1
|
Shi J, Xiong H, Su J, Wang Q, Wang H, Yang C, Hu C, Cui Z, Liu L. Multiomics analyses reveal high yield-related genes in the hypothalamic-pituitary-ovarian/liver axis of chicken. Poult Sci 2024; 103:104276. [PMID: 39299017 PMCID: PMC11426133 DOI: 10.1016/j.psj.2024.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Egg production, regulated by multiple tissues, is among the most important economic traits in poultry. However, current research only focuses on the hypothalamic-pituitary-ovarian axis, ignoring the most important organ for substance metabolism in the body, the liver. Eggs are rich in lipids, proteins, and other nutrients, which are biosynthesized in the liver. Therefore, here the liver was included in the study of the hypothalamic-pituitary axis. This study used hypothalamus (HH_vs_LH), pituitary (HP_vs_LP), liver (HL_vs_LL), and ovary (HO_vs_LO) tissue samples from high- and low-laying Chengkou mountain chickens (CMC) for epihistological, transcriptome and metabolomic analyses aimed at improving the reproductive performance of CMC. The results showed that the liver of the high-laying group was yellowish, the cell boundary was clear, and the lipid droplets were evenly distributed. The ovaries of the high-laying group had a complete sequence of hierarchical follicles, which were rich in yolk. In contrast, the ovaries of the low-laying group were atrophic, except for a few small yellow follicles, and numerous primordial follicles that remained. The transcriptome sequences yielded 167.11 Gb of clean data, containing 28,715 genes. Furthermore, 285, 822, 787, and 1,183 differentially expressed genes (DEG) were identified in HH_vs_LH, HP_vs_LP, HL_vs_LL and HO_vs_LO and the DEGs significantly enriched 77, 163, 170, 171 pathways, respectively. Metabolome sequencing yielded 21,808 peaks containing 4,006 metabolites. The differential metabolite analysis yielded 343 and 682 significantly different metabolites (SDM) that significantly enriched 136 and 87 pathways in the liver and ovaries, respectively. A combined analysis of the transcriptome and metabolome of the liver and ovaries identified "CYP51A1-4α-carboxy-stigmasta7, 24(24(1))-dien-3β-ol" and "ACSS1B-estrone 3-sulfate" and other multiple gene-metabolite pairs. The DEGs in the hypothalamus and pituitary mainly enriched signaling transduction. In contrast, the DEGs and SDMs in the liver and ovaries mainly enriched the substance metabolism pathways: "gap junction", "extracellular matrix (ECM)-receptor interaction", "Steroid biosynthesis", and "Steroid hormone biosynthesis". These results suggest that the hypothalamic-pituitary axis may affect egg production mainly by regulating lipid metabolism in the liver and ovaries.
Collapse
Affiliation(s)
- Jun'an Shi
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China
| | - Hanlin Xiong
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China
| | - Junchao Su
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China
| | - Qigui Wang
- ChongQing Academy of Animal Sciences, Rongchang, Chongqing 402460, China
| | - Haiwei Wang
- ChongQing Academy of Animal Sciences, Rongchang, Chongqing 402460, China
| | - Chaowu Yang
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Chenming Hu
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Zhifu Cui
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China
| | - Lingbin Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China.
