1
|
Ali I, Ali A, Guo L, Burki S, Rehman JU, Fazal M, Ahmad N, Khan S, Toloza CAT, Shah MR. Synthesis of calix (4) resorcinarene based amphiphilic macrocycle as an efficient nanocarrier for Amphotericin-B to enhance its oral bioavailability. Colloids Surf B Biointerfaces 2024; 238:113918. [PMID: 38669750 DOI: 10.1016/j.colsurfb.2024.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The supramolecular-based macrocyclic amphiphiles have fascinating attention and find extensive utilization in the pharmaceutical industry for efficient drug delivery. In this study, we designed and synthesized a new supramolecular amphiphilic macrocycle to serve as an efficient nanocarrier, achieved by treating 4-hydroxybenzaldehyde with 1-bromotetradecane. The derivatized product was subsequently treated with resorcinol to cyclize, resulting in the formation of a calix(4)-resorcinarene-based supramolecular amphiphilic macrocycle. The synthesized macrocycle and intermediate products were characterized using mass spectrometry, IR, and 1H NMR spectroscopic techniques. The amphotericin-B (Amph-B)-loaded and unloaded amphiphiles were screened for biocompatibility studies, vesicle formation, particle shape, size, surface charge, drug entrapment, in-vitro release profile, and stability through atomic force microscopy (AFM), Zetasizer, HPLC, and FT-IR. Amph-B -loaded macrocycle-based niosomal vesicles were investigated for in-vivo bioavailability in rabbits. The synthesized macrocycle exhibited no cytotoxicity against normal mouse fibroblast cells and was found to be hemocompatible and safe in mice following an acute toxicity study. The drug-loaded macrocycle-based vesicles appeared spherical, nano-sized, and homogeneous in size, with a notable negative surface charge. The vesicles remained stable after 30 days of storage. The results of Amph-B oral bioavailability and pharmacokinetics revealed that the newly tailored niosomal formulation enhanced drug solubility, protected drug degradation at gastric pH, facilitated sustained drug release at the specific target site, and delayed plasma drug clearance. Incorporating such advanced niosomal formulations in the field of drug delivery systems has the potential to revolutionize therapeutic outcomes and improve the quality of patient well-being.
Collapse
Affiliation(s)
- Imdad Ali
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 74200, Pakistan
| | - Amjad Ali
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China; Institute of Chemistry University of Silesia Szkolna 9, Katowice 40-600, Poland.
| | - Li Guo
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Samiullah Burki
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi
| | - Jawad Ur Rehman
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 74200, Pakistan
| | - Mahmood Fazal
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 74200, Pakistan
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia
| | - Sarzamin Khan
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Anbar-23561, Pakistan
| | - Carlos A T Toloza
- Department of Natural and Exact Science, Universidad de la Costa, Barranquilla, Colombia
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 74200, Pakistan.
| |
Collapse
|
2
|
Mohamad EA, Ali AA, Sharaky M, El-Gebaly RH. Niosomes loading N-acetyl-L-cysteine for cancer treatment in vivo study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4339-4353. [PMID: 38091079 DOI: 10.1007/s00210-023-02893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 05/23/2024]
Abstract
Scientists are seeking to find an effective treatment for tumors that has no side effects. N-Acetyl-l-cysteine (NAC) is a thiol compound extracted from garlic. Current study explores the potential of NAC-loaded niosomes (NAC-NIO) for tumor treatment in mice. NAC-loaded niosomes' efficiency, morphology, UV absorption, size distribution, zeta potential, release, and FTIR analysis were evaluated. For vivo study, 25 male BALB/c mice were divided to five groups: gp1 negative control (receive saline), gp2 positive control (tumor group), gp3 treated with NAC, gp4 treated with NAC-NIO at the same time of tumor injection, and gp5 treated with NAC-NIO after tumor growth (day 14). The impact of NAC-NIO on the tumor treatment was evaluated by measuring tumor size progress, comet assay, oxidative stress parameters (GSH, nitric oxide, MDA), western blot analysis, and histopathological investigation of tissues. NAC-NIO showed 72 ± 3% encapsulation efficiency and zeta potential - 5.95 mV with spherical shape. It was found that oral administration of NAC-NIO in a dose of 50 mg/kg provided significant protection against tumor cells. Our formulation decreases DNA injury significantly (P < 0.05). It was noticed that NAC-NIO can increase oxidative stress levels in tumor tissue. On the other hand, the caspase 3 and caspase 9 gene expression were upregulated significantly (P < 0.001) in mice administrated NAC-NIO compared with all other groups. Histological studies confirmed the protective effect of NAC-NIO against tumor especially for treatment during tumor growth protocol. The results suggested that oral delivery of NAC-NIO formulation improved antioxidant effect.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Department of Biophysics, Faculty of Science, Cairo University, 12613, Giza, Egypt
- College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Abeer A Ali
- Department of Biophysics, Faculty of Science, Cairo University, 12613, Giza, Egypt.
| | - Marwa Sharaky
- Department of Cancer Biology, Pharmacology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Reem H El-Gebaly
- Department of Biophysics, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
3
|
Niroumand U, Motazedian MH, Ahmadi F, Asgari Q, Bahreini MS, Ghasemiyeh P, Mohammadi-Samani S. Preparation and characterization of artemether-loaded niosomes in Leishmania major-induced cutaneous leishmaniasis. Sci Rep 2024; 14:10073. [PMID: 38698123 PMCID: PMC11065877 DOI: 10.1038/s41598-024-60883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
Cutaneous leishmaniasis is the most prevalent form of leishmaniasis worldwide. Although various anti-leishmanial regimens have been considered, due to the lack of efficacy or occurrence of adverse reactions, design and development of novel topical delivery systems would be essential. This study aimed to prepare artemether (ART)-loaded niosomes and evaluate their anti-leishmanial effects against Leishmania major. ART-loaded niosomes were prepared through the thin-film hydration technique and characterized in terms of particle size, zeta potential, morphology, differential scanning calorimetry, drug loading, and drug release. Furthermore, anti-leishmanial effect of the preparation was assessed in vitro and in vivo. The prepared ART-loaded niosomes were spherical with an average diameter of about 100 and 300 nm with high encapsulation efficiencies of > 99%. The results of in vitro cytotoxicity revealed that ART-loaded niosomes had significantly higher anti-leishmanial activity, lower general toxicity, and higher selectivity index (SI). Half-maximal inhibitory concentration (IC50) values of ART, ART-loaded niosomes, and liposomal amphotericin B were 39.09, 15.12, and 20 µg/mL, respectively. Also, according to the in vivo study results, ART-loaded niosomes with an average size of 300 nm showed the highest anti-leishmanial effects in animal studies. ART-loaded niosomes would be promising topical drug delivery system for the management of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Uranous Niroumand
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz-Marvdasht Hwy, Karafarin St, Shiraz, 71468 64685, Fars, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Motazedian
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ahmadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Qasem Asgari
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saleh Bahreini
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz-Marvdasht Hwy, Karafarin St, Shiraz, 71468 64685, Fars, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Borges AP, Obata MMS, Libardi SH, Trevisan RO, Deflon VM, Abram U, Ferreira FB, Costa LAS, Patrocínio AOT, da Silva MV, Borges JC, Maia PIS. Gold(I) and Silver(I) Complexes Containing Hybrid Sulfonamide/Thiourea Ligands as Potential Leishmanicidal Agents. Pharmaceutics 2024; 16:452. [PMID: 38675113 PMCID: PMC11053681 DOI: 10.3390/pharmaceutics16040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Leishmaniasis is a group of parasitic diseases with the potential to infect more than 1 billion people; however, its treatment is still old and inadequate. In order to contribute to changing this view, this work consisted of the development of complexes derived from MI metal ions with thioureas, aiming to obtain potential leishmanicidal agents. The thiourea ligands (HLR) were obtained by reactions of p-toluenesulfohydrazide with R-isothiocyanates and were used in complexation reactions with AgI and AuI, leading to the formation of complexes of composition [M(HLR)2]X (M = Ag or Au; X = NO3- or Cl-). All compounds were characterized by FTIR, 1H NMR, UV-vis, emission spectroscopy and elemental analysis. Some representatives were additionally studied by ESI-MS and single-crystal XRD. Their properties were further analyzed by DFT calculations. Their cytotoxicity on Vero cells and the extracellular leishmanicidal activity on Leishmania infantum and Leishmania braziliensis cells were evaluated. Additionally, the interaction of the complexes with the Old Yellow enzyme of the L. braziliensis (LbOYE) was examined. The biological tests showed that some compounds present remarkable leishmanicidal activity, even higher than that of the standard drug Glucantime, with different selectivity for the two species of Leishmania. Finally, the interaction studies with LbOYE revealed that this enzyme could be one of their biological targets.
