1
|
Gong F, Qu R, Li Y, Lv Y, Dai J. Astragalus Mongholicus: A review of its anti-fibrosis properties. Front Pharmacol 2022; 13:976561. [PMID: 36160396 PMCID: PMC9490009 DOI: 10.3389/fphar.2022.976561] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Fibrosis-related diseases (FRD) include cerebral fibrosis, pulmonary fibrosis, cardiac fibrosis, liver fibrosis, renal fibrosis, peritoneal fibrosis, etc. The effects of fibrosis can be severe, resulting in organ dysfunction, functional decline, and even organ failure, which can cause serious health problems.Aim: Currently, there is no effective modern medicine for anti-fibrosis in the clinics; however, Chinese medicine has a certain beneficial effect on treating such diseases. Astragalus Mongholicus (AM) has rich medicinal value, and its anti-fibrosis effect has been recently investigated. In recent years, more and more experimental studies have been conducted on the intervention of astragaloside IV (AS-IV), astragalus polysaccharide (APS), astragalus flavone, cycloastragalus alcohol, astragalus water extract and other pharmacological components in fibrosis-related diseases, attracting the interest of researchers. We aim to provide ideas for future research by summarizing recent research advances of AM in treating fibrosis-related diseases.Methods: A literature search was conducted from the core collections of electronic databases such as Baidu Literature, Sciencen.com, Google Scholar, PubMed, and Science Direct using the above keywords and the pharmacological and phytochemical details of the plant.Results: AM can be used to intervene in fibrosis-disease progression by regulating inflammation, oxidative stress, the immune system, and metabolism.Conclusion: AS-IV, APS, and astragalus flavone were studied and discussed in detail. These components have high potential anti-fibrosis activity. Overall, this review aims to gain insight into the AM’s role in treating fibro-related diseases.
Collapse
Affiliation(s)
- Fengying Gong
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yongchun Li
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ying Lv
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| |
Collapse
|
2
|
Li M, Han B, Zhao H, Xu C, Xu D, Sieniawska E, Lin X, Kai G. Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153918. [PMID: 35104756 DOI: 10.1016/j.phymed.2021.153918] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/12/2021] [Accepted: 12/30/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND With the rising age of the global population, the incidence rate of cardiovascular and cerebrovascular diseases (CCVDs) is increasing, which causes serious public health burden. The efforts for new therapeutic approaches are still being sought since the treatment effects of existing therapies are not quite satisfactory. Chinese traditional medicine proved to be very efficient in the treatment of CCVDs. Well described and established in Chinese medicine, Astragali Radix, has been commonly administered in the prophylaxis and cure of CCVDs for thousands of years. PURPOSE This review summarized the action mode and mechanisms of Astragali Radix phytochemicals on CCVDs, hoping to provide valuable information for the future application, development and improvement of Astragali Radix as well as CCVDs treatment. METHODS A plenty of literature on biological active ingredients of Astragali Radix used for CCVDs treatment were retrieved from online electronic PubMed and Web of Science databases. RESULTS This review highlighted the effects of five main active components in Astragali Radix including astragaloside Ⅳ, cycloastragenol, astragalus polysaccharide, calycosin-7-O-β-d-glucoside, and calycosin on CCVDs. The mechanisms mainly involved anti-oxidative damage, anti-inflammatory, and antiapoptotic through signaling pathways such as PI3K/Akt, Nrf2/HO-1, and TLR4/NF-κB pathway. In addition, the majority active constituents in AR have no obvious toxic side effects. CONCLUSION The main active components of Astragali Radix, especially AS-IV, have been extensively summarized. It has been proved that Astragali Radix has obvious therapeutic effects on various CCVDs, including myocardial and cerebral ischemia, hypertension, atherosclerosis, cardiac hypertrophy, chronic heart failure. CAG possesses anti-ischemia activity without toxicity, indicating a worthy of further development. However, high-quality clinical and pharmacokinetic studies are required to validate the current studies.
