1
|
Salarkia E, Mehdipoor M, Molaakbari E, Khosravi A, Sazegar MR, Salari Z, Rad I, Dabiri S, Joukar S, Sharifi I, Ren G. Exploring mesoporous silica nanoparticles as oral insulin carriers: In-silico and in vivo evaluation. Heliyon 2023; 9:e20430. [PMID: 37810809 PMCID: PMC10556789 DOI: 10.1016/j.heliyon.2023.e20430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
The advancements in nanoscience have brought attention to the potential of utilizing nanoparticles as carriers for oral insulin administration. This study aims to investigate the effectiveness of synthesized polymeric mesoporous silica nanoparticles (MSN) as carriers for oral insulin and their interactions with insulin and IR through in-silico docking. Diabetic rats were treated with various MSN samples, including pure MSN, Amin-grafted MSN/PEG/Insulin (AMPI), Al-grafted MSN/PEG/Insulin (AlMPI), Zinc-grafted MSN/PEG/Insulin (ZNPI), and Co-grafted MSN/PEG/Insulin (CMPI). The nanocomposites were synthesized using a hybrid organic-inorganic method involving MSNs, graphene oxide, and insulin. Characterization of the nanocomposites was conducted using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). In vivo tests included the examination of blood glucose levels and histopathological parameters of the liver and pancreas in type 1 diabetic rats. The MSN family demonstrated a significant reduction in blood glucose levels compared to the diabetic control group (p < 0.001). The synthesized nanocomposites exhibited safety, non-toxicity, fast operation, self-repairing pancreas, cost-effectiveness, and high efficiency in the oral insulin delivery system. In the in-silico study, Zn-grafted MSN, Co-grafted MSN, and Al-grafted MSN were selected. Docking results revealed strong interactions between MSN compounds and insulin and IR, characterized by the formation of hydrogen bonds and high binding energy. Notably, Co-grafted MSN showed the highest docking scores of -308.171 kcal/mol and -337.608 kcal/mol to insulin and IR, respectively. These findings demonstrate the potential of polymeric MSN as effective carriers for oral insulin, offering promising prospects for diabetes treatment.
Collapse
Affiliation(s)
- Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdis Mehdipoor
- Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Hakimiyeh, Tehran, Iran
| | - Elahe Molaakbari
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Sazegar
- Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Hakimiyeh, Tehran, Iran
| | - Zohreh Salari
- Department of Obstetrics and Gynecology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Iman Rad
- Afzalipour School of Medicine & Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine & Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Neuroscience Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Guogang Ren
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, UK
| |
Collapse
|
2
|
Wiid L, Naidoo V. Veterinary pharmaceuticals and declining Cape Griffon Vulture (Gyps coprotheres) numbers: A potential threat to developing embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104244. [PMID: 37572995 DOI: 10.1016/j.etap.2023.104244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Cape Vultures (Gyps coprotheres) are a vulnerable Old-World Vulture species in southern Africa. Of the numerous threats to their survival, malicious and accidental poisonings remain a major concern. Despite the dangers of poisonings little is however known about the more insidious effects of toxins on egg survival, despite the species known to have a long generational length. For this study, an extensive literature review focusing on veterinary pharmaceuticals was undertaken. Literature for vultures was scarce, with most studies focusing on the domestic chicken. Using information for domestic chickens, the risk was characterised from likely vulture exposure to production animal carcasses with residues of said drugs. From this various antibiotics, medetomidine and albendazole were identified with embryotoxic or teratogenic effects. We suggest that these drugs be tested to elucidate their dose-response relationship and/or mitigation measures to minimise vulture exposure.