Collapse
Affiliation(s)
- Alice P. Borges
- Bioactive Compounds Development Research Group, Federal University of Triângulo Mineiro, Av. Dr. Randolfo Borges 1400, Uberaba 38025-440, MG, Brazil;
| | - Malu M. S. Obata
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Av. Getúlio Guarita, Uberaba 38025-440, MG, Brazil; (M.M.S.O.); (R.O.T.); (M.V.d.S.)
| | - Silvia H. Libardi
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13566-590, SP, Brazil; (S.H.L.); (V.M.D.); (J.C.B.)
| | - Rafael O. Trevisan
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Av. Getúlio Guarita, Uberaba 38025-440, MG, Brazil; (M.M.S.O.); (R.O.T.); (M.V.d.S.)
| | - Victor M. Deflon
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13566-590, SP, Brazil; (S.H.L.); (V.M.D.); (J.C.B.)
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany;
| | - Francis B. Ferreira
- Associated Faculties of Uberaba, Av. do Tutuna 720, Uberaba 38061-500, MG, Brazil;
| | - Luiz Antônio S. Costa
- Computational Chemistry Research Group, Institute of Exact Sciences, Federal University of Juiz de Fora, Campus Universitário s/n Martelos, Juiz de Fora 36036-900, MG, Brazil;
| | - Antonio O. T. Patrocínio
- Laboratory of Photochemistry and Material Science, Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila 2121, Uberlândia 38400-902, MG, Brazil;
| | - Marcos V. da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Av. Getúlio Guarita, Uberaba 38025-440, MG, Brazil; (M.M.S.O.); (R.O.T.); (M.V.d.S.)
| | - Júlio C. Borges
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13566-590, SP, Brazil; (S.H.L.); (V.M.D.); (J.C.B.)
| | - Pedro I. S. Maia
- Bioactive Compounds Development Research Group, Federal University of Triângulo Mineiro, Av. Dr. Randolfo Borges 1400, Uberaba 38025-440, MG, Brazil;
| |
Collapse
|
5
|
Roostaee M, Derakhshani A, Mirhosseini H, Banaee Mofakham E, Fathi-Karkan S, Mirinejad S, Sargazi S, Barani M. Composition, preparation methods, and applications of nanoniosomes as codelivery systems: a review of emerging therapies with emphasis on cancer. NANOSCALE 2024; 16:2713-2746. [PMID: 38213285 DOI: 10.1039/d3nr03495j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Nanoniosome-based drug codelivery systems have become popular therapeutic instruments, demonstrating tremendous promise in cancer therapy, infection treatment, and other therapeutic domains. An emerging form of vesicular nanocarriers, niosomes are self-assembling vesicles composed of nonionic surfactants, along with cholesterol or other amphiphilic molecules. This comprehensive review focuses on how nanosystems may aid in making anticancer and antibacterial pharmaceuticals more stable and soluble. As malleable nanodelivery instruments, the composition, types, preparation procedures, and variables affecting the structure and stability of niosomes are extensively investigated. In addition, the advantages of dual niosomes for combination therapy and the administration of multiple medications simultaneously are highlighted. Along with categorizing niosomal drug delivery systems, a comprehensive analysis of various preparation techniques, including thin-layer injection, ether injection, and microfluidization, is provided. Dual niosomes for cancer treatment are discussed in detail regarding the codelivery of two medications and the codelivery of a drug with organic, plant-based bioactive compounds or gene agents. In addition, niogelosomes and metallic niosomal carriers for targeted distribution are discussed. The review also investigates the simultaneous delivery of bioactive substances and gene agents, including siRNA, microRNA, shRNA, lncRNA, and DNA. Additional sections discuss the use of dual niosomes for cutaneous drug delivery and treating leishmanial infections, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. The study concludes by delineating the challenges and potential routes for nanoniosome-based pharmaceutical codelivery systems, which will be useful for nanomedicine practitioners and researchers.
Collapse
Affiliation(s)
- Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Atefeh Derakhshani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hadiseh Mirhosseini
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Elmira Banaee Mofakham
- Department of Nanotechnology and Advanced Materials Research, Materials & Energy Research Center, Karaj, Iran.
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran.
| |
Collapse
|
6
|
Anjum A, Shabbir K, Din FU, Shafique S, Zaidi SS, Almari A, Alqahtani T, Maryiam A, Moneeb Khan M, Al Fatease A, Bashir S, Khan GM. Co-delivery of amphotericin B and pentamidine loaded niosomal gel for the treatment of Cutaneous leishmaniasis. Drug Deliv 2023; 30:2173335. [PMID: 36722301 PMCID: PMC9897754 DOI: 10.1080/10717544.2023.2173335] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Topical drug delivery is preferable route over systemic delivery in case of Cutaneous leishmaniasis (CL). Among the available agents, amphotericin B (AmB) and pentamidine (PTM) showed promising result against CL. However, monotherapy is associated with incidences of reoccurrence and resistance. Combination therapy is therefore recommended. Thin film hydration method was employed for amphotericin B-pentamidine loaded niosomes (AmB-PTM-NIO) preparation followed by their incorporation into chitosan gel. The optimization of AmB-PTM-NIO was done via Box Behnken Design method and in vitro and ex vivo analysis was performed. The optimized formulation indicated 226 nm particle size (PS) with spherical morphology, 0.173 polydispersity index (PDI), -36 mV zeta potential (ZP) and with entrapment efficiency (EE) of 91% (AmB) and 79% (PTM), respectively. The amphotericin B-pentamidine loaded niosomal gel (AmB-PTM-NIO-Gel) showed desirable characteristics including physicochemical properties, pH (5.1 ± 0.15), viscosity (31870 ± 25 cP), and gel spreadability (280 ± 26.46%). In vitro release of the AmB and PTM from AmB-PTM-NIO and AmB-PTM-NIO-Gel showed more prolonged release behavior as compared to their respective drug solution. Higher skin penetration, greater percentage inhibition and lower IC50 against the promastigotes shows that AmB-PTM-NIO has better antileishmanial activity. The obtained findings suggested that the developed AmB-PTM-NIO-Gel has excellent capability of permeation via skin layers, sustained release profile and augmented anti-leishmanial outcome of the incorporated drugs.