Collapse
Affiliation(s)
- Man Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Huan Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Chongyi Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Daokun Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Xianming Lin
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
3
|
Li B, Yu J, Liu P, Zeng T, Zeng X. Astragaloside IV protects cardiomyocytes against hypoxia injury via HIF-1α and the JAK2/STAT3 pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1435. [PMID: 34733987 PMCID: PMC8506767 DOI: 10.21037/atm-21-4080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/18/2021] [Indexed: 01/08/2023]
Abstract
Background Hypoxia is an important cause of myocardial injury due to the heart’s high susceptibility to hypoxia. Astragaloside IV (AS-IV) is the main component of Astragalus membranaceus and could exert cardiac protective role. Here, the effect of AS-IV on hypoxia-injured H9c2 cardiomyocytes was elucidated. Methods First, H9c2 cells were exposed to hypoxia and/or AS-IV treatment. Cell apoptosis, death, and viability as well as hypoxia-inducible factor 1α (HIF-1α) expression and apoptotic proteins were analyzed. Next, transfection of si-HIF-1α into H9c2 cells was carried out to test whether upregulation and stabilization of HIF-1α influences the effect of AS-IV on hypoxia-treated H9c2 cells. Furthermore, the regulatory role of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling on HIF-1α levels was examined. Results Hypoxia suppressed viability and promoted the apoptosis and death of H9c2 cells. AS-IV eliminated hypoxia-induced H9c2 injury. Moreover, HIF-1α signaling was further activated and stabilized by AS-IV in hypoxia-challenged H9c2 cells. Downregulation of HIF-1α suppressed the function of AS-IV in hypoxia-challenged H9c2 cells. AS-IV promoted JAK2/STAT3 signaling in hypoxia-induced injury. The beneficial functions of AS-IV in hypoxia-exposed H9c2 cells were linked to HIF-1α upregulation and JAK2/STAT3 signaling activation. Conclusions AS-IV relieved H9c2 cardiomyocyte injury after hypoxia, possibly by activating JAK2/STAT3-mediated HIF-1α signaling.
Collapse
Affiliation(s)
- Bei Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junjian Yu
- Cardiovascular and Thoracis Surgery Department 2, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Peipei Liu
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Taohui Zeng
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xueliang Zeng
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Nesfatin-1 protects H9c2 cardiomyocytes against cobalt chloride-induced hypoxic injury by modulating the MAPK and Notch1 signaling pathways. ACTA ACUST UNITED AC 2021; 28:21. [PMID: 34517917 PMCID: PMC8436528 DOI: 10.1186/s40709-021-00147-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/30/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND This study aimed to explore the effect of nesfatin-1 on cobalt chloride (CoCl2)-induced hypoxic injury in cardiomyocyte H9c2 cells. METHODS H9c2 cardiomyocytes were induced by different concentrations of CoCl2 to mimic the hypoxia condition. Cell viability was detected by MTT assay. Cell apoptosis was detected by TUNEL staining and flow cytometry. ROS production was detected using the fluorescence probe DCFH-DA. The mitochondrial membrane potential (MMP) was detected using the TMRE method. The levels of released lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) were detected using the commercial kits. The protein levels of MAPK signaling members (p-JNK1/2, p-ERK1/2, and p-p38) and Notch1 signaling members (Notch1, Hes 1, and Jagged 1) were detected by Western blot. RESULTS CoCl2 significantly promoted cell apoptosis, increased LDH leakage, MDA concentration, and decreased cell viability, SOD activity, GSH production, and CAT activity. CoCl2-induced hypoxic injury in H9c2 cells was partially restored by nesfatin-1 treatment. Moreover, nesfatin-1 treatment attenuated CoCl2-induced increase in ROS production and mitochondrial dysfunction, decreased mitochondrial membrane potential, Bax/Bcl-2 imbalance, as well as c-caspase-9 and c-caspase-3 levels. Moreover, nesfatin-1 treatment inhibited the activation of MAPK and Notch1 signaling pathways. CONCLUSIONS Nesfatin-1 could effectively protect H9c2 cells against CoCl2-induced hypoxic injury by blocking MAPK and Notch1 signaling pathways, suggesting that nesfatin-1 might be a promising therapeutic agent for hypoxic cardiac injury.
