1
|
Hu Q, Li Y, Lin Z, Zhang H, Chen H, Chao C, Zhao C. The Molecular Biological Mechanism of Hydrogen Therapy and Its Application in Spinal Cord Injury. Drug Des Devel Ther 2024; 18:1399-1414. [PMID: 38707612 PMCID: PMC11068043 DOI: 10.2147/dddt.s463177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Hydrogen, which is a novel biomedical molecule, is currently the subject of extensive research involving animal experiments and in vitro cell experiments, and it is gradually being applied in clinical settings. Hydrogen has been proven to possess anti-inflammatory, selective antioxidant, and antiapoptotic effects, thus exhibiting considerable protective effects in various diseases. In recent years, several studies have provided preliminary evidence for the protective effects of hydrogen on spinal cord injury (SCI). This paper provides a comprehensive review of the potential molecular biology mechanisms of hydrogen therapy and its application in treating SCI, with an aim to better explore the medical value of hydrogen and provide new avenues for the adjuvant treatment of SCI.
Collapse
Affiliation(s)
- Quan Hu
- Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Yingxiao Li
- Department of Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Zhaochen Lin
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Hao Zhang
- Department of Rehabilitation Medical Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Haoyue Chen
- Department of Rehabilitation Medical Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Cui Chao
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Chuanliang Zhao
- Department of Orthopedics, the Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| |
Collapse
|
2
|
Kartal B, Alimoğulları E, Elçi P, Demir H. Adipose delivered stem cells protect liver after ischemia-reperfusion injury by controlling autophagy. Injury 2023:110839. [PMID: 37248113 DOI: 10.1016/j.injury.2023.110839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVE Ischemia-reperfusion(I/R) injury is an unavoidable side effect of liver surgery and transplantation. A potentially useful tool for cellular therapy and tissue engineering is adipose-derived stem cells (ADSCs).The process of autophagy is used by the cell to break down inappropriate molecules.The study's goal was to examine the impact of ADSCs on the autophagic pathway after rat hepatic ischemia-reperfusion injury. MATERIAL AND METHODS Thirty male rats used in our study were divided into control, ADSC, ischemia, I/R, and I/R+ ADSC groups (n = 6). Liver tissues were stained with hematoxylin-eosin and histological changes were evaluated with Suzuki scoring. Immunoexpressions of transforming growth factor (TGF-β) and autophagy markers LC3B, p62 were analyzed using the immunohistochemical method. RESULTS As a result of histological evaluation the ischemia and I/R groups displayed sinusoid congestion, vacuolization, and necrosis in liver tissues. We showed that the immunostaining of LC3B and TGF- β were elevated, and p62 decreased in the rat liver from ischemia and I/R groups when compared to the control group. CONCLUSION ADSCs reduced the excessive level of autophagy and structural damage to hepatocytes and the pathological alterations in the liver after ıschemia-reperfusion injury.
Collapse
Affiliation(s)
- Bahar Kartal
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey.
| | - Ebru Alimoğulları
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey
| | - Pınar Elçi
- Health Sciences University, Gulhane Health Sciences Institute,Stem Cell Laboratory, Ankara, Turkey
| | - Hazal Demir
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey
| |
Collapse
|
3
|
Surgical Models of Liver Regeneration in Pigs: A Practical Review of the Literature for Researchers. Cells 2023; 12:cells12040603. [PMID: 36831271 PMCID: PMC9954688 DOI: 10.3390/cells12040603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The remarkable capacity of regeneration of the liver is well known, although the involved mechanisms are far from being understood. Furthermore, limits concerning the residual functional mass of the liver remain critical in both fields of hepatic resection and transplantation. The aim of the present study was to review the surgical experiments regarding liver regeneration in pigs to promote experimental methodological standardization. The Pubmed, Medline, Scopus, and Cochrane Library databases were searched. Studies evaluating liver regeneration through surgical experiments performed on pigs were included. A total of 139 titles were screened, and 41 articles were included in the study, with 689 pigs in total. A total of 29 studies (71% of all) had a survival design, with an average study duration of 13 days. Overall, 36 studies (88%) considered partial hepatectomy, of which four were an associating liver partition and portal vein ligation for staged hepatectomy (ALPPS). Remnant liver volume ranged from 10% to 60%. Only 2 studies considered a hepatotoxic pre-treatment, while 25 studies evaluated additional liver procedures, such as stem cell application, ischemia/reperfusion injury, portal vein modulation, liver scaffold application, bio-artificial, and pharmacological liver treatment. Only nine authors analysed how cytokines and growth factors changed in response to liver resection. The most used imaging system to evaluate liver volume was CT-scan volumetry, even if performed only by nine authors. The pig represents one of the best animal models for the study of liver regeneration. However, it remains a mostly unexplored field due to the lack of experiments reproducing the chronic pathological aspects of the liver and the heterogeneity of existing studies.