Collapse
Affiliation(s)
- Adnan Anjum
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Kanwal Shabbir
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,CONTACT Fakhar Ud Din
| | - Shumaila Shafique
- Dow College of Pharmacy, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences Karachi
| | - Syed Saoud Zaidi
- Dow College of Pharmacy, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences Karachi
| | - Ali H Almari
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Aleena Maryiam
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Muhammad Moneeb Khan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sidra Bashir
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan,Islamia College University, Peshawar, Pakistan,Gul Majid Khan Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| |
Collapse
|
7
|
Sherafati J, Dayer MS, Ghaffarifar F, Akbarzadeh K, Pirestani M. Evaluating leishmanicidal effects of Lucilia sericata products in combination with Apis mellifera honey using an in vitro model. PLoS One 2023; 18:e0283355. [PMID: 37535629 PMCID: PMC10399734 DOI: 10.1371/journal.pone.0283355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/07/2023] [Indexed: 08/05/2023] Open
Abstract
Leishmaniasis is a zoonotic disease caused by an intracellular parasite from the genus Leishmania. Lack of safe and effective drugs has increasingly promoted researches into new drugs of natural origin to cure the disease. The study, therefore, aimed to investigate the anti-leishmanial effects of Lucilia sericata larval excretion/secretion (ES) in combination with Apis mellifera honey as a synergist on Leishmania major using an in vitro model. Various concentrations of honey and larval ES fractions were tested against promastigotes and intracellular amastigotes of L. major using macrophage J774A.1 cell line. The inhibitory effects and cytotoxicity of ES plus honey were evaluated using direct counting method and MTT assay. To assess the effects of larval ES plus honey on the amastigote form, the rate of macrophage infection and the number of amastigotes per infected macrophage cell were estimated. The 50% inhibitory concentration (IC50) values were 21.66 μg/ml, 43.25 60 μg/ml, 52.58 μg/ml, and 70.38 μg/ml for crude ES plus honey, ES >10 kDa plus honey, ES <10 kDa plus honey, and honey alone, respectively. The IC50 for positive control (glucantime) was 27.03 μg/ml. There was a significant difference between viability percentages of promastigotes exposed to different doses of applied treatments compared to the negative control (p≤ 0.0001). Microscopic examination of amastigote forms revealed that dosages applied at 150 to 300 μg/ml significantly reduced the rate of macrophage infection and the number of amastigotes per infected macrophage cell. Different doses of larval products plus honey did not show a significant toxic effect agaist macrophage J774 cells. The larval ES fractions of L. sericata in combination with A. mellifera honey acted synergistically against L. major.
Collapse
Affiliation(s)
- Jila Sherafati
- Faculty of Medical Sciences, Department of Parasitology and Medical Entomology, Tarbiat Modares University, Tehran, Iran
- Faculty of Medical Sciences, Student Research Committee, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Saaid Dayer
- Faculty of Medical Sciences, Department of Parasitology and Medical Entomology, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Faculty of Medical Sciences, Department of Parasitology and Medical Entomology, Tarbiat Modares University, Tehran, Iran
| | - Kamran Akbarzadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Pirestani
- Faculty of Medical Sciences, Department of Parasitology and Medical Entomology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Registre C, Soares RDOA, Rubio KTS, Santos ODH, Carneiro SP. A Systematic Review of Drug-Carrying Nanosystems Used in the Treatment of Leishmaniasis. ACS Infect Dis 2023; 9:423-449. [PMID: 36795604 DOI: 10.1021/acsinfecdis.2c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Leishmaniasis is an infectious disease responsible for a huge rate of morbidity and mortality in humans. Chemotherapy consists of the use of pentavalent antimonial, amphotericin B, pentamidine, miltefosine, and paromomycin. However, these drugs are associated with some drawbacks such as high toxicity, administration by parenteral route, and most seriously the resistance of some strains of the parasite to them. Several strategies have been used to increase the therapeutic index and reduce the toxic effects of these drugs. Among them, the use of nanosystems that have great potential as a site-specific drug delivery system stands out. This review aims to compile results from studies that were carried out using first- and second-line antileishmanial drug-carrying nanosystems. The articles referred to here were published between 2011 and 2021. This study shows the promise of effective applicability of drug-carrying nanosystems in the field of antileishmanial therapeutics, with the perspective of providing better patient adherence to treatment, increased therapeutic efficacy, reduced toxicity of conventional drugs, as well as the potential to efficiently improve the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Charmante Registre
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Rodrigo D O A Soares
- Immunopathology Laboratory, Research Center in Biological Sciences/NUPEB, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Karina T S Rubio
- Toxicology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Orlando D H Santos
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Simone P Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| |
Collapse
|
9
|
Frézard F, Aguiar MMG, Ferreira LAM, Ramos GS, Santos TT, Borges GSM, Vallejos VMR, De Morais HLO. Liposomal Amphotericin B for Treatment of Leishmaniasis: From the Identification of Critical Physicochemical Attributes to the Design of Effective Topical and Oral Formulations. Pharmaceutics 2022; 15:pharmaceutics15010099. [PMID: 36678729 PMCID: PMC9864876 DOI: 10.3390/pharmaceutics15010099] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The liposomal amphotericin B (AmB) formulation, AmBisome®, still represents the best therapeutic option for cutaneous and visceral leishmaniasis. However, its clinical efficacy depends on the patient's immunological status, the clinical manifestation and the endemic region. Moreover, the need for parenteral administration, its side effects and high cost significantly limit its use in developing countries. This review reports the progress achieved thus far toward the understanding of the mechanism responsible for the reduced toxicity of liposomal AmB formulations and the factors that influence their efficacy against leishmaniasis. It also presents the recent advances in the development of more effective liposomal AmB formulations, including topical and oral liposome formulations. The critical role of the AmB aggregation state and release rate in the reduction of drug toxicity and in the drug efficacy by non-invasive routes is emphasized. This paper is expected to guide future research and development of innovative liposomal formulations of AmB.
Collapse
Affiliation(s)
- Frédéric Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: ; Tel.: +55-31-34092940
| | - Marta M. G. Aguiar
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Lucas A. M. Ferreira
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Guilherme S. Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Thais T. Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gabriel S. M. Borges
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Virgínia M. R. Vallejos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Helane L. O. De Morais
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
10
|
Santoso P, Minamihata K, Ishimine Y, Taniguchi H, Komada T, Sato R, Goto M, Takashima T, Taira T, Kamiya N. Enhancement of the Antifungal Activity of Chitinase by Palmitoylation and the Synergy of Palmitoylated Chitinase with Amphotericin B. ACS Infect Dis 2022; 8:1051-1061. [PMID: 35471825 DOI: 10.1021/acsinfecdis.2c00052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Combinations of antifungal drugs can have synergistic antifungal activity, achieving high therapeutic efficacy while minimizing the side effects. Amphotericin B (AMB) has been used as a standard antifungal drug for fungal infections; however, because of its high toxicity, new strategies to minimize the required dose are desirable. Chitinases have recently received attention as alternative safe antifungal agents. Herein, we report the combination of palmitoylated chitinase domains with AMB to enhance the antifungal activity. The chitin-binding domain (LysM) from Pteris ryukyuensis chitinase was site-specifically palmitoylated by conjugation reaction catalyzed by microbial transglutaminase. The palmitoylated LysM (LysM-Pal) exhibited strong antifungal activity against Trichoderma viride, inhibiting the growth completely at a concentration of 2 μM. This antifungal effect of LysM-Pal was mainly due to the effect of anchoring of palmitic acid motif to the plasma membrane of fungi. A combination of AMB with LysM-Pal resulted in synergistic enhancement of the antifungal activity. Intriguingly, LysM-Pal exhibited higher level of antifungal activity enhancement than palmitoylated catalytic domain (CatD) and fusion of LysM and CatD. Addition of 0.5 μM LysM-Pal to AMB reduced the minimal inhibition concentration of AMB to 0.31 μM (2.5 μM without LysM-Pal). The possible mechanism of the synergistic effect of AMB and LysM-Pal is destabilization of the plasma membrane by anchoring of palmitic acid and ergosterol extraction by AMB and destabilization of the chitin layer by LysM binding. The combination of LysM-Pal with AMB can drastically reduce the dose of AMB and may be a useful strategy to treat fungal infections.