Collapse
|
5
|
Li Y, Song B, Liu J, Li Y, Wang J, Liu N, Cui W. The interplay between HIF-1α and long noncoding GAS5 regulates the JAK1/STAT3 signalling pathway in hypoxia-induced injury in myocardial cells. Cardiovasc Diagn Ther 2021; 11:422-434. [PMID: 33968620 DOI: 10.21037/cdt-20-773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Long non-coding RNA (lncRNA) GAS5 is associated with hypoxia-induced diseases whereas hypoxia-inducible factor-1α (HIF-1α) plays an important role in hypoxic injury of cells. The current study explores the regulatory functions of GAS5/HIF-1α which co-play in anoxic injury among rat cardiomyocytes H9C2 cells. Methods Hypoxia in vitro model was established through anoxic incubation while normal culture of H9C2 cells was considered as control. The expression levels of GAS5 and HIF-1α were quantified through RT-qPCR. CCK-8 was applied to determine cell viability. Cell apoptosis rate was calculated using flow cytometry whereas inflammatory cytokines were detected using ELISA method. The impact of downregulating GAS5 or HIF-1α or both upon hypoxic cells was assessed on the basis of changes in cell viability, apoptosis, and inflammatory response. The activity of JAK1/STAT3 signaling was evaluated through RT-qPCR for mRNA expression. AG490 was introduced to inactivate JAK1/STAT3 pathway and to unveil the impact of JAK1/STAT3 signaling on GAS5/HIF-1α and cell viability, apoptosis and inflammation in hypoxic cells. Results The results infer that hypoxia suppressed cell viability, promoted inflammation and apoptosis among H9C2 cells. GAS5 or HIF-1α recorded higher expression in hypoxia-induced cells whereas the cell viability got restored with reduction in inflammation and apoptosis. The downregulation of HIF-1α enhanced the protective effect of knocking down GAS5 in hypoxia H9C2 cells. JAK1/STAT3 signaling pathway got activated in hypoxic cells and was regulated by GAS5 and HIF-1α. The inhibition of signaling pathway increased the cell viability but it decreased both inflammation and apoptosis. Conclusions GAS5 and HIF-1α could regulate hypoxic injury in H9C2 cells through JAK1/STAT3 signaling pathway. This scenario suggests that the inhibitors of GAS5 and HIF-1α may synergize with AG-490 to protect myocardial cells from hypoxic injury.
Collapse
Affiliation(s)
- Yanwei Li
- Management Center of Chronic Diseases, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Bing Song
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jinlei Liu
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yuqiang Li
- Biobank Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiebing Wang
- Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Na Liu
- Endocrinology Department, Affiliated Hospital of Weifang Medical College, Weifang, China
| | - Wei Cui
- Liaoning Jinzhou Inspection and Testing Certification Center, Jinzhou, China
| |
Collapse
|
6
|
Hu S, Zheng W, Jin L. Astragaloside IV inhibits cell proliferation and metastasis of breast cancer via promoting the long noncoding RNA TRHDE-AS1. J Nat Med 2021; 75:156-166. [PMID: 33219447 DOI: 10.1007/s11418-020-01469-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023]
Abstract
Astragaloside IV (ASV), which has several pharmacological abilities, shows potential therapeutic effects on certain cancers by regulating the expression of long noncoding RNA (lncRNA). However, the anticancer role that ASV plays by regulating lncRNAs in breast cancer remains unknown. In this study, we first demonstrated that the lncRNA of TRHDE antisense RNA 1 (TRHDE-AS1) was downregulated in breast cancer tissues and cells. Low TRHDE-AS1 expression is associated with poor outcomes in patients with breast cancer and potentially contributes to the aggressive tumor biology of breast cancer. Furthermore, ASV significantly increased TRHDE-AS1 expression in a dose- and time-dependent manner in breast cancer cells. By upregulating TRHDE-AS1, ASV repressed breast cancer cell growth and metastasis both in vitro and in vivo. Taken together, our data indicated that TRHDE-AS1 participates in the anticancer role of ASV in breast cancer, which provides evidence for the application of ASV for breast cancer therapy.