| |
Collapse
|
2
|
Chen M, Xiao S, Sun P, Li Y, Xu Z, Wang J. Morusin suppresses the stemness characteristics of gastric cancer cells induced by hypoxic microenvironment through inhibition of HIF-1α accumulation. Toxicon 2024; 241:107675. [PMID: 38432611 DOI: 10.1016/j.toxicon.2024.107675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Gastric cancer (GC) is a common, life-threatening malignancy that contributes to the global burden of cancer-related mortality, as conventional therapeutic modalities show limited effects on GC. Hence, it is critical to develop novel agents for GC therapy. Morusin, a typical prenylated flavonoid, possesses antitumor effects against various cancers. The present study aimed to demonstrate the inhibitory effect and mechanism of morusin on the stemness characteristics of human GC in vitro under hypoxia and to explore the potential molecular mechanisms. The effects of morusin on cell proliferation and cancer stem cell-like properties of the human GC cell lines SNU-1 and AGS were assessed by MTT assay, colony formation test, qRT-PCR, flow cytometry analysis, and sphere formation test under hypoxia or normoxia condition through in vitro assays. The potential molecular mechanisms underlying the effects of morusin on the stem-cell-like properties of human GC cells in vitro were investigated by qRT-PCR, western blotting assay, and immunofluorescence assay by evaluating the nuclear translocation and expression level of hypoxia-inducible factor-1α (HIF-1α). The results showed that morusin exerted growth inhibitory effects on SNU-1 and AGS cells under hypoxia in vitro. Moreover, the proportions of CD44+/CD24- cells and the sphere formation ability of SNU-1 and AGS reduced in a dose-dependent manner following morusin treatment. The expression levels of stem cell-related genes, namely Nanog, OCT4, SOX2, and HIF-1α, gradually decreased, and the nuclear translocation of the HIF-1α protein was apparently attenuated. HIF-1α overexpression partially reversed the abovementioned effects of morusin. Taken together, morusin could restrain stemness characteristics of GC cells by inhibiting HIF-1α accumulation and nuclear translocation and could serve as a promising compound for GC treatment.
Collapse
Affiliation(s)
- Mo Chen
- Department of Gastrointestinal and Burn Plastic Surgery, Pu'er People's Hospital, Pu 'er 665000, Yunnan Province, China.
| | - Shufeng Xiao
- Department of Gastrointestinal and Burn Plastic Surgery, Pu'er People's Hospital, Pu 'er 665000, Yunnan Province, China.
| | - Ping Sun
- Department of Science and Education, Pu'er People's Hospital, Pu 'er 665000, Yunnan Province, China.
| | - Yongfu Li
- Department of Science and Education, Pu'er People's Hospital, Pu 'er 665000, Yunnan Province, China.
| | - Zhixing Xu
- Department of Neuro surgery, Pu'er People's Hospital, Pu 'er 665000, Yunnan Province, China.
| | - Jun Wang
- Department of Medical Laboratory Center, Pu'er People's Hospital, Pu 'er 665000, Yunnan Province, China.
| |
Collapse
|
3
|
Sun L, Chen Y, Xia L, Wang J, Zhu J, Li J, Wang K, Shen K, Zhang D, Zhang G, Shi T, Chen W. TRIM69 suppressed the anoikis resistance and metastasis of gastric cancer through ubiquitin‒proteasome-mediated degradation of PRKCD. Oncogene 2023; 42:3619-3632. [PMID: 37864033 DOI: 10.1038/s41388-023-02873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
The tripartite motif (TRIM) protein family has been investigated in multiple human cancers, including gastric cancer (GC). However, the role of TRIM69 in the anoikis resistance and metastasis of GC cells remains to be elucidated. We identified the differentially expressed genes in anoikis-resistant GC cells using RNA-sequencing analysis. The interaction between TRIM69 and PRKCD was analyzed by coimmunoprecipitation and mass spectrometry. Our results have shown that TRIM69 was significantly downregulated in anoikis-resistant GC cells. TRIM69 overexpression markedly suppressed the anoikis resistance and metastasis of GC cells in vitro and in vivo. TRIM69 knockdown had the opposite effects. Mechanistically, TRIM69 interacted with PRKCD through its B-box domain and catalyzed the K48-linked polyubiquitination of PRKCD. Moreover, TRIM69 inhibited BDNF production in a PRKCD-dependent manner. Importantly, overexpression of PRKCD or BDNF blocked the effects of TRIM69 on the anoikis resistance and metastasis of GC cells. Interestingly, a TRIM69-PRKCD+BDNF+ cell subset was positively associated with metastasis in GC patients. TRIM69-mediated suppression of the anoikis resistance and metastasis of GC cells via modulation of the PRKCD/BDNF axis, with potential implications for novel therapeutic approaches for metastatic GC.