Collapse
Affiliation(s)
- Pugoh Santoso
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yugo Ishimine
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Ryukyu University, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan
| | - Hiromasa Taniguchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takuya Komada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryo Sato
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomoya Takashima
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Ryukyu University, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan
| | - Toki Taira
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Ryukyu University, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Mohseni F, Sharifi I, Oliaee RT, Babaei Z, Mostafavi M, Almani PGN, Keyhani A, Salarkia E, Sharifi F, Nave HH, Bamorovat M, Alahdin S, Sarlak M, Tavakoly R. Antiproliferative properties of Turmerone on Leishmania major: Modes of action confirmed by antioxidative and immunomodulatory roles. Comp Immunol Microbiol Infect Dis 2022; 84:101797. [PMID: 35325685 DOI: 10.1016/j.cimid.2022.101797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Treatment of leishmaniasis by conventional synthetic compounds has faced a serious challenge worldwide. This study was performed to evaluate the effect and modes of action of aromatic Turmerone on the Leishmania major intra-macrophage amastigotes, the causative agent of zoonotic cutaneous leishmaniasis in the Old World. In the findings, the mean numbers of L. major amastigotes in macrophages were significantly decreased in exposure to Turmerone plus meglumine antimoniate (Glucantime®; MA) than MA alone, especially at 50 µg/mL. In addition, Turmerone demonstrated no cytotoxicity as the selectivity index (SI) was 21.1; while it induced significant apoptosis in a dose-dependent manner on L. major promastigotes. In silico molecular docking analyses indicated an affinity of Turmerone to IL-12, with the MolDock score of - 96.8 kcal/mol; which may explain the increased levels of Th1 cytokines and decreased level of IL-10. The main mechanism of action is more likely associated with stimulating a powerful antioxidant and promoting the immunomodulatory roles in the killing of the target organism.
Collapse
Affiliation(s)
- Fahimeh Mohseni
- Department of Medical Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahshid Mostafavi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini Nave
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sodabeh Alahdin
- Department of Medical Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Meysam Sarlak
- Department of Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Rahele Tavakoly
- Student Research Committee, School of Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Aflatoonian M, Sharifi I, Aflatoonian B, Salarkia E, Khosravi A, Tavakoli Oliaee R, Bamorovat M, Aghaei Afshar A, Babaei Z, Sharifi F, Taheri Soodejani M, Shirzadi MR, Gouya MM, Nadim A, Sharifi H. Fifty years of struggle to control cutaneous leishmaniasis in the highest endemic county in Iran: A longitudinal observation inferred with interrupted time series model. PLoS Negl Trop Dis 2022; 16:e0010271. [PMID: 35486645 PMCID: PMC9053817 DOI: 10.1371/journal.pntd.0010271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
Negligible data are available following major social activities and environmental changes on leishmaniasis. Therefore, how interactions between these events influence cutaneous leishmaniasis (CL) risk is not well-known. This longitudinal study was undertaken to explore the impact of interventions conducted between 1971 and 2020 in Bam county, which has had the highest disease burden in Iran. Only confirmed CL cases during this period were taken into account. Data were analyzed by SPSS 22 using the X2 test to assess the significance of the difference between proportions. Moreover, we used interrupted time series (ITS) to assess the impact of three environmental events during this period. Overall, 40,164 cases of CL occurred in the past five decades. Multiple complex factors were among the leading causes that synergistically induced the emergence/re-emergence of CL outbreaks in Bam. The main factors attributed negatively to CL control were cessation of malaria spraying activity, expansion of the city spaces, and a massive earthquake creating new breeding potentials for the vectors. The highest impact on CL incidence during these years was related to the earthquake [coefficient = 17.8 (95% CI: 11.3, 22.7); p-value < 0.001]. Many factors can contribute to CL outbreaks in endemic foci. They also can cause new foci in new areas. Since humans are the single reservoir for CL in this area, early detection and effective management significantly contribute to controlling CL to reduce the disease burden. However, essential evidence gaps remain, and new tools are crucial before the disease can ultimately be controlled. Nevertheless, sustained funding and more trained task forces are essential to strengthen surveillance and case management and monitor the interventions’ impact. We aimed to conduct this longitudinal observation to assess the impact of interventions applied between 1971 and 2020 in Bam county, Iran’s highest anthroponotic cutaneous leishmaniasis burden. Only confirmed CL cases were taken into account. Overall, 40,164 cases of CL occurred in the past five decades. Multiple complex factors were among the leading causes that synergistically induced the emergence/re-emergence of CL outbreaks in Bam. The main factors attributed negatively to CL control were cessation of malaria spraying activity, expansion of the city spaces, and a massive earthquake creating new breeding potentials for the vectors. Since humans are the single reservoir host for CL in this area, early detection and effective management significantly contribute to controlling CL to reduce the disease burden. However, continuous funding and more trained forces are critical to strengthening surveillance and case management and monitoring the interventions’ impact.
Collapse
Affiliation(s)
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Behnaz Aflatoonian
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Aghaei Afshar
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Taheri Soodejani
- Center for Healthcare Data Modeling, Departments of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Mohammad Mehdi Gouya
- Center for Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Abolhassan Nadim
- Department of Epidemiology and Biostatics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Sharifi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Rashno Z, Sharifi I, Oliaee RT, Tajbakhsh S, Sharififar F, Sharifi F, Hatami A, Faridi A, Babaei Z. Anti-leishmanial activity of Avicennia marina (Avicenniaceae family) leaves hydroalcoholic extract and its possible cellular mechanisms. Parasite Epidemiol Control 2022; 17:e00239. [PMID: 35146140 PMCID: PMC8801380 DOI: 10.1016/j.parepi.2022.e00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products are the main source of potent antioxidants and anti-leishmanial agents. This study was aimed to evaluate Avicennia marina (Avicenniaceae family) extract inhibitory effect against Leishmania tropica by accessing apoptotic markers and arginase activity. The A. marina were extracted and phytochemical analysis conducted. The inhibitory effect of A. marina was evaluated on L. tropica promastigote and amastigote forms, compared to meglumine antimoniate (Glucantime, MA) as standard drug. The level of apoptosis, Reactive Oxygen Species (ROS) production and arginase activity was assessed in A. marina-treated cells compared to control group. Phytochemical screening of A. marina extract showed strong presence of tannins and saponins. We demonstrated the inhibitory effect of A. marina on promastigote stages in a dose dependent manner. Also, lower 50% inhibitory concentration (IC50) value of amastigotes was indicated in A. marina group compared with the standard group of Glucantime (60.57 ± 1.46 vs. 73.19 ± 10.12 μg/mL, respectively, P < 0.05). Besides, A. marina represented no cytotoxicity as the selectivity index (SI) was 10.7. Also, it showed the potential to induce early apoptosis of 46.5% in promastigotes at 125 μg/mL concentration. Significant reduction of arginase level was observed in both A. marina-treated cells and promastigotes. The promising results indicated higher effectiveness of A. marina in decreasing parasite growth, inducing apoptosis in promastigotes, increasing ROS production and decreasing arginase level. So, A. marina can be a native plant candidate for anti-leishmanial drug in tropical regions with cutaneous leishmaniasis due to L. tropica.
Collapse
Affiliation(s)
- Zahra Rashno
- Department of Medical Parasitology and Mycology, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Tavakoli Oliaee
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Tajbakhsh
- Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Hatami
- Pathology and Stem Cell Research Center, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ashkan Faridi
- Department of Medical Parasitology and Mycology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Corresponding author at: Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
14
|
Drug associations as alternative and complementary therapy for neglected tropical diseases. Acta Trop 2022; 225:106210. [PMID: 34687644 DOI: 10.1016/j.actatropica.2021.106210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/02/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022]
Abstract
The present paper aims to establish different treatments for neglected tropical disease by a survey on drug conjugations and possible fixed-dose combinations (FDC) used to obtain alternative, safer and more effective treatments. The source databases used were Science Direct and PubMed/Medline, in the intervals between 2015 and 2021 with the drugs key-words or diseases, like "schistosomiasis", "praziquantel", "malaria", "artesunate", "Chagas' disease", "benznidazole", "filariasis", diethylcarbamazine", "ivermectin", " albendazole". 118 works were the object of intense analysis, other articles and documents were used to increase the quality of the studies, such as consensuses for harmonizing therapeutics and historical articles. As a result, an effective NTD control can be achieved when different public health approaches are combined with interventions guided by the epidemiology of each location and the availability of appropriate measures to detect, prevent and control disease. It was also possible to verify that the FDCs promote a simplification of the therapeutic regimen, which promotes better patient compliance and enables a reduction in the development of parasitic resistance, requiring further studies aimed at resistant strains, since the combined APIs usually act by different mechanisms or at different target sites. In addition to eliminating the process of developing a new drug based on the identification and validation of active compounds, which is a complex, long process and requires a strong long-term investment, other advantages that FDCs have are related to productive gain and gain from the industrial plant, which can favor and encourage the R&D of new FDCs not only for NTDs but also for other diseases that require the use of more than one drug.