Collapse
Affiliation(s)
- Shufang Hu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, China
| | - Weihong Zheng
- School of Life Science, Huzhou University, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, China
| | - Li Jin
- Department of Traditional Chinese Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, China.
| |
Collapse
|
7
|
Yao J, Fang X, Zhang C, Yang Y, Wang D, Chen Q, Zhong G. Astragaloside IV attenuates hypoxia‑induced pulmonary vascular remodeling via the Notch signaling pathway. Mol Med Rep 2020; 23:89. [PMID: 33236156 PMCID: PMC7716412 DOI: 10.3892/mmr.2020.11726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
The Notch signaling pathway participates in pulmonary artery smooth muscle cell (PASMC) proliferation and apoptosis. Astragaloside IV (AS-IV) is an effective antiproliferative treatment for vascular diseases. The present study aimed to investigate the protective effects and mechanisms underlying AS-IV on hypoxia-induced PASMC proliferation and pulmonary vascular remodeling in pulmonary arterial hypertension (PAH) model rats. Rats were divided into the following four groups: i) normoxia; ii) hypoxia (10% O2); iii) treatment, hypoxia + intragastrical administration of AS-IV (2 mg/kg) daily for 28 days; and iv) DAPT, hypoxia + AS-IV treatment + subcutaneous administration of DAPT (10 mg/kg) three times daily. The effects of AS-IV treatment on the development of hypoxia-induced PAH, right ventricle (RV) hypertrophy and pulmonary vascular remodeling were examined. Furthermore, PASMCs were treated with 20 µmol/l AS-IV under hypoxic conditions for 48 h. To determine the effect of Notch signaling in vascular remodeling and the potential mechanisms underlying AS-IV treatment, 5 mmol/l γ-secretase inhibitor [N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT)] was used. Cell viability and apoptosis were determined by performing the MTT assay and flow cytometry, respectively. Immunohistochemistry was conducted to detect the expression of proliferating cell nuclear antigen (PCNA). Moreover, the mRNA and protein expression levels of Notch-3, Jagged-1, hes family bHLH transcription factor 5 (Hes-5) and PCNA were measured via reverse transcription-quantitative PCR and western blotting, respectively. Compared with the normoxic group, hypoxia-induced PAH model rats displayed characteristics of PAH and RV hypertrophy, whereas AS-IV treatment alleviated PAH and prevented RV hypertrophy. AS-IV also inhibited hypoxia-induced pulmonary vascular remodeling, as indicated by reduced wall thickness and increased lumen diameter of pulmonary arterioles, and decreased muscularization of distal pulmonary vasculature in hypoxia-induced PAH model rats. Compared with normoxia, hypoxia promoted PASMC proliferation in vitro, whereas AS-IV treatment inhibited hypoxia-induced PASMC proliferation by downregulating PCNA expression in vitro and in vivo. In hypoxia-treated PAH model rats and cultured PASMCs, AS-IV treatment reduced the expression levels of Jagged-1, Notch-3 and Hes-5. Furthermore, Notch signaling inhibition via DAPT significantly inhibited the pulmonary vascular remodeling effect of AS-IV in vitro and in vivo. Collectively, the results indicated that AS-IV effectively reversed hypoxia-induced pulmonary vascular remodeling and PASMC proliferation via the Notch signaling pathway. Therefore, the present study provided novel insights into the mechanism underlying the use of AS-IV for treatment of vascular diseases, such as PAH.
