie Y, Qian Y, Wang Y, Liu K, Li X. Mechanical stretch and LPS affect the proliferation, extracellular matrix remodeling and viscoelasticity of lung fibroblasts. Exp Ther Med 2020; 20:5. [PMID: 32934670 PMCID: PMC7471876 DOI: 10.3892/etm.2020.9133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to investigate the effects of mechanical stretch and lipopolysaccharides (LPS) on the expression of transforming growth factor-β1 (TGF-β1) and collagen and viscoelasticity in human embryonic MRC-5 lung fibroblasts cultured in vitro and to assess the mechanisms of ARDS-associated ventilator-induced lung injury using an in vitro model. Human embryonic MRC-5 lung fibroblasts were treated with different concentrations of LPS to establish an acute respiratory distress syndrome (ARDS) cell injury model, followed by further culture under different mechanical stretch amplitudes using the Flexcell system to establish a cellular mechanical damage model. The proliferation of MRC-5 cells and the protein and gene expression levels of TGF-β1 and collagen were detected by flow cytometry, ELISA and reverse transcription-quantitative PCR, respectively. As the concentration of LPS increased, the proliferation activity of MRC-5 cells gradually decreased. Low concentrations of LPS led to upregulation of the secretion levels of TGF-β1 and collagen I and the expression of their mRNA, TGF-β1 mRNA and collagen type 1, α1. Conversely, high concentrations of LPS reduced TGF-β1 and collagen I levels and their gene expression. Mechanical stimulation with a stretch of 5% increased the cell proliferation activity; however, it had no significant effect on the expression levels of TGF-β1 and collagen. Mechanical stimulation with a stretching force of 10% inhibited the cell proliferation but increased the expression levels of TGF-β1 and collagen I. A higher mechanical stimulation (15 and 20%) had a significantly greater effect. Mechanical stretch and LPS stimulation led to changes in the structure and viscoelastic behavior of human embryonic MRC-5 lung fibroblasts. In terms of cell function, mechanical stretch may cause an increase in the expression of TGF-β1 in MRC-5 cells, in turn affecting the transcription and translation of collagen genes. This present study provides provides cell-level evidence for understand the mechanisms of action behind the ARDS ventilator-induced lung injury and lung structural remodeling.
Collapse
Affiliation(s)
- Yongpeng Xie
- Department of Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| | - Ying Qian
- Department of Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| | - Yanli Wang
- Department of Emergency Medicine, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| | - Kexi Liu
- Department of Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| | - Xiaomin Li
- Department of Emergency Medicine, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| |
Collapse
|
17
|
Xu B, Ye J, Yuan FZ, Zhang JY, Chen YR, Fan BS, Jiang D, Jiang WB, Wang X, Yu JK. Advances of Stem Cell-Laden Hydrogels With Biomimetic Microenvironment for Osteochondral Repair. Front Bioeng Biotechnol 2020; 8:247. [PMID: 32296692 PMCID: PMC7136426 DOI: 10.3389/fbioe.2020.00247] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Osteochondral damage from trauma or osteoarthritis is a general joint disease that can lead to an increased social and economic burden in the modern society. The inefficiency of osteochondral defects is mainly due to the absence of suitable tissue-engineered substrates promoting tissue regeneration and replacing damaged areas. The hydrogels are becoming a promising kind of biomaterials for tissue regeneration. The biomimetic hydrogel microenvironment can be tightly controlled by modulating a number of biophysical and biochemical properties, including matrix mechanics, degradation, microstructure, cell adhesion, and intercellular interactions. In particular, advances in stem cell-laden hydrogels have offered new ideas for the cell therapy and osteochondral repair. Herein, the aim of this review is to underpin the importance of stem cell-laden hydrogels on promoting the development of osteochondral regeneration, especially in the field of manipulation of biomimetic microenvironment and utilization growth factors with various delivery methods.
Collapse
Affiliation(s)
- Bingbing Xu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Ye
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Fu-Zhen Yuan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Ji-Ying Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Bao-Shi Fan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Dong Jiang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Wen-Bo Jiang
- Clinical Translational R&D Center of 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|