Collapse
|
15
|
Keyhani A, Sharifi I, Salarkia E, Khosravi A, Tavakoli Oliaee R, Babaei Z, Ghasemi Nejad Almani P, Hassanzadeh S, Kheirandish R, Mostafavi M, Hakimi Parizi M, Alahdin S, Sharifi F, Dabiri S, Shamsi Meymandi S, Khamesipour A, Jafarzadeh A, Bamorovat M. In vitro and in vivo therapeutic potentials of 6-gingerol in combination with amphotericin B for treatment of Leishmania major infection: Powerful synergistic and multifunctional effects. Int Immunopharmacol 2021; 101:108274. [PMID: 34688150 DOI: 10.1016/j.intimp.2021.108274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022]
Abstract
The ongoing conventional drugs for leishmaniasis treatment are insufficient. The present study aimed to assess 6-gingerol alone and in combination with amphotericin B on Leishmania major stages using experimental and in vivo murine models. Here, arrays of experimental approaches were designed to monitor and evaluate the 6-gingerol potential therapeutic outcomes. The binding affinity of 6-gingerol and IFN-γ was the basis for docking conformations. 6-Gingerol combined with amphotericin B represented a safe mixture, extremely leishmanicidal, a potent antioxidant, induced a remarkable apoptotic index, significantly increased the expression of the Th1-related cytokines (IL-12p40, IFN-γ, and TNF- α), iNOS, and transcription factors (STAT1, c-Fos, and Elk-1). In contrast, the expression of the Th2-related cytokines was significantly downregulated (p < 0.001). This combination was also potent when the lesion appearance was evaluated following three weeks of treatment. The histopathological and immunohistochemical patterns of the murine model represented clusters of CD4+ and CD8+ T lymphocytes which compressed and deteriorated the macrophages harboring Leishman bodies. The primary mode of action of 6-gingerol and amphotericin B involved broad mechanistic insights providing a coherent basis for further clinical study as a potential drug candidate for CL. In conclusion, 6-gingerol with amphotericin B synergistically exerted anti-leishmanial activity in vitro and in vivo and potentiated macrophages' leishmanicidal activity, modulated Th1- and Th2-related phenotypes improved the histopathological changes in the BALB/c mice infected with L. major. They elevated the leukocyte infiltration into the lesions. Therefore, this combination should be considered for treating volunteer patients with CL in clinical studies.
Collapse
Affiliation(s)
- Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Saeid Hassanzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Kheirandish
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mashid Mostafavi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Hakimi Parizi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sodabeh Alahdin
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Department of Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Simin Shamsi Meymandi
- Department of Dermatology, Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Profiro de Oliveira JH, Arruda IES, Izak Ribeiro de Araújo J, Chaves LL, de La Rocca Soares MF, Soares-Sobrinho JL. Why do few drug delivery systems to combat neglected tropical diseases reach the market? An analysis from the technology's stages. Expert Opin Ther Pat 2021; 32:89-114. [PMID: 34424127 DOI: 10.1080/13543776.2021.1970746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Many drugs used to combat schistosomiasis, Chagas disease, and leishmaniasis (SCL) have clinical limitations such as: high toxicity to the liver, kidneys and spleen; reproductive, gastrointestinal, and heart disorders; teratogenicity. In this sense, drug delivery systems (DDSs) have been described in the literature as a viable option for overcoming the limitations of these drugs. An analysis of the level of development (TRL) of patents can help in determine the steps that must be taken for promising technologies to reach the market. AREAS COVERED This study aimed to analyze the stage of development of DDSs for the treatment of SCL described in patents. In addition, we try to understand the main reasons why many DDSs do not reach the market. In this study, we examined DDSs for drugs indicated by WHO and treatment of SCL, by performing a search for patents. EXPERT OPINION In this present work we provide arguments that support the hypothesis that there is a lack of integration between academia and industry to finance and continue research, especially the development of clinical studies. We cite the translational research consortia as the potential alternative for developing DDSs to combat NTDs.
Collapse
Affiliation(s)
| | | | | | - Luise Lopes Chaves
- Department of Pharmacy, Federal University of Pernambuco, Recife, Recife-Pernambuco
| | | | | |
Collapse
|
17
|
Briones Nieva CA, Cid AG, Romero AI, García-Bustos MF, Villegas M, Bermúdez JM. An appraisal of the scientific current situation and new perspectives in the treatment of cutaneous leishmaniasis. Acta Trop 2021; 221:105988. [PMID: 34058160 DOI: 10.1016/j.actatropica.2021.105988] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is a Neglected Tropical Diseases caused by protozoan parasites of the genus Leishmania. It is a major health problem in many tropical and subtropical regions of the world and can produce three different clinical manifestations, among which cutaneous leishmaniasis has a higher incidence in the world than the other clinical forms. There are no recognized and reliable means of chemoprophylaxis or vaccination against infections with different forms of leishmaniasis. In addition, chemotherapy, unfortunately, remains, in many respects, unsatisfactory. Therefore, there is a continuing and urgent need for new therapies against leishmaniasis that are safe and effective in inducing a long-term cure. This review summarizes the latest advances in currently available treatments and improvements in the development of drug administration. In addition, an analysis of the in vivo assays was performed and the challenges facing promising strategies to treat CL are discussed. The treatment of leishmaniasis will most likely evolve into an approach that uses multiple therapies simultaneously to reduce the possibility of developing drug resistance. There is a continuous effort to discover new drugs to improve the treatment of leishmaniasis, but this is mainly at the level of individual researchers. Undoubtedly, more funding is needed in this area, as well as greater participation of the pharmaceutical industry to focus efforts on the development of chemotherapeutic agents and vaccines for this and other neglected tropical diseases.
Collapse
Affiliation(s)
- C A Briones Nieva
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - Alicia Graciela Cid
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - Analía Irma Romero
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - María Fernanda García-Bustos
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Salta, Argentina
| | - Mercedes Villegas
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - José María Bermúdez
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina.
| |
Collapse
|
18
|
Lozano ES, Germanó MJ, Troncoso ME, García Bustos MF, Luques CG, Cargnelutti DE. Therapeutic effect of Prosopis strombulifera (LAM) BENTH aqueous extract on a murine model of cutaneous leishmaniasis. J Tradit Complement Med 2021; 12:281-286. [PMID: 35493311 PMCID: PMC9039096 DOI: 10.1016/j.jtcme.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/14/2023] Open
Abstract
Background and aim Prosopis strombulifera (Lam.) Benth is a rhizomatous shrub native from different zones of Argentine Republic. P. strombulifera aqueous extract (PsAE) has different effects and several biological activities have been reported. The goal of this study was to analyze the activity of PsAE on a murine model of cutaneous leishmaniasis caused by Leishmania amazonensis. Experimental procedure PsAE was orally administered at 150 mg/animal/day on BALB/c mice infected in the right footpad (RFP) with 1 × 105 promastigotes of L. amazonensis. As a chemotherapeutic control of treatment, animals receive a commercial form of meglumine antimoniate (MA) (Glucantime®, Aventis, Paris, France). Results and conclusion We observe that the size of RFP lesions of infected mice without treatment showed a grade of inflammation, ulceration and necrosis at the site of infection much greater than that observed with PsAE or MA treatment. Moreover, PsAE was capable of decreasing parasite burden and splenic index. Furthermore, PsAE treated mice showed a significant decrease in O.D. of total anti-Leishmania IgG antibody responses against L. amazonensis. This decrease was similar to those observed when the reference drug, MA, was used. This would indicate that PsAE treatment inhibits or delays disease progression in mice. In conclusion, our findings suggest that PsAE could be a potential candidate to be used, as a new therapeutic strategy, to treat cutaneous leishmaniasis caused by L. amazonensis. Prosopis strombulifera aqueous extract (PsAE) has antileishmanial effect. PsAE treatment reduces inflammation and ulceration at the site of infection. PsAE decreased parasite burden and splenic index. PsAE decreased total anti-Leishmania IgG antibody responses against L. amazonensis. PsAE produces a switch to Th1 humoral immune response after infection.