Collapse
Affiliation(s)
- Jiamei Yao
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xia Fang
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Cui Zhang
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yushu Yang
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dongsheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qiong Chen
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guangwei Zhong
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
8
|
Rajagopalan V, Gorecki M, Costello C, Schultz E, Zhang Y, Gerdes AM. Cardioprotection by triiodothyronine following caloric restriction via long noncoding RNAs. Biomed Pharmacother 2020; 131:110657. [DOI: 10.1016/j.biopha.2020.110657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022] Open
|
9
|
Tan YQ, Chen HW, Li J. Astragaloside IV: An Effective Drug for the Treatment of Cardiovascular Diseases. Drug Des Devel Ther 2020; 14:3731-3746. [PMID: 32982178 PMCID: PMC7507407 DOI: 10.2147/dddt.s272355] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD), the number one cause of death worldwide, has always been the focus of clinical and scientific research. Due to the high number of deaths each year, it is essential to find alternative therapies that are safe and effective with minimal side effects. Traditional Chinese medicine (TCM) has a long history of significant impact on the treatment of CVDs. The mode of action of natural active ingredients of drugs and the development of new drugs are currently hot topics in research on TCM. Astragalus membranaceus is a commonly used Chinese medicinal herb. Previous studies have shown that Astragalus membranaceus has anti-tumor properties and can regulate metabolism, enhance immunity, and strengthen the heart. Astragaloside IV (AS-IV) is the active ingredient of Astragalus membranaceus, which has a prominent role in cardiovascular diseases. AS-IV can protect against ischemic and hypoxic myocardial cell injury, inhibit myocardial hypertrophy and myocardial fibrosis, enhance myocardial contractility, improve diastolic dysfunction, alleviate vascular endothelial dysfunction, and promote angiogenesis. It can also regulate blood glucose and blood lipid levels and reduce the risk of cardiovascular diseases. In this paper, the mechanism of AS-IV intervention in cardiovascular diseases in recent years is reviewed in order to provide a reference for future research and new drug development.
Collapse
Affiliation(s)
- Yu-Qing Tan
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing100053, People’s Republic of China
- Graduate School of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Heng-Wen Chen
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing100053, People’s Republic of China
| | - Jun Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing100053, People’s Republic of China
| |
Collapse
|
10
|
Jiang X, Ning Q. The mechanisms of lncRNA GAS5 in cardiovascular cells and its potential as novel therapeutic target. J Drug Target 2020; 28:1012-1017. [PMID: 32396741 DOI: 10.1080/1061186x.2020.1769108] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a large class of non (protein)-coding RNAs, which are longer beyond 200 nucleotides. LncRNA GAS5 is widely considered as a tumour suppressor in cell proliferation, apoptosis, cell migration and invasion of tumour cells. Recently, a growing body of evidences indicated that GAS5 was also widely involved in the pathologic process of cardiovascular cells, including regulation of apoptosis and inflammatory injury of cardiomyocytes; proliferation, apoptosis, autophagy and angiogenesis of endothelial cells; and proliferation, migration, apoptosis and differentiation of VSMCs. In this regard, we summarised current studies of GAS5 in cardiovascular cells, which shed light on not only our understanding of the mechanisms of GAS5 in cardiovascular cells but also understanding of the potential of GAS5 as novel therapeutic target.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Qilan Ning
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
11
|
Exploring Molecular Mechanism of Huangqi in Treating Heart Failure Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6473745. [PMID: 32382301 PMCID: PMC7195658 DOI: 10.1155/2020/6473745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/05/2019] [Accepted: 01/06/2020] [Indexed: 11/17/2022]
Abstract
Heart failure (HF), a clinical syndrome with a high incidence due to various reasons, is the advanced stage of most cardiovascular diseases. Huangqi is an effective treatment for cardiovascular disease, which has multitarget, multipathway functions. Therefore, we used network pharmacology to explore the molecular mechanism of Huangqi in treating HF. In this study, 21 compounds of Huangqi, which involved 407 targets, were obtained and reconfirmed using TCMSP and PubChem databases. Moreover, we used Cytoscape 3.7.1 to construct compound-target network and screened the top 10 compounds. 378 targets related to HF were obtained from CTD and GeneCards databases and HF-target network was constructed by Cytoscape 3.7.1. The 46 overlapping targets of HF and Huangqi were gotten by Draw Venn Diagram. STRING database was used to set up a protein-protein interaction network, and MCODE module and the top 5 targets with the highest degree for overlapping targets were obtained. GO analysis performed by Metascape indicated that the overlapping targets were mainly enriched in blood vessel development, reactive oxygen species metabolic process, response to wounding, blood circulation, and so on. KEGG analysis analyzed by ClueGO revealed that overlapping targets were mainly enriched in AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, HIF-1 signaling pathway, c-type lectin receptor signaling pathway, relaxin signaling pathway, and so on. Finally, molecular docking showed that top 10 compounds of Huangqi also had good binding activities to important targets compared with digoxin, which was carried out in CB-Dock molecular docking server. In conclusion, Huangqi has potential effect on regulating overlapping targets and GE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, HIF-1 signaling pathway, and so on to be a latent multitarget, multipathway treatment for HF.