Collapse
Affiliation(s)
- Linqing Sun
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Xia
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongze Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Zhu Y, Hu Y, Wang P, Dai X, Fu Y, Xia Y, Sun L, Ruan S. Comprehensive bioinformatics and experimental analysis of SH3PXD2B reveals its carcinogenic effect in gastric carcinoma. Life Sci 2023; 326:121792. [PMID: 37211344 DOI: 10.1016/j.lfs.2023.121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
AIMS We aim to explore the possibility and mechanism of SH3PXD2B as a reliable biomarker for gastric cancer (GC). MAIN METHODS We used public databases to analyze the molecular characteristics and disease associations of SH3PXD2B, and KM database for prognostic analysis. The TCGA gastric cancer dataset was used for single gene correlation, differential expression, functional enrichment and immunoinfiltration analysis. SH3PXD2B protein interaction network was constructed by the STRING database. And the GSCALite database was used to explore sensitive drugs and perform SH3PXD2B molecular docking. The impact of SH3PXD2B silencing and over-expression by lentivirus transduction on the proliferation and invasion of human GC HGC-27 and NUGC-3 cells was determined. KEY FINDINGS The high expression of SH3PXD2B in gastric cancer was related to the poor prognosis of patients. It may affect the progression of gastric cancer by forming a regulatory network with FBN1, ADAM15 and other molecules, and the mechanism may involve regulating the infiltration of Treg, TAM and other immunosuppressive cells. The cytofunctional experiments verified that it significantly promoted the proliferation and migration of gastric cancer cells. In addition, we found that some drugs were sensitive to the expression of SH3PXD2B such as sotrastaurin, BHG712 and sirolimus, and they had strong molecular combination of SH3PXD2B, which may provide guidance for the treatment of gastric cancer. SIGNIFICANCE Our study strongly suggests that SH3PXD2B is a carcinogenic molecule that can be used as a biomarker for GC detection, prognosis, treatment design, and follow-up.
Collapse
Affiliation(s)
- Ying Zhu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Yunhong Hu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Peipei Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Xinyang Dai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yuhan Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yuwei Xia
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China.
| |
Collapse
|
5
|
Jia HT, Shao YF, Zhou XL, Yang G, Huang L, Aikemu B, Li SC, Ding CS, Fan XD, Hong HJ, Zhang S, Pan RJ, Sun J. PKCδ promotes the invasion and migration of colorectal cancer through c-myc/NDRG1 pathway. Front Oncol 2023; 13:1026561. [PMID: 36816970 PMCID: PMC9933346 DOI: 10.3389/fonc.2023.1026561] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Objective Colorectal cancer (CRC) is the third cause of expected cancer deaths both in men and women in the U.S. and the third most commonly diagnosed cancer in China Targeted therapy has been proven to improve overall survival for unresectable metastatic CRC. But the location of the primary tumor or the presence of various core driver gene mutations that confer resistance may limit the utility of targeted therapy. Therefore, it is of great significance to further elucidate novel mechanisms of invasion and metastasis of CRC and find potential novel therapeutic targets. Protein Kinase C Delta (PKCδ) plays an important role in various diseases, including tumors. In CRC, the function of PKCδ on proliferation and differentiation is mostly studied but various research results were reported. Therefore, the role of PKCδ in CRC needs to be further studied, especially in tumor invasion and metastasis in CRC which few studies have looked into. Methods The expression of PRKCD was analyzed by the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases and Immunohistochemical (IHC). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) enrichment analysis were used to explore the biological functions and pathways related to PRKCD. Lentivirus transfection was used to construct CRC cell lines with overexpression and knock-down of PKCδ or N-myc Downstream Regulated Gene 1 (NDRG1). Cell invasion and migration assay, wound healing assay were used to detect the function of PKCδ and NDRG1 in the invasion and migration of cells. Flow cytometry analysis was used to detect the influence of PKCδ on the CRC cell cycles .Immunofluorescence histochemistry ,Immunoprecipitation Assay and qPCR were used to detect the relationship of PKCδ and NDRG1. Xenograft model was used to verify the role of PKCδ in vivo. Results PKCδ is overexpressed in CRC and could promote Epithelial-Mesenchymal Transition (EMT) and the invasion and migration of CRC in vitro. We confirmed that PKCδ and the tumor suppressor factor NDRG1 had a co-localization relationship in CRC. PKCδ inhibited NDRG1 transcription and protein expression. Overexpressing NDRG1 could inhibit the function of PKCδ in promoting tumor invasion and migration. PKCδ could regulate c-Myc, one transcription factor of NDRG1, to down-regulate NDRG1. In vivo, overexpressing PKCδ could promote xenograft growth and volume. Thus, our results showed that PKCδ reduced the expression of NDRG1 through c-Myc, promoting the invasion and migration of CRC through promoting EMT. Conclusion The increased expression of PKCδ in CRC tumor tissue could promote the invasion and migration of tumor cells, and one of the mechanisms may be regulating c-Myc to inhibit the expression of NDRG1 and promote EMT.