Collapse
Affiliation(s)
- Esteban Sebastián Lozano
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Medicina y Biología Experimental de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
- Corresponding author. Av. Ruiz Leal s/n Parque General San Martín, Mendoza CP, 5500, Argentina.
| | - María José Germanó
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Medicina y Biología Experimental de Cuyo, Mendoza, Argentina
| | - Mariana Elizabeth Troncoso
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Medicina y Biología Experimental de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
- Universidad de Mendoza, Facultad de Ciencias Médicas, Mendoza, Argentina
| | - María Fernanda García Bustos
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Patología Experimental, Salta, Argentina
| | - Carlos Gamarra Luques
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Medicina y Biología Experimental de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
| | - Diego Esteban Cargnelutti
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Medicina y Biología Experimental de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
| |
Collapse
|
19
|
Prasanna P, Kumar P, Kumar S, Rajana VK, Kant V, Prasad SR, Mohan U, Ravichandiran V, Mandal D. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis - A review. Biomed Pharmacother 2021; 141:111920. [PMID: 34328115 DOI: 10.1016/j.biopha.2021.111920] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
The study of tropical diseases like leishmaniasis, a parasitic disease, has not received much attention even though it is the second-largest infectious disease after malaria. As per the WHO report, a total of 0.7-1.0 million new leishmaniasis cases, which are spread by 23 Leishmania species in more than 98 countries, are estimated with an alarming 26,000-65,000 death toll every year. Lack of potential vaccines along with the cost and toxicity of amphotericin B (AmB), the most common drug for the treatment of leishmaniasis, has raised the interest significantly for new formulations and drug delivery systems including nanoparticle-based delivery as anti-leishmanial agents. The size, shape, and high surface area to volume ratio of different NPs make them ideal for many biological applications. The delivery of drugs through liposome, polymeric, and solid-lipid NPs provides the advantage of high biocomatibilty of the carrier with reduced toxicity. Importantly, NP-based delivery has shown improved efficacy due to targeted delivery of the payload and synergistic action of NP and payload on the target. This review analyses the advantage of NP-based delivery over standard chemotherapy and natural product-based delivery system. The role of different physicochemical properties of a nanoscale delivery system is discussed. Further, different ways of nanoformulation delivery ranging from liposome, niosomes, polymeric, metallic, solid-lipid NPs were updated along with the possible mechanisms of action against the parasite. The status of current nano-vaccines and the future potential of NP-based vaccine are elaborated here.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Vinod Kumar Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Vishnu Kant
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Utpal Mohan
- National Institute of Pharmaceutical Education and Research, Kolkata 700054, India.
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India; National Institute of Pharmaceutical Education and Research, Kolkata 700054, India.
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| |
Collapse
|
20
|
In Vitro and In Vivo Anti-parasitic Activity of Artemisinin Combined With Glucantime and Shark Cartilage Extract on Iranian Strain of Leishmania major (MRHO/IR/75/ER). Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.113313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: The adverse effects and increased resistance of drugs necessities the discovery of novel combination therapy. Objectives: This study aimed to examine the effects of Artemisinin plus glucantime or shark cartilage extract on the Iranian strain of Leishmania major (MRHO/IR/75/ER) in vitro and in vivo. Methods: In in vitro experiments, the effects of drugs and their combination in different concentrations (3.12 - 400 µg/mL) on the promastigotes, amastigotes, and un-infected macrophage cells were evaluated. In in vivo experiments, infected BALB/c mice were used as a cutaneous leishmaniasis model to evaluate the effects of the drugs and their combinations with different routes of administrations (namely Artemisinin: oral, ointment, and intraperitoneal; glucantime: intraperitoneal, intramuscular, intralesional, and subcutaneous; shark cartilage extract: oral) on parasite burden, lesion size, and immune system modulation. Results: The results revealed that Artemisinin and glucantime in combination with shark cartilage extract had greater effects on promastigotes than either Artemisinin or glucantime (P < 0.05), and that the combinations also had high cytotoxic effects on promastigotes and uninfected macrophages (P = 0.001). These combinations had more inhibitory effects on amastigotes and infected macrophages than promastigotes. The lesion sizes and parasite burden in the spleen decreased against the combinations of the drugs in different administrations. It was also noticed that the best combination administration route of Artemisinin and glucantime, as strong inducers of INF-γ and Th1 immune response, were ointment and intramuscular, respectively (P < 0.05). Conclusions: The findings indicate that Artemisinin- glucantime or Artemisinin- Shark cartilage combinations are effective inhibitors of L. major. However, further clinical trials are recommended to evaluate the effects of these combinations in human subjects.
Collapse
|
21
|
Sharifi F, Sharififar F, Pournamdari M, Ansari M, Tavakoli Oliaee R, Bamorovat M, Khosravi A, Keyhani AR, Salarkia E, Mortazaeizdeh A, Dabiri S, Khamesipour A, Sharifi I. Leishmanicidal potentials of Gossypium hirsutum extract and its fractions on Leishmania major in a murine model: parasite burden, gene expression, and histopathological profile. J Med Microbiol 2021; 70. [PMID: 34115583 DOI: 10.1099/jmm.0.001333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Leishmaniasis is a neglected tropical and subtropical disease caused by over 20 protozoan species.Hypothesis. Treatment of this complex disease with traditional synthetic drugs is a major challenge worldwide. Natural constituents are unique candidates for future therapeutic development.Aim. This study aimed to assess the in vivo anti-leishmanial effect of the Gossypium hirsutum extract, and its fractions compared to the standard drug (Glucantime, MA) in a murine model and explore the mechanism of action.Methodology. Footpads of BALB/c mice were infected with stationary phase promastigotes and treated topically and intraperitoneally with G. hirsutum extract, its fractions, or Glucantime, 4 weeks post-infection. The extract and fractions were prepared using the Soxhlet apparatus with chloroform followed by the column procedure.Results. The crude extract significantly decreased the footpad parasite load and lesion size compared to the untreated control group (P<0.05), as revealed by dilution assay, quantitative real-time PCR, and histopathological analyses. The primary mode of action involved an immunomodulatory role towards the Th1 response in the up-regulation of IFN-γ and IL-12 and the suppression of IL-10 gene expression profiling against cutaneous leishmaniasis caused by Leishmania major.Conclusion. This finding suggests that the extract possesses multiple combinatory effects of diverse bioactive phytochemical compositions that exert its mechanisms of action through agonistic-synergistic interactions. The topical extract formulation could be a suitable and unique candidate for future investigation and pharmacological development. Further studies are crucial to evaluate the therapeutic potentials of the extract alone and in combination with conventional drugs using clinical settings.