Collapse
|
12
|
He J, Dai H, Zhao Q, Guo J, Chen C. LNCRNA Gas5 suppression protected Hl-1 cells against hypoxia injury by sponging Mir-222-3p. Exp Mol Pathol 2020; 115:104436. [PMID: 32240616 DOI: 10.1016/j.yexmp.2020.104436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 11/16/2022]
Abstract
Hypoxia may cause diseases in human beings. The up- or down- regulation of lncRNAs were identified to possess the ability to protect the myocardial cells from hypoxia injury. This study explored the role of lncRNA GAS5 in sodium Hydrosulfite Induced Hl-1 Cells in vitro. RT-qPCR was applied to measure the expressions of RNAs whereas the cell viability was detected with CCK-8. Luciferase report assay was performed to validate the binding between lncRNA GAS5 and miR-222-3p. The proteins regarding PI3K/AKT signaling were evaluated through western blot analysis. The results showed that the hypoxia could reduce cell viabilities and enhance the apoptosis. Meanwhile, the PI3K/AKT signaling pathway was suppressed as well. lncRNA GAS5 got expressed higher in hypoxic cells whereas the suppressed GAS5 was able to increase cell viabilities while inhibiting apoptosis. MiR-222-3p was the target gene of lncRNA as determined by the luciferase report assay and its expressions were low in hypoxic cells. The overexpressed miR-222-3p could promote proliferation and inhibit apoptosis. Then, the correlation of GAS5 and miR-222-3p was measured which showed that miR-222-3p could resume the functions of GAS5 in cell viabilities and apoptosis through protein regulation in PI3K and AKT signaling pathways.
Collapse
Affiliation(s)
- Jie He
- Department of Cardiology, Chong Gang General Hospital, Chong Qing, China
| | - Henhua Dai
- Department of Cardiology, Chong Gang General Hospital, Chong Qing, China
| | - Qian Zhao
- Department of Cardiology, Chong Gang General Hospital, Chong Qing, China
| | - Jianshu Guo
- Department of gerontology, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial people's Hospital, Chengdu, Sichuan Province 610072, China
| | - Chi Chen
- Department of gerontology, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial people's Hospital, Chengdu, Sichuan Province 610072, China.
| |
Collapse
|
13
|
Peng Y, Wang M, Xu Y, Wu Z, Wang J, Zhang C, Liu G, Li W, Li J, Tang Y. Drug repositioning by prediction of drug's anatomical therapeutic chemical code via network-based inference approaches. Brief Bioinform 2020; 22:2058-2072. [PMID: 32221552 DOI: 10.1093/bib/bbaa027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Drug discovery and development is a time-consuming and costly process. Therefore, drug repositioning has become an effective approach to address the issues by identifying new therapeutic or pharmacological actions for existing drugs. The drug's anatomical therapeutic chemical (ATC) code is a hierarchical classification system categorized as five levels according to the organs or systems that drugs act and the pharmacology, therapeutic and chemical properties of drugs. The 2nd-, 3rd- and 4th-level ATC codes reserved the therapeutic and pharmacological information of drugs. With the hypothesis that drugs with similar structures or targets would possess similar ATC codes, we exploited a network-based approach to predict the 2nd-, 3rd- and 4th-level ATC codes by constructing substructure drug-ATC (SD-ATC), target drug-ATC (TD-ATC) and Substructure&Target drug-ATC (STD-ATC) networks. After 10-fold cross validation and two external validations, the STD-ATC models outperformed the SD-ATC and TD-ATC ones. Furthermore, with KR as fingerprint, the STD-ATC model was identified as the optimal model with AUC values at 0.899 ± 0.015, 0.916 and 0.893 for 10-fold cross validation, external validation set 1 and external validation set 2, respectively. To illustrate the predictive capability of the STD-ATC model with KR fingerprint, as a case study, we predicted 25 FDA-approved drugs (22 drugs were actually purchased) to have potential activities on heart failure using that model. Experiments in vitro confirmed that 8 of the 22 old drugs have shown mild to potent cardioprotective activities on both hypoxia model and oxygen-glucose deprivation model, which demonstrated that our STD-ATC prediction model would be an effective tool for drug repositioning.