Collapse
Affiliation(s)
- Hong-tao Jia
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-fei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-liang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Batuer Aikemu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-chun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-sheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-dong Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hi-ju Hong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jing Sun, ; Rui-jun Pan, ; Sen Zhang,
| | - Rui-jun Pan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jing Sun, ; Rui-jun Pan, ; Sen Zhang,
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jing Sun, ; Rui-jun Pan, ; Sen Zhang,
| |
Collapse
|
6
|
Pang K, Wang W, Qin J, Shi Z, Hao L, Ma Y, Xu H, Wu Z, Pan D, Chen Z, Han C. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm (Beijing) 2022; 3:e175. [PMID: 36349142 PMCID: PMC9632491 DOI: 10.1002/mco2.175] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is an important post-transcriptional modification involving an extremely wide range of intracellular signaling transduction pathways, making it an important therapeutic target for disease intervention. At present, numerous drugs targeting protein phosphorylation have been developed for the treatment of various diseases including malignant tumors, neurological diseases, infectious diseases, and immune diseases. In this review article, we analyzed 303 small-molecule protein phosphorylation kinase inhibitors (PKIs) registered and participated in clinical research obtained in a database named Protein Kinase Inhibitor Database (PKIDB), including 68 drugs approved by the Food and Drug Administration of the United States. Based on previous classifications of kinases, we divided these human protein phosphorylation kinases into eight groups and nearly 50 families, and delineated their main regulatory pathways, upstream and downstream targets. These groups include: protein kinase A, G, and C (AGC) and receptor guanylate cyclase (RGC) group, calmodulin-dependent protein kinase (CaMK) group, CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group, sterile (STE)-MAPKs group, tyrosine kinases (TK) group, tyrosine kinase-like (TKL) group, atypical group, and other groups. Different groups and families of inhibitors stimulate or inhibit others, forming an intricate molecular signaling regulatory network. This review takes newly developed new PKIs as breakthrough point, aiming to clarify the regulatory network and relationship of each pathway, as well as their roles in disease intervention, and provide a direction for future drug development.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Wei Wang
- Department of Medical CollegeSoutheast UniversityNanjingJiangsuChina
| | - Jia‐Xin Qin
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Zhen‐Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Yu‐Yang Ma
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Hao Xu
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhuo‐Xun Wu
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Deng Pan
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Cong‐Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| |
Collapse
|
7
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
8
|
Lin R, Bao X, Wang H, Zhu S, Liu Z, Chen Q, Ai K, Shi B. TRPM2 promotes pancreatic cancer by PKC/MAPK pathway. Cell Death Dis 2021; 12:585. [PMID: 34099637 PMCID: PMC8184946 DOI: 10.1038/s41419-021-03856-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022]
Abstract