Collapse
Affiliation(s)
- Leandra Wiid
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Vinny Naidoo
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, South Africa.
| |
Collapse
|
3
|
Salari Z, Khosravi A, Pourkhandani E, Molaakbari E, Salarkia E, Keyhani A, Sharifi I, Tavakkoli H, Sohbati S, Dabiri S, Ren G, Shafie’ei M. The inhibitory effect of 6-gingerol and cisplatin on ovarian cancer and antitumor activity: In silico, in vitro, and in vivo. Front Oncol 2023; 13:1098429. [PMID: 36937441 PMCID: PMC10020515 DOI: 10.3389/fonc.2023.1098429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background Epithelial ovarian cancer is very common in women and causes hundreds of deaths per year worldwide. Chemotherapy drugs including cisplatin have adverse effects on patients' health. Complementary treatments and the use of herbal medicines can help improve the performance of medicine. 6-Gingerol is the major pharmacologically active component of ginger. In this study, we compared the effects of 6-gingerol, cisplatin, and their combination in apoptotic and angiogenetic activities in silico, in test tubes, and in in vivo assays against two ovarian cancer cell lines: OVCAR-3 and human umbilical vein endothelial cells (HUVECs). Methods The drug-treated cell lines were evaluated for their cytotoxicity, cell cycle, and apoptotic and angiogenetic gene expression changes. Results The proportion of apoptosis treated by 6-gingerol coupled with cisplatin was significantly high. In the evaluation of the cell cycle, the combination therapy also showed a significant promotion of a higher extent of the S sequence. The expression of p53 level, Caspase-8, Bax, and Apaf1 genes was amplified again with combination therapy. Conversely, in both cell lines, the cumulative drug concentrations reduced the expression of VEGF, FLT1, KDR, and Bcl-2 genes. Similarly, in the control group, combination treatment significantly decreased the expression of VEGF, FLT1, KDR, and Bcl-2 genes in comparison to cisplatin alone. Conclusions The findings of the present study demonstrated that the cisplatin and 6-gingerol combination is more effective in inducing apoptosis and suppressing the angiogenesis of ovarian cancer cells than using each drug alone.
Collapse
Affiliation(s)
- Zohreh Salari
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
- *Correspondence: Ahmad Khosravi, ; Elham Pourkhandani,
| | - Elham Pourkhandani
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- *Correspondence: Ahmad Khosravi, ; Elham Pourkhandani,
| | - Elaheh Molaakbari
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadi Tavakkoli
- Department of Clinical Science, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Samira Sohbati
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine and Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Guogang Ren
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Mohammad Shafie’ei
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Mosallanejad S, Mahmoodi M, Tavakkoli H, Khosravi A, Salarkia E, Keyhani A, Dabiri S, Gozashti MH, Pardakhty A, Khodabandehloo H, Pourghadamyari H. Empagliflozin induces apoptotic-signaling pathway in embryonic vasculature: In vivo and in silico approaches via chick’s yolk sac membrane model. Front Pharmacol 2022; 13:970402. [PMID: 36120349 PMCID: PMC9474685 DOI: 10.3389/fphar.2022.970402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
The present investigation was conducted to evaluate the vascular-toxicity of empagliflozin (EMP) in embryonic vasculature. Firstly, the vascular-toxicity of the drug as well as its interaction with apoptotic regulator proteins was predicted via in silico approach. In the next step, the apoptotic-signaling pathway in embryonic vasculature was evaluated using a chick’s YSM model. In silico simulation confirmed vascular-toxicity of EMP. There was also an accurate affinity between EMP, Bax and Bcl-2 (−7.9 kcal/mol). Molecular dynamics assay revealed complex stability in the human body conditions. Furthermore, EMP is suggested to alter Bcl-2 more than BAX. Morphometric quantification of the vessels showed that the apoptotic activity of EMP in embryonic vasculature was related to a marked reduction in vessel area, vessel diameter and mean capillary area. Based on the qPCR and immunohistochemistry assays, enhanced expression level of BAX and reduced expression level of Bcl-2 confirmed apoptotic responses in the vessels of the YSM. We observed that induction of an apoptotic signal can cause the embryonic defect of the vascular system following EMP treatment. The acquired data also raised suspicions that alteration in apoptotic genes and proteins in the vasculature are two critical pathways in vascular-toxicity of EMP.