Collapse
|
4
|
Injectable thermo-sensitive hydrogel containing ADSC-derived exosomes for the treatment of cavernous nerve injury. Carbohydr Polym 2023; 300:120226. [DOI: 10.1016/j.carbpol.2022.120226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
|
5
|
Zhang Q, Liu X, Piao C, Jiao Z, Ma Y, Wang Y, Liu T, Xu J, Wang H. Effect of conditioned medium from adipose derived mesenchymal stem cells on endoplasmic reticulum stress and lipid metabolism after hepatic ischemia reperfusion injury and hepatectomy in swine. Life Sci 2022; 289:120212. [PMID: 34896163 DOI: 10.1016/j.lfs.2021.120212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
AIMS Hepatic ischemia reperfusion injury (HIRI) is associated with liver failure after liver transplantation and hepatectomy. Thus, this study aims to explore the effect of conditioned medium from adipose derived stem cells (ADSC-CM) on endoplasmic reticulum stress (ERS) and lipid metabolism after HIRI combined with hepatectomy in miniature pigs. MAIN METHODS A model of HIRI combined with hepatectomy in miniature pigs was established. The expression of ERS-related proteins and lipid metabolism related genes, as well as triglyceride (TG), total cholesterol (TC), high density lipoprotein (HDL), very low density lipoprotein (VLDL) and acetyl-CoA carboxylase 1 (ACC1) level were measured in liver tissues. KEY FINDINGS Both ADSCs and ADSC-CM could improve the damage in the ultrastructure of hepatocytes. ADSC-CM significantly decreased the protein expression of GRP78, ATF6, XBP1, p-eIF2α, ATF4, p-JNK and CHOP. Oil red O staining revealed that the degree of hepatocyte steatosis was also significantly reduced after treatment with ADSC-CM. In addition, ADSC-CM remarkably decreased TG, TC, HDL and ACC1 level in liver tissues, while enhanced VLDL content. Finally, SREBP1, SCAP, FASN, ACC1, HMGCR and HMGCS1 mRNA expression was also markedly downregulated in liver tissues. SIGNIFICANCE Injection of ADSC-CM into the hepatic parenchymal could represent a novel cell-free therapeutic approach to improve HIRI combined with hepatectomy injury. The inhibition of ERS and the improvement of lipid metabolism in the hepatocytes might be a potential mechanism used by ADSC-CM to prevent liver injury from HIRI combined with hepatectomy.
Collapse
Affiliation(s)
- Qianzhen Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China
| | - Xiaoning Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chenxi Piao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhihui Jiao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, PR China
| | - Yajun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiayuan Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
6
|
Chen K, Obara H, Matsubara Y, Fukuda K, Yagi H, Ono-Uruga Y, Matsubara K, Kitagawa Y. Adipose-Derived Mesenchymal Stromal/Stem Cell Line Prevents Hepatic Ischemia/Reperfusion Injury in Rats by Inhibiting Inflammasome Activation. Cell Transplant 2022; 31:9636897221089629. [PMID: 35438583 PMCID: PMC9021522 DOI: 10.1177/09636897221089629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have shown potential in the treatment of degenerative diseases, including ischemia/reperfusion injury (IRI), which occurs during organ transplantation and represents the main cause of post-transplant graft dysfunction. However, MSCs have heterogeneous characteristics, and studies of MSCs therapy have shown a variety of outcomes. To establish a new effective MSCs therapy, we developed an adipose-derived mesenchymal stromal/stem cell line (ASCL) and compared its therapeutic effects on primary adipose-derived MSCs (ASCs) using a hepatocyte co-culture model of hypoxia/reoxygenation in vitro and a rat model of hepatic IRI in vivo. The results showed that both ASCL and ASCs protect against hypoxia by improving hepatocyte viability, inhibiting reactive oxygen species release, and upregulating transforming growth factor-β in vitro. In vivo, ASCL or ASCs were infused into the spleen 24 h before the induction of rat hepatic IRI. The results showed that ASCL significantly improved the survival outcomes compared with the control (normal saline infusion) with the significantly decreased serum levels of liver enzymes and less damage to liver tissues compared with ASCs. Both ASCL and ASCs suppressed NOD-like receptor family pyrin domain-containing 3 inflammasome activation and subsequently reduced the release of activated IL-1β and IL-18, which is considered an important mechanism underlying ASCL and ASCs infusion in hepatic IRI. In addition, ASCL can promote the release of interleukin-1 receptor antagonist, which was previously reported as a key factor in hampering the inflammatory cascade during hepatic IRI. Our results suggest ASCL as a new candidate for hepatic IRI treatment due to its relatively homogeneous characteristics.