The mechanism of pancreatic cancer (PA) is not fully understanded. In our last report, TRPM2 plays a promising role in pancreatic cancer. However, the mechanism of TRPM2 is still unknown in this dismal disease. This study was designed to investigate the role and mechanism of TRPM2 in pancreatic cancer. TRPM2 overexpressed and siRNA plasmid were created and transfected with pancreatic cancer cell line (BxPC-3) to construct the cell model. We employed CCK-8, Transwell, scratch wound, and nude mice tumor-bearing model to investigate the role of TRPM2 in pancreatic cancer. Besides, we collected the clinical data, tumor tissue sample (TT) and para-tumor sample (TP) from the pancreatic cancer patients treated in our hospital. We analyzed the mechanism of TRPM2 in pancreatic cancer by transcriptome analysis, western blot, and PCR. We blocked the downstream PKC/MEK pathway of TRPM2 to investigate the mechanism of TRPM2 in pancreatic cancer by CCK8, scratch wound healing, and transwell assays. Overexpressed TRPM2 could promote pancreatic cancer in proliferation, migration, and invasion ability in no matter the cell model or nude mice tumor-bearing model. TRPM2 level is highly negative correlated to the overall survival and progression-free survival time in PA patients, however, it is significantly increased in PA tissue as the tumor stage increases. The transcriptome analysis, GSEA analysis, western-blot, and PCR results indicate TRPM2 is highly correlated with PKC/MAPK pathways. The experiments of PKC/MEK inhibitors added to TRPM2 overexpressed BxPC-3 cell showed that significant inhibition of PA cells happened in CCK8, transwell, and wound-healing assay. TRPM2 may directly activate PKCα by calcium or indirectly activate PKCε and PKCδ by increased DAG in PA, which promote PA by downstream MAPK/MEK pathway activation.
Collapse
Affiliation(s)
- Rui Lin
- General Surgery Department, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Xunxia Bao
- School of Life Science, Anhui Medical University, Hefei, 230022, China
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hui Wang
- General Surgery Department, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhongyan Liu
- General Surgery Department, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Quanning Chen
- General Surgery Department, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Kaixing Ai
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200082, China
| | - Baomin Shi
- General Surgery Department, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
9
|
Speidel JT, Affandi T, Jones DNM, Ferrara SE, Reyland ME. Functional proteomic analysis reveals roles for PKCδ in regulation of cell survival and cell death: Implications for cancer pathogenesis and therapy. Adv Biol Regul 2020; 78:100757. [PMID: 33045516 PMCID: PMC8294469 DOI: 10.1016/j.jbior.2020.100757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Protein Kinase C-δ (PKCδ), regulates a broad group of biological functions and disease processes, including well-defined roles in immune function, cell survival and apoptosis. PKCδ primarily regulates apoptosis in normal tissues and non-transformed cells, and genetic disruption of the PRKCD gene in mice is protective in many diseases and tissue damage models. However pro-survival/pro-proliferative functions have also been described in some transformed cells and in mouse models of cancer. Recent evidence suggests that the contribution of PKCδ to specific cancers may depend in part on the oncogenic context of the tumor, consistent with its paradoxical role in cell survival and cell death. Here we will discuss what is currently known about biological functions of PKCδ and potential paradigms for PKCδ function in cancer. To further understand mechanisms of regulation by PKCδ, and to gain insight into the plasticity of PKCδ signaling, we have used functional proteomics to identify pathways that are dependent on PKCδ. Understanding how these distinct functions of PKCδ are regulated will be critical for the logical design of therapeutics to target this pathway.
Collapse
Affiliation(s)
- Jordan T Speidel
- Department of Craniofacial Biology, School of Dental Medicine, USA
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, USA
| | | | - Sarah E Ferrara
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, USA.