Collapse
Affiliation(s)
- Saeedeh Mosallanejad
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- *Correspondence: Mehdi Mahmoodi, ; Hossein Pourghadamyari,
| | - Hadi Tavakkoli
- Department of Clinical Sciences, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine, Pathology and Stem Cell Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Hossein Gozashti
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadi Khodabandehloo
- Department of Clinical Biochemistry, School of Medicine Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- *Correspondence: Mehdi Mahmoodi, ; Hossein Pourghadamyari,
| |
Collapse
|
5
|
Demcisakova Z, Luptakova L, Tirpakova Z, Kvasilova A, Medvecky L, De Spiegelaere W, Petrovova E. Evaluation of Angiogenesis in an Acellular Porous Biomaterial Based on Polyhydroxybutyrate and Chitosan Using the Chicken Ex Ovo Chorioallantoic Membrane Model. Cancers (Basel) 2022; 14:cancers14174194. [PMID: 36077732 PMCID: PMC9454696 DOI: 10.3390/cancers14174194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The chorioallantoic membrane (CAM) is an avian extraembryonic membrane widely used as an experimental assay to study angiogenesis and its inhibition in response to tissues, cells, or soluble factors. In recent years, the CAM has become popular in scientific studies focused on the use of its potential for the study of biocompatibility of materials for regenerative strategies and tissue engineering applications. Great research efforts are being made to develop innovative biomaterials able to treat hard tissue defects, including diseases such as a bone cancer. In this article, we describe an approach to detect the formation of blood vessels inside the porous acellular biopolymer polyhydroxybutyrate/chitosan (PHB/CHIT) scaffold using the CAM assay as an in vivo alternative animal model, including macroscopic, histological, immunohistochemical, and molecular evaluation of the biocompatibility. Abstract The chorioallantoic membrane (CAM) is a highly vascularized avian extraembryonic membrane widely used as an in vivo model to study angiogenesis and its inhibition in response to tissues, cells, or soluble factors. In recent years, the use of CAM has become an integral part of the biocompatibility testing process for developing biomaterials intended for regenerative strategies and tissue engineering applications. In this study, we used the chicken ex ovo CAM assay to investigate the angiogenic potential of innovative acellular biopolymer polyhydroxybutyrate/chitosan (PHB/CHIT) scaffold, which is intended for the treatment of hard tissue defects, depending on treatment with pro- and anti-angiogenic substances. On embryonic day (ED) 7, the experimental biomaterials were placed on the CAM alone or soaked in vascular endothelial growth factor (VEGF-A), saline solution (PHY), or tyrosine kinase inhibitor (SU5402). After 72 h, the formation of vessels was analyzed in the surrounding area of the scaffold and inside the pores of the implants, using markers of embryonic endothelium (WGA, SNA), myofibroblasts (α-SMA), and macrophages (KUL-01). The morphological and histochemical analysis showed strong angiogenic potential of untreated scaffolds without additional effect of the angiogenic factor, VEGF-A. The lowest angiogenic potential was observed in scaffolds soaked with SU5402. Gene expression of pro-angiogenic growth factors, i.e., VEGF-A, ANG-2, and VE-CAD, was upregulated in untreated scaffolds after 72 h, indicating a pro-angiogenic environment. We concluded that the PHB/CHIT has a strong endogenous angiogenic potential and could be promising biomaterial for the treatment of hard tissue defects.
Collapse
Affiliation(s)
- Zuzana Demcisakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
- Correspondence: (Z.D.); (E.P.)
| | - Lenka Luptakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
| | - Zuzana Tirpakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
| | - Alena Kvasilova
- Institute of Anatomy, Charles University, U Nemocnice 3, 12800 Prague, Czech Republic
| | - Lubomir Medvecky
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
- Institute of Materials Research, The Slovak Academy of Sciences, Watsonova 1935/47, 04001 Kosice, Slovakia
| | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Eva Petrovova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
- Correspondence: (Z.D.); (E.P.)