Collapse
Affiliation(s)
- Yayuan Peng
- East China University of Science and Technology, Shanghai, China
| | - Manjiong Wang
- East China University of Science and Technology, Shanghai, China
| | - Yixiang Xu
- East China University of Science and Technology, Shanghai, China
| | - Zengrui Wu
- East China University of Science and Technology, Shanghai, China
| | - Jiye Wang
- East China University of Science and Technology, Shanghai, China
| | - Chao Zhang
- East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- East China University of Science and Technology, Shanghai, China
| | - Weihua Li
- East China University of Science and Technology, Shanghai, China
| | - Jian Li
- East China University of Science and Technology, Shanghai, China
| | - Yun Tang
- East China University of Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Zhu Y, Qian X, Li J, Lin X, Luo J, Huang J, Jin Z. Astragaloside-IV protects H9C2(2-1) cardiomyocytes from high glucose-induced injury via miR-34a-mediated autophagy pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4172-4181. [PMID: 31713440 DOI: 10.1080/21691401.2019.1687492] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetic cardiomyopathy (DCM) is an important cardiac disorder in patients with diabetes. High glucose (HG) levels lead to inflammation of cardiomyocytes, oxidative stress, and long-term activation of autophagy, resulting in myocardial fibrosis and remodelling. Astragaloside-IV (AS-IV) has a wide range of pharmacological effects. This study aimed to investigate the effects of AS-IV on injury induced by HG in rat cardiomyocytes (H9C2(2-1)) and the involvement of the miR-34a-mediated autophagy pathway. An AS-IV concentration of 100 μM was selected based on H9C2(2-1) cell viability using the cell counting kit-8 (CCK-8). We found that 33 mM HG induced a morphologic change in cells and caused excessive oxidative stress, whereas AS-IV inhibited lipid peroxidation and increased superoxide dismutase activity. In terms of mRNA expression, HG increased miR-34a and inhibited Bcl2 and Sirt1, whereas AS-IV and miR-34a-inhibitor reversed the above effects. Further, LC3-GFP adenovirus infection and western blotting showed that HG increased autophagy, which was reversed synergistically by AS-IV and miR-34a-inhibitor. Bcl2 and pAKT/AKT protein expressions in the HG group was significantly lower than that in controls, but AS-IV and miR-34a-inhibitor antagonized the process. Thus, AS-IV inhibits HG-induced oxidative stress and autophagy and protects cardiomyocytes from injury via the miR-34a/Bcl2/(LC3II/LC3I) and pAKT/Bcl2/(LC3II/LC3I) pathways.