| |
Collapse
|
10
|
Piao L, Che N, Li H, Li M, Feng Y, Liu X, Kim S, Jin Y, Xuan Y. SETD8 promotes stemness characteristics and is a potential prognostic biomarker of gastric adenocarcinoma. Exp Mol Pathol 2020; 117:104560. [PMID: 33127342 DOI: 10.1016/j.yexmp.2020.104560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
SETD8 is a lysine methyltransferase containing an SET domain, which is involved in the carcinogenesis of many cancer types through monomethylation of the histone H4 lysine 20. However, its prognostic value and underlying mechanisms in gastric adenocarcinoma (GA) have not been extensively studied. Here, we assessed SETD8 expression and its relationship with clinicopathological parameters, cancer stemness-related proteins, cell cycle-related proteins, and PI3K/Akt pathway proteins in GA. SETD8 expression in GA tissues was correlated with the primary tumor stage, lymph node metastasis, tumor size, gross type, and clinical stage. SETD8 was an independent predictor of poor overall survival of patients with GA. Cox regression analysis showed that SETD8 is a potential biomarker of unfavorable clinical outcomes in patients with GA. Moreover, SETD8 overexpression was associated with cancer stemness-related genes, cell cycle-related genes, and PI3K/Akt/NF-κB pathway genes in clinical GA tissue samples. SETD8 silencing downregulated the expression of cancer stemness-associated genes (LSD1 and SOX2) and inhibited GA cell proliferation, spheroid formation, invasion, and migration. Additionally, LY294002 significantly reduced the expression of SETD8, pAkt-Ser473, pPI3K-p85, and NFκB-p65 in MKN74 and MKN28 cells. SETD8 may be a novel cancer stemness-associated protein and potential prognostic biomarker in GA.
Collapse
Affiliation(s)
- Lihua Piao
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Histology and Embryology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Nan Che
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Haoyue Li
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Mengxuan Li
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Anatomy, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Ying Feng
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Xingzhe Liu
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Seokhyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul 110-745, Republic of Korea
| | - Yu Jin
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Anatomy, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China.
| | - Yanhua Xuan
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China.
| |
Collapse
|
11
|
Chen S, Lu S, Yao Y, Chen J, Yang G, Tu L, Zhang Z, Zhang J, Chen L. Downregulation of hsa_circ_0007580 inhibits non-small cell lung cancer tumorigenesis by reducing miR-545-3p sponging. Aging (Albany NY) 2020; 12:14329-14340. [PMID: 32681720 PMCID: PMC7425484 DOI: 10.18632/aging.103472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a highly malignant tumor. Many circular RNAs (circRNAs) are reportedly in regulating the progression of NSCLC. To identify potential therapeutic targets for NSCLC, we conducted a bioinformatics analysis of circRNAs differentially expressed between NSCLC tissues and adjacent normal tissues. Hsa_circ_0007580 was upregulated in NSCLC tumor tissues, and the expression of its host gene (protein kinase Ca) correlated negatively with overall survival. Short-hairpin RNAs were used to knock down hsa_circ_0007580 in NSCLC cells, and gene and protein levels were measured with qRT-PCR and Western blotting, respectively. NSCLC cell proliferation, migration and apoptosis were evaluated with CCK-8 assays, Ki-67 staining, Transwell assays and flow cytometry, respectively. Knocking down hsa_circ_0007580 inhibited proliferation and invasion by NSCLC cells and induced their apoptosis. Dual luciferase reporter assays indicated that miR-545-3p can bind to hsa_circ_0007580 (suggesting that hsa_circ_0007580 sponges miR-545-3p) and to protein kinase Ca (suggesting that miR-545-3p directly inhibits this gene). In a xenograft tumor model, downregulating hsa_circ_0007580 inhibited NSCLC tumorigenesis by inactivating p38/mitogen-activated protein kinase signaling. Thus, silencing hsa_circ_0007580 notably inhibited NSCLC progression in vitro and in vivo, suggesting this circRNA could be a novel treatment target for NSCLC.