| |
Collapse
|
6
|
Khosravi A, Sharifi I, Tavakkoli H, Molaakbari E, Bahraminegad S, Salarkia E, Seyedi F, Keyhani A, Salari Z, Sharifi F, Bamorovat M, Afgar A, Dabiri S. Cytotoxicity of Amphotericin B and AmBisome: In Silico and In Vivo Evaluation Employing the Chick Embryo Model. Front Pharmacol 2022; 13:860598. [PMID: 35754489 PMCID: PMC9214246 DOI: 10.3389/fphar.2022.860598] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis has been identified as a significant disease in tropical and subtropical regions of the world, with Iran being one of the disease-endemic areas. Various treatments have been applied for this disease, and amphotericin B (Amp B) is the second line of treatment. Side effects of this drug have been reported in various organs. The present study investigated the effects of different types of Amp B on fetal organs using in silico and in vivo assays (chicken embryos). In vivo analysis was done by checking pathological changes, angiogenesis, and apoptosis alterations on eggs treated by Amp B and AmBisome. In silico approach was employed to predict the affinity of Amp B and AmBisome to the vascular endothelial growth factor A (VEGF-A), its receptor (KDR1), apoptotic-regulator proteins (Bcl-2-associated X protein (Bax), B-cell lymphoma (Bcl-2), and Caspase-8. The ADME-toxicity prediction reveals that AmBisome possesses a superior pharmacological effect to Amp B. The best result of all the dockings in the Molegro Virtual Docker (MVD) was obtained between Bax, Bcl-2, Caspase-8, KDR1, and VEGF-A targets. Due to the lower Egap (HOMO–LUMO) of AmBisome, the chemical reactivity of AmBisome was higher than that of Amp B. In vivo analysis showed that embryos that received Amp B exhibited less vascular density than AmBisome. Amp B alone significantly increased the expression of apoptosis and decreased angiogenesis genes compared to AmBisome. The histopathology analysis of the treated embryos showed a reduction in the blood vessel collapse and an increase in degenerative and apoptotic–necrotic changes in the embryonic tissues. Overall, the results suggest the potential benefits of AmBisome over Amp B, which might be a better treatment strategy to treat leishmaniasis during pregnancy.
Collapse
Affiliation(s)
- Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadi Tavakkoli
- Department of Clinical Science, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Elaheh Molaakbari
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sina Bahraminegad
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Seyedi
- Department of Anatomy, School of Medicine, Jiroft University of Medical, Sciences, Jiroft, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Salari
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine and Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Luptakova L, Dvorcakova S, Demcisakova Z, Belbahri L, Holovska K, Petrovova E. Dimethyl Sulfoxide: Morphological, Histological, and Molecular View on Developing Chicken Liver. TOXICS 2021; 9:toxics9030055. [PMID: 33809222 PMCID: PMC8001493 DOI: 10.3390/toxics9030055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/28/2021] [Accepted: 03/09/2021] [Indexed: 01/04/2023]
Abstract
Dimethyl sulfoxide (DMSO) is widely used as a solvent for small hydrophobic drug molecules. However, the safe volume allowing to avoid its embryotoxic effect has been poorly studied. In this study, we documented the effects of dimethyl sulfoxide (DMSO) in the developing chicken embryo at morphological, histological, and molecular levels. We focused on the developing chicken liver as the main organ involved in the process of detoxification. In our study, 100% DMSO was administered subgerminally onto the eggshell membrane (membrana papyracea) at various volumes (5, 10, 15, 20, 25, 30, 35, and 50 µL) on 4th embryonic day (ED). We focused on histopathological alterations of the liver structure, and noticed the overall impact of DMSO on developing chicken embryos (embryotoxicity, malformation). At the molecular level, we studied cytochrome P450 complex (CYP) isoform's activities in relation to changes of CYP1A5, CYP3A37, and CYP3A80 gene expression. Total embryotoxicity after application of different doses of DMSO on ED 4, and the embryo lethality increased with increasing DMSO amounts. Overall mortality after DMSO administration ranged below 33%. Mortality was increased with higher amounts of DMSO, mainly from 20 µL. The highest mortality was observed for the highest dose of DMSO over 35 µL. The results also showed a decrease in body weight with increased application volumes of DMSO. At the histological level, we observed mainly the presence of lipid droplets and dilated bile canaliculi and sinusoids in samples over the administration of 25 µL of DMSO. While these findings were not statistically significant, DMSO treatment caused a significant different up-regulation of mRNA expression in all studied genes. For CYP1A5, CYP3A37, and CYP3A80 DMSO volumes needed were 15 µL, 10 µL, and 20 µL, respectively. A significant down-regulation of all studied CYP isoform was detected after application of a DMSO dose of 5 µL. Regarding the morphological results, we can assume that the highest safe dose of DMSO without affecting chicken embryo development and its liver is up to 10 µL. This conclusion is corroborated with the presence of number of malformations and body weight reduction, which correlates with histological findings. Moreover, the gene expression results showed that even the lowest administered DMSO volume could affect hepatocytes at the molecular level causing down-regulation of cytochrome P450 complex (CYP1A5, CYP3A37, CYP3A80).
