1
|
Mejia EM, Sparagna GC, Miller DW, Hatch GM. Reduced protein kinase C delta in a high molecular weight complex in mitochondria and elevated creatine uptake into Barth syndrome B lymphoblasts. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2024; 8:216-224. [PMID: 39372601 PMCID: PMC11451818 DOI: 10.20517/jtgg.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Aim Barth syndrome (BTHS) is a rare X-linked genetic disease in which mitochondrial oxidative phosphorylation is impaired due to a mutation in the TAFAZZIN gene. The protein kinase C delta (PKCδ) signalosome exists as a high molecular weight complex in mitochondria and controls mitochondrial oxidative phosphorylation. Method Here, we examined PKCδ levels in mitochondria of aged-matched control and BTHS patient B lymphoblasts and its association with a higher molecular weight complex in mitochondria. Result Immunoblot analysis of blue-native polyacrylamide gel electrophoresis mitochondrial fractions revealed an increase in total PKCδ protein expression in BTHS lymphoblasts compared to controls. In contrast, PKCδ associated with a higher molecular weight complex was markedly reduced in BTHS patient B lymphoblasts compared to controls. Given the decrease in PKCδ associated with a higher molecular weight complex in mitochondria, we examined the uptake of creatine, a compound whose utilization is enhanced upon high energy demand. Creatine uptake was markedly elevated in BTHS lymphoblasts compared to controls. Conclusion We hypothesize that reduced PKCδ within this higher molecular weight complex in mitochondria may contribute to the bioenergetic defects observed in BTHS lymphoblasts and that enhanced creatine uptake may serve as one of several compensatory mechanisms for the defective mitochondrial oxidative phosphorylation observed in these cells.
Collapse
Affiliation(s)
- Edgard M. Mejia
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Genevieve C. Sparagna
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Donald W. Miller
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Grant M. Hatch
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
2
|
Zegallai HM, Hatch GM. Impaired surface marker expression in stimulated Epstein-Barr virus transformed lymphoblasts from Barth Syndrome patients. Sci Rep 2022; 12:6195. [PMID: 35418665 PMCID: PMC9008054 DOI: 10.1038/s41598-022-10270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
Primary B lymphocytes rapidly respond to lipopolysaccharide (LPS) and cytosine linked to a guanine by a phosphate bond deoxyribonucleic acid (CpG DNA) stimulation to promote adaptive immune function through increased surface marker expression. Here we examined expression of surface markers in LPS and CpG DNA stimulated Epstein-Barr virus transformed B lymphoblasts from control and BTHS patients with different mutations. The percentage of cluster of differentiation (CD) positive cells including CD38 + , CD138 + , CD80 + surface expression and programmed cell death protein 1 (PD1 +) surface expression was similar between control and BTHS lymphoblasts incubated plus or minus LPS. The percentage of CD24 + , CD38 + and CD138 + cells was similar between control and BTHS lymphoblasts incubated plus or minus CpG DNA. CD27 + surface marker expression was reduced in both BTHS lymphoblasts and controls incubated with CpG DNA and PD1 + surface marker expression was higher in BTHS cells compared to controls but was unaltered by CpG DNA treatment. Thus, Epstein-Barr virus transformed control and BTHS lymphoblasts fail to increase selected surface markers upon stimulation with LPS and exhibit variable surface marker expression upon stimulation with CpG DNA. Since B lymphocyte surface marker expression upon activation is involved in B cell proliferation and differentiation, cell-cell interaction and the adaptive immune response, we suggest that caution should be exercised when interpreting immunological data obtained from Epstein-Barr virus transformed BTHS cells. Based upon our observations in control cells, our conclusions may be more broadly applicable to other diseases which utilize transformed B lymphocytes for the study of immune biology.
Collapse
Affiliation(s)
- Hana M Zegallai
- Department of Pharmacology and Therapeutics, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, R3E3P4, Canada
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, R3E3P4, Canada. .,John Buhler Research Center, 501C-715 Bannatyne Avenue, Winnipeg, MB, R3E3P4, Canada.
| |
Collapse
|
3
|
Inagaki T, Sato Y, Ito J, Takaki M, Okuno Y, Yaguchi M, Masud HMAA, Watanabe T, Sato K, Iwami S, Murata T, Kimura H. Direct Evidence of Abortive Lytic Infection-Mediated Establishment of Epstein-Barr Virus Latency During B-Cell Infection. Front Microbiol 2021; 11:575255. [PMID: 33613459 PMCID: PMC7888302 DOI: 10.3389/fmicb.2020.575255] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Viral infection induces dynamic changes in transcriptional profiles. Virus-induced and antiviral responses are intertwined during the infection. Epstein-Barr virus (EBV) is a human gammaherpesvirus that provides a model of herpesvirus latency. To measure the transcriptome changes during the establishment of EBV latency, we infected EBV-negative Akata cells with EBV-EGFP and performed transcriptome sequencing (RNA-seq) at 0, 2, 4, 7, 10, and 14 days after infection. We found transient downregulation of mitotic division-related genes, reflecting reprogramming of cell growth by EBV, and a burst of viral lytic gene expression in the early phase of infection. Experimental and mathematical investigations demonstrate that infectious virions were not produced in the pre-latent phase, suggesting the presence of an abortive lytic infection. Fate mapping using recombinant EBV provided direct evidence that the abortive lytic infection in the pre-latent phase converges to latent infection during EBV infection of B-cells, shedding light on novel roles of viral lytic gene(s) in establishing latency. Furthermore, we find that the BZLF1 protein, which is a key regulator of reactivation, was dispensable for abortive lytic infection in the pre-latent phase, suggesting the divergent regulation of viral gene expressions from a productive lytic infection.
Collapse
Affiliation(s)
- Tomoki Inagaki
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mitsuaki Takaki
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Masahiro Yaguchi
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - H. M. Abdullah Al Masud
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shingo Iwami
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Japan
- MIRAI, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|