Collapse
Affiliation(s)
- Kaili Chen
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Obara
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yumiko Matsubara
- Clinical and Translational Research Center, Keio University School of Medicine, Tokyo, Japan
| | - Kazumasa Fukuda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yukako Ono-Uruga
- Clinical and Translational Research Center, Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Matsubara
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Piao C, Zhang Q, Xu J, Wang Y, Liu T, Ma H, Liu G, Wang H. Optimal intervention time of ADSCs for hepatic ischemia-reperfusion combined with partial resection injury in rats. Life Sci 2021; 285:119986. [PMID: 34592233 DOI: 10.1016/j.lfs.2021.119986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022]
Abstract
AIMS Hepatic ischemia reperfusion injury (HIRI) is a complication of liver surgery and liver transplantation. Adipose-derived stem cells (ADSCs) can inhibit oxidative stress and inflammation through a paracrine effect. This study aimed to determine the optimal time window of ADSCs transplantation to restore liver function after HIRI. MAIN METHODS A rat model of hepatic ischemia reperfusion combined with partial hepatectomy (HIR/PH) was established. The animals were injected intravenously with 2 × 106 rat ADSCs 2 h before, immediately after, or 6 h after surgery. Liver tissues and blood samples were collected for routine histological and biochemical assays. The molecular changes were analyzed by qRT-PCR and western blotting. KEY FINDINGS ADSCs significantly improved liver tissue structure and decreased the levels of AST, ALT and ALP, which was indicative of functional recovery. In addition, transplantation of ADSCs immediately after operation decreased the levels of inflammation-related cytokines such as TNF-α, IL-1β and IL-6, and significantly increased the activity of antioxidant enzymes. At the same time, the expression of MDA was decreased. Mechanistically, ADSCs activated the Keap1/Nrf2 pathway in the injured liver. Transplantation of ADSCs pre- and 6 h post-operation did not significantly affect some indices such as mRNA and protein expression of HO-1, and protein expression of NQO1. SIGNIFICANCE Transplanting ADSCs immediately after surgery accelerated tissue repair and functional recovery of the liver by activating the Keap1/Nrf2 pathway, which inhibited hepatic inflammation and oxidative stress, and restored the hepatic microenvironment.
Collapse
Affiliation(s)
- Chenxi Piao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qianzhen Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiayuan Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haiyang Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Guodong Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Zhang Q, Piao C, Ma H, Xu J, Wang Y, Liu T, Liu G, Wang H. Exosomes from adipose-derived mesenchymal stem cells alleviate liver ischaemia reperfusion injury subsequent to hepatectomy in rats by regulating mitochondrial dynamics and biogenesis. J Cell Mol Med 2021; 25:10152-10163. [PMID: 34609057 PMCID: PMC8572784 DOI: 10.1111/jcmm.16952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatic ischaemia reperfusion injury (HIRI) is a major factor leading to liver dysfunction after liver resection and liver transplantation. Adipose-derived mesenchymal stem cells (ADSCs) have potential therapeutic effects on HIRI. Exosomes derived from ADSCs (ADSCs-exo) have been widely studied as an alternative of ADSCs therapy. Thus, the aim of this study was to evaluate the potential protective effect and related mechanism of ADSCs-exo on HIRI subsequent to hepatectomy. Rats were randomly divided into four groups: Sham, I30R+PH, ADSCs and ADSCs-exo group. After 24 h of reperfusion, liver and serum of the rats were immediately collected. ADSCs-exo improved liver function, inhibited oxidative stress and reduced apoptosis of hepatocytes in HIRI subsequent to hepatectomy in rats. ADSCs-exo significantly promoted the recovery of mitochondrial function, markedly increased the content of ATP in the liver tissue, and improved the ultrastructure of mitochondria in hepatocytes. Moreover, ADSCs-exo significantly increased the expression of OPA-1, MFN-1 and MFN-2 proteins related to mitochondrial fusion, while DRP-1 and Fis-1 mRNA and protein expression associated with mitochondrial fission were significantly decreased after the treatment with ADSCs-exo. In addition, ADSCs-exo significantly increased the expression of PGC-1α, NRF-1 and TFAM genes and proteins related to mitochondrial biogenesis. ADSCs-exo improves liver function induced by HIRI subsequent to hepatectomy in rats and maintains mitochondrial homeostasis by inhibiting mitochondrial fission, promoting mitochondrial fusion and promoting mitochondrial biogenesis. Therefore, ADSCs-exo may be considered as a potential promising alternative to ADSCs in the treatment of HIRI subsequent to hepatectomy.