Collapse
Affiliation(s)
- Lenka Luptakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
- Correspondence: ; Tel.: +421-918-919-686
| | - Simona Dvorcakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Zuzana Demcisakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (Z.D.); (K.H.); (E.P.)
| | - Lassaad Belbahri
- Laboratory of Soil Biodiversity, Department of Biology, University of Neuchatel, 2000 Neuchatel, Switzerland;
| | - Katarina Holovska
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (Z.D.); (K.H.); (E.P.)
| | - Eva Petrovova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (Z.D.); (K.H.); (E.P.)
| |
Collapse
|
8
|
The relationship between vitamin D receptor (VDR) rs2228570 and rs7975232 genetic variants and the risk of recurrent pregnancy loss. Meta Gene 2021. [DOI: 10.1016/j.mgene.2020.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Tavakkoli H, Khosravi A, Sharifi I, Salari Z, Salarkia E, Kheirandish R, Dehghantalebi K, Jajarmi M, Mosallanejad SS, Dabiri S, Keyhani A. Partridge and embryonated partridge egg as new preclinical models for candidiasis. Sci Rep 2021; 11:2072. [PMID: 33483560 PMCID: PMC7822824 DOI: 10.1038/s41598-021-81592-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Candida albicans (C. albicans) is the most common cause of candidiasis in humans and animals. This study was established to a new experimental infection model for systemic candidiasis using partridge and embryonated partridge egg. First, we tested the induction of systemic candidiasis in partridge and embryonated partridge egg. Finally, interaction between virulence factors of C. albicans and Bcl-2 family members was predicted. We observed that embryonic infection causes a decrease in survival time and at later embryonic days (11–12th), embryos showed lesions. Morphometric analysis of the extra-embryonic membrane (EEM) vasculature showed that vascular apoptotic effect of C. albicans was revealed by a significant reduction in capillary area. In immunohistochemistry assay, low expression of Bcl-2 and increased expression of Bax confirmed apoptosis. The gene expression of Bax and Bcl-2 was also altered in fungi-exposed EEM. Ourin silico simulation has shown an accurate interaction between aspartic proteinase, polyamine oxidase, Bcl-2 and BAX. We observed that the disease was associated with adverse consequences, which were similar to human candidiasis. Acquired results support the idea that partridge and embryonated partridge egg can be utilized as appropriate preclinical models to investigate the pathological effects of candidiasis.
Collapse
Affiliation(s)
- Hadi Tavakkoli
- Department of Clinical Science, School of Veterinary Medicine, Shahid Bahonar University of Kerman, 22 Bahman Boulevard, Pajouhesh Square, Kerman, 7616914111, Iran.
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, 22 Bahman Boulevard, Pajouhesh Square, Kerman, 7616914115, Iran.