Collapse
Affiliation(s)
- Yaobin Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P. R. China
| | - Xin Qian
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Jingjing Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Xing Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Jiewei Luo
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China.,Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, P. R. China
| | - Jianbin Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Zhao Jin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| |
Collapse
|
15
|
Sirt1 antisense long non-coding RNA attenuates pulmonary fibrosis through sirt1-mediated epithelial-mesenchymal transition. Aging (Albany NY) 2020; 12:4322-4336. [PMID: 32139663 PMCID: PMC7093192 DOI: 10.18632/aging.102882] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022]
Abstract
Long noncoding RNAs sirt1 antisense (sirt1 AS) was reported to play crucial roles in the progression of organ fibrosis. However, the roles of sirt1 AS in idiopathic pulmonary fibrosis (IPF) are still unknown. In addition, we have previously demonstrated that astragaloside IV (ASV), a bioactive saponin extract of the Astragalus root, significantly alleviates IPF by inhibiting transforming growth factor β1 (TGF-β1) induced epithelial-mesenchymal transition (EMT). Further investigations into the influence of ASV on lncRNAs expression will be helpful to delineate the complex regulatory networks underlying the biological function of ASV. Here, we found sirt1 AS expression was significantly decreased in BLM-induced pulmonary fibrosis. We further found that sirt1 AS effectively inhibited TGF-β1-meidated EMT in vitro and alleviated the progression of IPF in vivo. Mechanistically, sirt1 AS was validate to enhance the stability of sirt1 and increased sirt1 expression, thereby to inhibit EMT in IPF. Furthermore, we demonstrated that ASV treatment increased sirt1 AS expression and silencing of sirt1 AS impaired anti-fibrosis effects of ASV on IPF. Collectively, sirt1 AS was critical for ASV-mediated inhibition of IPF progression and targeting of sirt1 AS by ASV could be a potential therapeutic approach for IPF.
Collapse
|
16
|
Xue X, Luo L. LncRNA HIF1A-AS1 contributes to ventricular remodeling after myocardial ischemia/reperfusion injury by adsorption of microRNA-204 to regulating SOCS2 expression. Cell Cycle 2019; 18:2465-2480. [PMID: 31354024 DOI: 10.1080/15384101.2019.1648960] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objectives: Long non-coding RNAs (lncRNAs) serve pivotal roles in heart disease, while the role of lncRNA hypoxia-inducible factor 1α-antisense RNA 1 (HIF1A-AS1) is rarely mentioned. Therefore, the objective of this study was to investigate the mechanism of lncRNA HIF1A-AS1 regulating suppressor of cytokine signaling 2 (SOCS2) expression by adsorption of microRNA-204 (miR-204) on ventricular remodeling after myocardial ischemia-reperfusion (I/R) injury in mice. Methods: The mouse model of I/R was established by left coronary artery occlusion. The expression of HIF1A-AS1, miR-204 and SOCS2 was determined. The mice were injected with HIF1A-AS1-siRNA, miR-204 mimics or their controls to investigate their effects on cardiac function and ventricular remodeling of mice after I/R injury. The binding relationship between HIF1A-AS1 and miR-204 as well as between miR-204 and SOCS2 were verified. Results: HIF1A-AS1 and SOCS2 were upregulated and miR-204 was downregulated in myocardial tissues in mice after I/R injury. LVEDD, LVEDS, LVEDP, LVMI and RVMI expression reduced while LVEF, LVFS, +dp/dt max and - dp/dt max increased through knockdown HIF1A-AS1 and upregulated miR-204. The expression of BNP, cTnI, LDH, CK, TNF-α, IL-1β, IL-6 and β-MHC reduced, and the expression of α-MHC increased when HIF1A-AS1 was poorly expressed and miR-204 was highly expressed. Silencing HIF1A-AS1 and upregulating miR-204 inhibited apoptosis of cells. LncRNA HIF1A-AS1 could act as ceRNA to adsorb miR-204 to suppress miR-204 expression and elevate SOCS2 expression. Conclusion: Our study provides evidence that downregulation of HIF1A-AS1 and upregulation of miR-204 could alleviate ventricular remodeling and improve cardiac function in mice after myocardial I/R injury via regulating SOCS2.
Collapse
Affiliation(s)
- Xiang Xue
- Cardiovascular Medicine Department, Changzhou No.7 People' s Hospital , Changzhou , Jiangsu , China
| | - Libo Luo
- Cardiovascular Medicine Department, Changzhou No.7 People' s Hospital , Changzhou , Jiangsu , China
| |
Collapse
|