Collapse
Affiliation(s)
- Shuifang Chen
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shan Lu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yinan Yao
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Junjun Chen
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Guangdie Yang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lingfang Tu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zeying Zhang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jianli Zhang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lina Chen
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
12
|
Lin H, Liu S, Gao W, Liu H. DDIT3 modulates cancer stemness in gastric cancer by directly regulating CEBPβ. J Pharm Pharmacol 2020; 72:807-815. [PMID: 32189359 DOI: 10.1111/jphp.13243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/09/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Cancer stem cells (CSCs) have been identified to correlate with the initiation and metastasis of tumours, and DNA damage-inducible transcript 3 (DDIT3) is associated with the poor prognosis in gastric cancer (GC). However, whether DDIT3 mediates CSCs stemness in GC is still unclear. METHODS Microarray analysis and Gene Ontology (GO) were conducted to identify the differentially expressed genes in GC tissues from GC patients. The interaction between DDIT3 and CEBPβ was determined using immunoprecipitation (IP) analysis. KEY FINDINGS Herein, microarray analysis showed that DDIT3 expression is increased in GC tissues. qRT-PCR confirmed that DDIT3 is significantly increased in GC tissues and cancer cell lines compared with healthy tissues and normal cell lines, individually. Genetic overexpression of DDIT3 enhanced GC cell proliferation, colony-forming ability, sphere formation and CSCs stemness. Mechanistically, DDIT3 directly up-regulated the expression of transcription factor CEBPβ, leading to the increased expression of CSCs markers SOX2, NANOG, OCT4 and CD133 in gastric CSCs. Genetic downregulation of CEBPβ significantly abolishes DDIT3-mediated increased cell proliferation, colony-forming ability, sphere formation and CSCs stemness. CONCLUSION Our results demonstrated that DDIT3 promotes CSCs stemness by up-regulating CEBPβ in GC that provides novel targets for the further GC therapy.
Collapse
Affiliation(s)
- Hai Lin
- Department of digestive medicine, Linyi Central Hospital, Linyi, Shandong, China
| | - Shufang Liu
- Department of Laboratory, Linyi Central Hospital, Linyi, Shandong, China
| | - Weidong Gao
- Department of Gastroenterology, Lianshui County People's Hospital, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Hongyu Liu
- Department of Pathology, The First Hospital of Qiqihar, The Affiliated Qiqihar Hospital of Southern Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
13
|
Zhang Y, Yuan Y, Zhang Y, Cheng L, Zhou X, Chen K. SNHG7 accelerates cell migration and invasion through regulating miR-34a-Snail-EMT axis in gastric cancer. Cell Cycle 2019; 19:142-152. [PMID: 31814518 DOI: 10.1080/15384101.2019.1699753] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Small nucleolar RNA host gene 7 (SNHG7) is a newly recognized oncogenic Long non-coding RNA (lncRNA) in most human cancers. In gastric cancer, SNHG7 has been suggested to enhance cell proliferation and suppressed apoptosis through down-regulating P15 and P16 expression, but the effect of SNHG7 on gastric cancer cell migration and invasion was still unknown. In our study, we aimed to estimate the relationship between SNHG7 expression and clinical and pathological characteristics, and explore the effect of SNHG7 on gastric cancer cell migration and invasion. In our study, the levels of SNHG7 expression in gastric cancer tissues and cell lines were severally higher than in normal adjacent tissues and gastric mucosal epithelial cells. Moreover, high SNHG7 expression was positively correlated with TNM stage, depth of invasion, lymph-node metastasis and distant metastasis in gastric cancer patients. Furthermore, the multivariate Cox proportional hazard analysis further showed high SNHG7 expression was an independent poor prognostic factor for overall survival in gastric cancer patients. The studies in vitro revealed that SNHG7 directly binds to miR-34a and negatively regulates miR-34a expression, and SNHG7 enhances gastric cancer cell migration and invasion through suppressing miR-34a-Snail-EMT axis. In conclusion, SNHG7 functions as oncogenic lncRNA in gastric cancer and may be a potential therapeutic target for gastric cancer patients.Abbreviations: lncRNA: Long non-coding RNA; SNHG7: Small nucleolar RNA host gene 7; EMT: Epithelial mesenchymal transition; TNM: Tumor-Lymph Node-Metastasis.
Collapse
Affiliation(s)
- Yangmei Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Yuan Yuan
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Long Cheng
- Department of Intervention, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Xichang Zhou
- Department of Intervention, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Kai Chen
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|