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, 22 Bahman Boulevard, Pajouhesh Square, Kerman, 7616914115, Iran
| | - Zohreh Salari
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, 22 Bahman Boulevard, Pajouhesh Square, Kerman, 7616914115, Iran
| | - Reza Kheirandish
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Kazem Dehghantalebi
- Department of Clinical Science, School of Veterinary Medicine, Shahid Bahonar University of Kerman, 22 Bahman Boulevard, Pajouhesh Square, Kerman, 7616914111, Iran
| | - Maziar Jajarmi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Seyedeh Saedeh Mosallanejad
- Afzalipour School of Medicine and Biochemistry Department, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine and Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, 22 Bahman Boulevard, Pajouhesh Square, Kerman, 7616914115, Iran
| |
Collapse
|
10
|
Evaluation of curcumin-loaded polymeric nanocapsules with different coatings in chick embryo model: influence on angiogenesis, teratogenesis and oxidative stress. Pharmacol Rep 2021; 73:563-573. [PMID: 33471303 DOI: 10.1007/s43440-021-00218-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Curcumin (CUR) is a bioactive compound with several proven pharmacological properties. However, the major limitation for therapeutic use of CUR is its low bioavailability. In this sense, an alternative to this question is the use of polymeric nanocapsules (NC) as drug/nutraceutical delivery systems. Thus, the aim of current study was to assess the effect of CUR-loaded NC and their different coatings in chick embryo model, evaluating angiogenic, teratogenic and oxidative stress parameters. METHODS The physicochemical characterization of unloaded and loaded NC with different coatings: (U-NC (P80), U-NC (PEG), U-NC (EUD), U-NC (CS), CUR-NC (P80), CUR-NC (PEG), CUR-NC (EUD) and CUR-NC (CS)) were performed. After 9 days of incubation, eggs were treated (10 mL/kg eggs; via injection) with NC (unloaded and loaded with CUR) and CUR-solution. In sequence, hen's egg test-chorioallantoic membrane (HET-CAM), angiogenic assay, external abnormalities, weight of embryos and oxidative stress markers (TBARS, NPSH, ROS and CAT) were analyzed. RESULTS CUR-NC (P80, PEG, EUD and CS) treatments caused antiangiogenic and non-teratogenic effects in chick embryo model. Still, CUR-NC (P80), CUR-NC (PEG), CUR-NC (EUD) and CUR-NC (CS) did not alter markers of oxidative stress (TBARS, NPSH, CAT) studied. Only CUR-NC (EUD) caused increase in ROS levels. CONCLUSION Wherefore, these findings of present study represent a advance in research of drug/nutraceutical delivery systems.
Collapse
|
11
|
Salari Z, Tavakkoli H, Khosravi A, Karamad E, Salarkia E, Ansari M, Dabiri S, Mortazaeizdeh A, Mosallanejad SS, Sharifi F. Embryo-toxicity of docosahexaenoic and eicosapentaenoic acids: In vivo and in silico investigations using the chick embryo model. Biomed Pharmacother 2021; 136:111218. [PMID: 33450494 DOI: 10.1016/j.biopha.2021.111218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE The objective of the current study was to evaluate the embryo-toxicity of omega-3 fatty acids. METHODS Firstly, the embryo-toxicity of docosahexaenoic (DHA) and eicosapentaenoic acids (EPA), as well as their interaction with Bcl-2 family members, were predicted using an in silico assay. In the next step, the embryonic pathological lesions and amniotic fluid biochemical changes following omega-3 treatment were investigated using a chick embryo model. Finally, the drug's vascular apoptotic effect on the chick's yolk sac membrane (YSM) was assessed. RESULTS In silico simulations revealed the embryo-toxicity, tissue-toxicity (respiratory and cardiovascular), and vascular-toxicity (apoptotic activity) of DHA and EPA. There was also an accurate interaction between DHA and EPA with Bax (Binding affinity: -7.6 and -10.6 kcal/mol) and Bcl-2 (Binding affinity: -8.0 and -12.2 kcal/mol), respectively. Moreover, DHA and EPA administrations were related to various adverse consequences, including weight loss and lesions in the respiratory and cardiovascular systems. Histopathological findings consisted of pulmonary edema, airway dilatation, increased interstitial tissue, and hyperemia in the lungs, heart, liver, kidney, and brain. Morphometric evaluation of the YSM vasculature revealed that the vascular apoptotic effect of omega-3was associated with a significant reduction in mean capillary area. In immunohistochemistry assay, increased expression of BAX and low expression of Bcl-2 affirmed apoptosis in YSM vessels. CONCLUSION According to the results of this study, one could confirm that the possible embryo-toxicity of omega-3 was approved by data presented in this research. The obtained results also support the suspicion that alteration of the apoptotic-related proteins in vessels is an essential pathway in embryo-toxicity of omega-3.
Collapse
Affiliation(s)
- Zohreh Salari
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadi Tavakkoli
- Department of Clinical Science, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Elahe Karamad
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine & Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Mortazaeizdeh
- Afzalipour School of Medicine & Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Fatemeh Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|