Collapse
Affiliation(s)
- Qianzhen Zhang
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Chenxi Piao
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Haiyang Ma
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Jiayuan Xu
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Yue Wang
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Tao Liu
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Guodong Liu
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Hongbin Wang
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
9
|
Protective Effect of Adipose-Derived Mesenchymal Stem Cell Secretome against Hepatocyte Apoptosis Induced by Liver Ischemia-Reperfusion with Partial Hepatectomy Injury. Stem Cells Int 2021; 2021:9969372. [PMID: 34457008 PMCID: PMC8390152 DOI: 10.1155/2021/9969372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is an inevitable complication of liver surgery and liver transplantation. Hepatocyte apoptosis plays a significant role in the pathological process of hepatic IRI. Adipose-derived stem cells (ADSCs) are known to repair and regenerate damaged tissues by producing bioactive factors, including cytokines, exosomes, and extracellular matrix components, which collectively form the secretome of these cells. The aim of this study was to assess the protective effects of the ADSCs secretome after liver ischemia-reperfusion combined with partial hepatectomy in miniature pigs. We successfully established laparoscopic liver ischemia-reperfusion with partial hepatectomy in miniature pigs and injected saline, DMEM, ADSC-secretome, and ADSCs directly into the liver parenchyma immediately afterwards. Both ADSCs and the ADSC-secretome improved the IR-induced ultrastructural changes in hepatocytes and significantly decreased the proportion of TUNEL-positive apoptotic cells along with caspase activity. Consistent with this, P53, Bax, Fas, and Fasl mRNA and protein levels were markedly decreased, while Bcl-2 was significantly increased in the animals treated with ADSCs and ADSC-secretome. Our findings indicate that ADSCs exert therapeutic effects in a paracrine manner through their secretome, which can be a viable alternative to cell-based regenerative therapies.
Collapse
|
10
|
Abstract
Hydrogen therapy is a very promising treatment against several diseases due to its mild attributes, high affinity and inherent biosafety. However, there is little elaboration about current hydrogen treatment in liver diseases. This article introduces the administration of hydrogen and mechanisms of hydrogen therapy in vivo, including modulating reactive oxygen species, apoptosis and autophagy, and inflammation, affecting mitochondria, as well as protein transporters. The major focus is clinical hydrogen use and related mechanisms in liver dysfunction or diseases, including non-alcoholic fatty liver disease, hepatitis B, liver dysfunction caused by liver tumour and colorectal tumour chemotherapy. Further, the article reveals ex vivo hydrogen application in liver protection. Finally, the article discusses the current and future challenges of hydrogen therapy in liver diseases, aiming to improve knowledge of hydrogen therapy and provide some insights into this burgeoning field.
Collapse
Affiliation(s)
- Jian Shi
- The Third Xiangya Hospital, Changsha, China
| | | | | |
Collapse
|
11
|
Adipose-Derived Stem Cells: Current Applications and Future Directions in the Regeneration of Multiple Tissues. Stem Cells Int 2020; 2020:8810813. [PMID: 33488736 PMCID: PMC7787857 DOI: 10.1155/2020/8810813] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/04/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) can maintain self-renewal and enhanced multidifferentiation potential through the release of a variety of paracrine factors and extracellular vesicles, allowing them to repair damaged organs and tissues. Consequently, considerable attention has increasingly been paid to their application in tissue engineering and organ regeneration. Here, we provide a comprehensive overview of the current status of ADSC preparation, including harvesting, isolation, and identification. The advances in preclinical and clinical evidence-based ADSC therapy for bone, cartilage, myocardium, liver, and nervous system regeneration as well as skin wound healing are also summarized. Notably, the perspectives, potential challenges, and future directions for ADSC-related researches are discussed. We hope that this review can provide comprehensive and standardized guidelines for the safe and effective application of ADSCs to achieve predictable and desired therapeutic effects.