Collapse
Affiliation(s)
- Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Kerman, Iran
| | - Mostafa Pournamdari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Reza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Mortazaeizdeh
- Pathology and Stem Cell Research Center, Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
22
|
Kammona O, Tsanaktsidou E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 2021; 605:120761. [PMID: 34081999 DOI: 10.1016/j.ijpharm.2021.120761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is a prevalent parasitic infection belonging to neglected tropical diseases. It is caused by Leishmania protozoan parasites transmitted by sandflies and it is responsible for increased morbidity/mortality especially in low- and middle-income countries. The lack of cheap, portable, easy to use diagnostic tools exhibiting high efficiency and specificity impede the early diagnosis of the disease. Furthermore, the typical anti-leishmanial agents are cytotoxic, characterized by low patient compliance and require long-term regimen and usually hospitalization. In addition, due to the intracellular nature of the disease, the existing treatments exhibit low bioavailability resulting in low therapeutic efficacy. The above, combined with the common development of resistance against the anti-leishmanial agents, denote the urgent need for novel therapeutic strategies. Furthermore, the lack of effective prophylactic vaccines hinders the control of the disease. The development of nanoparticle-based biosensors and nanocarrier-aided treatment and vaccination strategies could advance the diagnosis, therapy and prevention of leishmaniasis. The present review intends to highlight the various nanotechnology-based approaches pursued until now to improve the detection of Leishmania species in biological samples, decrease the side effects and increase the efficacy of anti-leishmanial drugs, and induce enhanced immune responses, specifically focusing on the outcome of their preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece.
| | - Evgenia Tsanaktsidou
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
23
|
Jafari M, Abolmaali SS, Tamaddon AM, Zomorodian K, Sarkari BS. Nanotechnology approaches for delivery and targeting of Amphotericin B in fungal and parasitic diseases. Nanomedicine (Lond) 2021; 16:857-877. [PMID: 33890492 DOI: 10.2217/nnm-2020-0482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Amphotericin B (AMB), with widespread antifungal and anti-parasitic activities and low cross-resistance with other drugs, has long been identified as a potent antimicrobial drug. However, its clinical toxicities, especially nephrotoxicity, have limited its use in clinical practice. Lately, nano-based systems have been the subject of serious research and becoming an effective strategy to improve toxicity and antimicrobial potency. Commercial AMB lipid formulations have been developed in order to improve the therapeutic index and nephrotoxicity, while limited use is mainly due to their high cost. The review aimed to highlight the updated information on nanotechnology-based approaches to the development of AMB delivery and targeting systems for treatment of fungal diseases and leishmaniasis, regarding therapeutic challenges and achievements of various delivery systems.
Collapse
Affiliation(s)
- Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz PO Box 71345-1583, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz PO Box 71345-1583, Iran.,Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Ali Mohammad Tamaddon
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz PO Box 71345-1583, Iran.,Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Kamiar Zomorodian
- Department of Parasitology & Mycology, School of Medicines, Shiraz University of Medical Sciences, Shiraz, PO Box 7134845794, Iran.,Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, PO Box 7134845794, Iran
| | - Bahador Shahriarirad Sarkari
- Department of Parasitology & Mycology, School of Medicines, Shiraz University of Medical Sciences, Shiraz, PO Box 7134845794, Iran.,Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, PO Box 7134845794, Iran
| |
Collapse
|
24
|
Albalawi AE, Khalaf AK, Alyousif MS, Alanazi AD, Baharvand P, Shakibaie M, Mahmoudvand H. Fe3O4 @piroctone olamine magnetic nanoparticles: Synthesize and therapeutic potential in cutaneous leishmaniasis. Biomed Pharmacother 2021; 139:111566. [PMID: 33839494 DOI: 10.1016/j.biopha.2021.111566] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In recent years, magnetic nanoparticles (NMP) as novel materials have been widely used for biomedical, diagnostic and therapeutic purposes like microbial infection therapy. The purpose of this study is to synthesize PO coated iron oxide magnetic nanoparticles (Fe3O4@PO NPs) and their anti-leishmanial effects in vitro and in vivo against cutaneous leishmaniasis. METHODS Fe3O4 magnetic nanoparticles were synthesized by the coprecipitation of Fe2 + and Fe3 + ions and used as a nanocarrier for the production of Fe3O4@PO NPs. The in vitro antileishmanial effects of PO-coated Fe3O4 NPs and Fe3O4 NPs (10-200 µg/mL) was determined against the intracellular amastigotes of Leishmania major (MRHO/IR/75/ER) and, then, examined on cutaneous leishmaniasis induced in male BALB/c mice by L. major. The rate of infectivity, production of nitric oxide (NO), and cytotoxic activates of Fe3O4 NPs and Fe3O4@PO NPs on J774-A1 macrophage cells were determined. RESULTS The size scattering of the Fe3O4 NPs and Fe3O4@PO NPs were in the range among 1-40 and 5-55 nm, respectively. The obtained IC50 values were 62.3 ± 2.15 μg/mL, 31.3 ± 2.26 μg/mL, and 52.6 ± 2.15 μg/mL for the Fe3O4 NPs and Fe3O4@PO NPs, and MA, respectively. The results revealed that the mean number of parasites and the mean diameter of the lesions was considerably (p < 0.05) decreased in the infected mice treated with Fe3O4 NPs and Fe3O4@PO NPs. The Fe3O4 NPs and Fe3O4@PO NPs significantly (p < 0.05) prompted the production of NO as a dose-dependent manner. The promastigotes pre-incubated in Fe3O4 NPs and Fe3O4@PO NPs at the concentration of 5 µg/mL had the ability to infect only 41.7% and 28.3% of the macrophages cells. The selectivity index of greater than 10 for Fe3O4 NPs and Fe3O4@PO NPs showed its safety to the J774-A1 macrophage cells and specificity to the parasite. CONCLUSION The results of this survey indicated the high potency of Fe3O4@PO NPs to inhibit the growth of amastigote forms of L. major as well as recovery and improvement CL induced by L. major in BALB/c mice without significant cytotoxicity. The results also indicated that, although the possible anti-leishmanial mechanisms of Fe3O4@PO NPs have not been clearly understood, however, the triggering of NO may be considered as one of the possible anti-leishmanial mechanisms of these nanoparticles. However, additional studies, in particular in clinical contexts, are mandatory.
Collapse
Affiliation(s)
| | - Amal Khudair Khalaf
- Department of Microbiology, College of Medicine, University of Thiqar, Thiqar, Iraq
| | - Mohamed S Alyousif
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah D Alanazi
- Department of Biological Science, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia; Alghad International Colleges for Applied Medical Science, Tabuk 47913, Saudi Arabia
| | - Parastoo Baharvand
- Department of Community Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Shakibaie
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
25
|
Therapeutic Potential of Green Synthesized Copper Nanoparticles Alone or Combined with Meglumine Antimoniate (Glucantime ®) in Cutaneous Leishmaniasis. NANOMATERIALS 2021; 11:nano11040891. [PMID: 33807273 PMCID: PMC8065924 DOI: 10.3390/nano11040891] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023]
Abstract
Background: In recent years, the focus on nanotechnological methods in medicine, especially in the treatment of microbial infections, has increased rapidly. Aim: The present study aims to evaluate in vitro and in vivo antileishmanial effects of copper nanoparticles (CuNPs) green synthesized by Capparis spinosa fruit extract alone and combined with meglumine antimoniate (MA). Methods: CuNPs were green synthesized by C. spinosa methanolic extract. The in vitro antileishmanial activity of CuNPs (10–200 µg/mL) or MA alone (10–200 µg/mL), and various concentrations of MA (10–200 μg/mL) along with 20 μg/mL of CuNPs, was assessed against the Leishmania major (MRHO/IR/75/ER) amastigote forms and, then tested on cutaneous leishmaniasis induced in male BALB/c mice by L. major. Moreover, infectivity rate, nitric oxide (NO) production, and cytotoxic effects of CuNPs on J774-A1 cells were evaluated. Results: Scanning electron microscopy showed that the particle size of CuNPs was 17 to 41 nm. The results demonstrated that CuNPs, especially combined with MA, significantly (p < 0.001) inhibited the growth rate of L. major amastigotes and triggered the production of NO (p < 0.05) in a dose-dependent manner. CuNPs also had no significant cytotoxicity in J774 cells. The mean number of parasites was significantly (p < 0.05) reduced in the infected mice treated with CuNPs, especially combined with MA in a dose-dependent response. The mean diameter of the lesions decreased by 43 and 58 mm after the treatment with concentrations of 100 and 200 mg/mL of CuNPs, respectively. Conclusion: The findings of the present study demonstrated the high potency and synergistic effect of CuNPs alone and combined with MA in inhibiting the growth of amastigote forms of L. major, as well as recovery and improving cutaneous leishmaniasis (CL) induced by L. major in BALB/c mice. Additionally, supplementary studies, especially in clinical settings, are required.