Collapse
|
12
|
Hydrogen: A Novel Option in Human Disease Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8384742. [PMID: 32963703 PMCID: PMC7495244 DOI: 10.1155/2020/8384742] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/06/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
H2 has shown anti-inflammatory and antioxidant ability in many clinical trials, and its application is recommended in the latest Chinese novel coronavirus pneumonia (NCP) treatment guidelines. Clinical experiments have revealed the surprising finding that H2 gas may protect the lungs and extrapulmonary organs from pathological stimuli in NCP patients. The potential mechanisms underlying the action of H2 gas are not clear. H2 gas may regulate the anti-inflammatory and antioxidant activity, mitochondrial energy metabolism, endoplasmic reticulum stress, the immune system, and cell death (apoptosis, autophagy, pyroptosis, ferroptosis, and circadian clock, among others) and has therapeutic potential for many systemic diseases. This paper reviews the basic research and the latest clinical applications of H2 gas in multiorgan system diseases to establish strategies for the clinical treatment for various diseases.
Collapse
|
13
|
Zhang Y, Xu J, Yang H. Hydrogen: An Endogenous Regulator of Liver Homeostasis. Front Pharmacol 2020; 11:877. [PMID: 32595504 PMCID: PMC7301907 DOI: 10.3389/fphar.2020.00877] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/27/2020] [Indexed: 01/10/2023] Open
Abstract
Basic and clinical studies have shown that hydrogen (H2), the lightest gas in the air, has significant biological effects of anti-oxidation, anti-inflammation, and anti-apoptosis. The mammalian cells have no abilities to produce H2 due to lack of the expression of hydrogenase. The endogenous H2 in human body is mainly produced by anaerobic bacteria, such as Firmicutes and Bacteroides, in gut and other organs through the reversible oxidation reaction of 2 H+ + 2 e- ⇌ H2. Supplement of exogenous H2 can improve many kinds of liver injuries, modulate glucose and lipids metabolism in animal models or in human beings. Moreover, hepatic glycogen has strong ability to accumulate H2, thus, among the organs examined, liver has the highest concentration of H2 after supplement of exogenous H2 by various strategies in vivo. The inadequate production of endogenous H2 play essential roles in brain, heart, and liver disorders, while enhanced endogenous H2 production may improve hepatitis, hepatic ischemia and reperfusion injury, liver regeneration, and hepatic steatosis. Therefore, the endogenous H2 may play essential roles in maintaining liver homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jingting Xu
- Biofeedback Laboratory, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Jiao Z, Liu X, Ma Y, Ge Y, Zhang Q, Liu B, Wang H. Adipose-Derived Stem Cells Protect Ischemia-Reperfusion and Partial Hepatectomy by Attenuating Endoplasmic Reticulum Stress. Front Cell Dev Biol 2020; 8:177. [PMID: 32266259 PMCID: PMC7098915 DOI: 10.3389/fcell.2020.00177] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
Ischemia-reperfusion (IR) is an inevitable complication of liver surgery. Recent studies indicate a critical role of endoplasmic reticulum stress (ERS) in hepatic IR. Mesenchymal stem cells (MSCs) have proven to be an effective tool for tissue regeneration and treatment of various diseases, including that of the liver. However, the mechanisms underlying the therapeutic effects of stem cells on hepatic IR injury (IRI) are still poorly understood, especially in the context of ERS. In this study, we established a porcine model of hepatic IRI and partial hepatectomy, and transplanted the animals with adipose-derived mesenchymal stem cells (ADSCs) isolated from miniature pigs. ADSCs not only alleviated the pathological changes in the liver parenchyma following IRI, but also protected the resident hepatocytes from damage. Mechanistically, the ADSCs significantly downregulated ERS-related proteins, including GRP78, p-eIF2α, ATF6 and XBP1s, as well as the proteins involved in ERS-induced apoptosis like p-JNK, ATF4 and CHOP. Taken together, ADSCs can alleviate hepatic IRI by inhibiting ERS and its downstream apoptotic pathways in the hepatocytes, indicating its therapeutic potential in liver diseases.
Collapse
Affiliation(s)
- Zhihui Jiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoning Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Yajun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Yansong Ge
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qianzhen Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Boyang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|