Collapse
|
26
|
Ortalli M, Varani S, Cimato G, Veronesi R, Quintavalla A, Lombardo M, Monari M, Trombini C. Evaluation of the Pharmacophoric Role of the O-O Bond in Synthetic Antileishmanial Compounds: Comparison between 1,2-Dioxanes and Tetrahydropyrans. J Med Chem 2020; 63:13140-13158. [PMID: 33091297 PMCID: PMC8018184 DOI: 10.1021/acs.jmedchem.0c01589] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/17/2022]
Abstract
Leishmaniases are neglected diseases that can be treated with a limited drug arsenal; the development of new molecules is therefore a priority. Recent evidence indicates that endoperoxides, including artemisinin and its derivatives, possess antileishmanial activity. Here, 1,2-dioxanes were synthesized with their corresponding tetrahydropyrans lacking the peroxide bridge, to ascertain if this group is a key pharmacophoric requirement for the antileishmanial bioactivity. Newly synthesized compounds were examined in vitro, and their mechanism of action was preliminarily investigated. Three endoperoxides and their corresponding tetrahydropyrans effectively inhibited the growth of Leishmania donovani promastigotes and amastigotes, and iron did not play a significant role in their activation. Further, reactive oxygen species were produced in both endoperoxide- and tetrahydropyran-treated promastigotes. In conclusion, the peroxide group proved not to be crucial for the antileishmanial bioactivity of endoperoxides, under the tested conditions. Our findings reveal the potential of both 1,2-dioxanes and tetrahydropyrans as lead compounds for novel therapies against Leishmania.
Collapse
Affiliation(s)
- Margherita Ortalli
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
| | - Stefania Varani
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
- Department of Experimental, Diagnostic and Specialty
Medicine, Alma Mater Studiorum - University of Bologna, Via
Massarenti 9, 40138 Bologna, Italy
| | - Giorgia Cimato
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
| | - Ruben Veronesi
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
| | - Arianna Quintavalla
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| | - Marco Lombardo
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| | - Magda Monari
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
| | - Claudio Trombini
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| |
Collapse
|
27
|
Jesus JA, Fragoso da Silva TN, Yamamoto ES, G. Lago JH, Dalastra Laurenti M, Passero LFD. Ursolic Acid Potentializes Conventional Therapy in Experimental Leishmaniasis. Pathogens 2020; 9:E855. [PMID: 33092305 PMCID: PMC7589377 DOI: 10.3390/pathogens9100855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
Ursolic acid (UA) is a triterpene with a broad array of pharmacological activities. In leishmaniasis, UA killed different species of parasites, and it was active in the experimental model of cutaneous and visceral leishmaniasis. Thus, the objective of this work was to study the therapeutic efficacy of the conventional drugs amphotericin B (AmB) or glucantime (Glu) combined with UA in experimental visceral and cutaneous leishmaniasis, respectively. L. (L.) infantum-infected hamsters were treated with AmB alone or combined with UA. L. (L.) amazonensis-infected BALB/c mice were treated with Glu alone or combined with UA. Animals were treated for 15 consecutive days by intraperitoneal or intralesional routes. Following one week after the last dose, the tissue parasitism and cellular immune responses were analyzed. Hamsters treated with 0.2 and 1.0 mg/kg of AmB plus 1.0 mg/kg of UA showed low hepatic and splenic parasitisms; however, AmB given as monotherapy did not reduce the number of viable parasites in the spleen of treated animals. In cutaneous leishmaniasis, Glu given as monotherapy was inactive at 2.0 mg/kg, showed mild activity at 10.0 mg/kg, and at 50.0 mg/kg was highly active at eliminating parasites in the skin. When animals were treated with Glu plus UA, higher leishmanicidal activity was observed in comparison to all groups treated with monotherapy schemes, and such activity was related to lesion improvement and upregulation of IFN-γ production. Altogether, data suggest that the association of drugs for the treatment of leishmaniasis can increase the efficiency of the treatment and decrease the toxicity associated to the conventional drugs.
Collapse
Affiliation(s)
- Jéssica Adriana Jesus
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455, São Paulo, SP 01246-903, Brazil; (J.A.J.); (T.N.F.d.S.); (E.S.Y.); (M.D.L.)
| | - Thays Nicolli Fragoso da Silva
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455, São Paulo, SP 01246-903, Brazil; (J.A.J.); (T.N.F.d.S.); (E.S.Y.); (M.D.L.)
| | - Eduardo Seiji Yamamoto
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455, São Paulo, SP 01246-903, Brazil; (J.A.J.); (T.N.F.d.S.); (E.S.Y.); (M.D.L.)
| | - João Henrique G. Lago
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados 5001, Santo André, SP 09210-580, Brazil;
| | - Márcia Dalastra Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455, São Paulo, SP 01246-903, Brazil; (J.A.J.); (T.N.F.d.S.); (E.S.Y.); (M.D.L.)
| | - Luiz Felipe Domingues Passero
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente, SP 11330-900, Brazil
- Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), Rua João Francisco Bensdorp, 1178, São Vicente, SP 11350-011, Brazil
| |
Collapse
|
28
|
Topical Amphotericin B Semisolid Dosage Form for Cutaneous Leishmaniasis: Physicochemical Characterization, Ex Vivo Skin Permeation and Biological Activity. Pharmaceutics 2020; 12:pharmaceutics12020149. [PMID: 32059430 PMCID: PMC7076632 DOI: 10.3390/pharmaceutics12020149] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Amphotericin B (AmB) is a potent antifungal successfully used intravenously to treat visceral leishmaniasis but depending on the Leishmania infecting species, it is not always recommended against cutaneous leishmaniasis (CL). To address the need for alternative topical treatments of CL, the aim of this study was to elaborate and characterize an AmB gel. The physicochemical properties, stability, rheology and in vivo tolerance were assayed. Release and permeation studies were performed on nylon membranes and human skin, respectively. Toxicity was evaluated in macrophage and keratinocyte cell lines, and the activity against promastigotes and intracellular amastigotes of Leishmania infantum was studied. The AmB gel remained stable for a period of two months, with optimal properties for topical use and no apparent toxic effect on the cell lines. High amounts of AmB were found in damaged and non-damaged skin (1230.10 ± 331.52 and 2484.57 ± 439.12 µg/g/cm2, respectively) and they were above the IC50 of AmB for amastigotes. Although there were no differences in the in vitro anti-leishmanial activity between the AmB solution and gel, the formulation resulted in a higher amount of AmB being retained in the skin, and is therefore a candidate for further studies of in vivo efficacy.
Collapse
|
29
|
Khatami M, Alijani HQ, Mousazadeh F, Hashemi N, Mahmoudi Z, Darijani S, Bamorovat M, Keyhani A, Abdollahpour-Alitappeh M, Borhani F. Calcium carbonate nanowires: greener biosynthesis and their leishmanicidal activity. RSC Adv 2020; 10:38063-38068. [PMID: 35548370 PMCID: PMC9088172 DOI: 10.1039/d0ra04503a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/28/2020] [Indexed: 11/21/2022] Open
Abstract
The synthesis of inorganic rod shape nanostructures is important in chromatography, dentistry, and medical applications such as bone implants, and drug and gene delivery systems.
Collapse
Affiliation(s)
- Mehrdad Khatami
- Noncommunicable Diseases Research Center
- Bam University of Medical Sciences
- Bam
- Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center
| | - Hajar Q. Alijani
- Noncommunicable Diseases Research Center
- Bam University of Medical Sciences
- Bam
- Iran
| | - Farideh Mousazadeh
- Noncommunicable Diseases Research Center
- Bam University of Medical Sciences
- Bam
- Iran
| | | | - Zahra Mahmoudi
- School of Medicine
- Bam University of Medical Sciences
- Bam
- Iran
| | | | - Mehdi Bamorovat
- Leishmaniasis Research Center
- Kerman University of Medical Sciences
- Kerman
- Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center
- Kerman University of Medical Sciences
- Kerman
- Iran
| | | | - Fariba Borhani
- Medical Ethics and Law Research Center
- Shahid Beheshti University of Medical Sciences
- Tehran
- Iran
| |
Collapse
|