1
|
Brown SD, Klimi E, Bakker WAM, Beqqali A, Baker AH. Non-coding RNAs to treat vascular smooth muscle cell dysfunction. Br J Pharmacol 2025; 182:246-280. [PMID: 38773733 DOI: 10.1111/bph.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
Vascular smooth muscle cell (vSMC) dysfunction is a critical contributor to cardiovascular diseases, including atherosclerosis, restenosis and vein graft failure. Recent advances have unveiled a fascinating range of non-coding RNAs (ncRNAs) that play a pivotal role in regulating vSMC function. This review aims to provide an in-depth analysis of the mechanisms underlying vSMC dysfunction and the therapeutic potential of various ncRNAs in mitigating this dysfunction, either preventing or reversing it. We explore the intricate interplay of microRNAs, long-non-coding RNAs and circular RNAs, shedding light on their roles in regulating key signalling pathways associated with vSMC dysfunction. We also discuss the prospects and challenges associated with developing ncRNA-based therapies for this prevalent type of cardiovascular pathology. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
MESH Headings
- Animals
- Humans
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Untranslated/pharmacology
- RNA, Untranslated/therapeutic use
Collapse
Affiliation(s)
- Simon D Brown
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eftychia Klimi
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
2
|
Li F, Zhuo L, Xie F, Luo H, Li Y, Lin H, Li X. Exploration of small molecule compounds targeting abdominal aortic aneurysm based on CMap database and molecular dynamics simulation. Vascular 2024:17085381241273289. [PMID: 39155144 DOI: 10.1177/17085381241273289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
OBJECTIVE The mitigation of abdominal aortic aneurysm (AAA) growth through pharmaceutical intervention offers the potential to avert the perils associated with AAA rupture and the subsequent need for surgical intervention. Nevertheless, the existing effective drugs for AAA treatment are limited, necessitating a pressing exploration for novel therapeutic medications. METHODS AAA-related transcriptome data were downloaded from GEO, and differentially expressed genes (DEGs) in AAA tissue were screened for GO and KEGG enrichment analyses. Small molecule compounds and their target proteins with negative connectivity to the AAA expression profile were predicted in the Connectivity Map (CMap) database. Molecular docking and molecular dynamics simulation were performed to predict the binding of the target protein to the small molecule compound, and the MM/GBSA method was used to calculate the binding free energy. Cluster analysis was performed using the cluster tool in the GROMACS package. An AAA cell-free model was built, and CETSA experiments were used to demonstrate the binding ability of small molecules to the target protein in cells. RESULTS A total of 2244 DEGs in AAA were obtained through differential analysis, and the DEGs were mainly enriched in the tubulin binding biological function and cell cycle pathway. The CMap results showed that Apicidin had a potential therapeutic effect on AAA with a connectivity score of -97.74, and HDAC4 was the target protein of Apicidin. Based on literature, HDAC4-Apicidin was selected as the subsequent research object. The lowest affinity of Apicidin-HDAC4 molecular docking was -8.218 kcal/mol. Molecular dynamics simulation results indicated that Apicidin-HDAC4 could form a stable complex. MM/GBSA analysis showed a total binding free energy of -55.40 ± 0.79 kcal/mol, and cluster analysis showed that there were two main conformational clusters during the binding process, accounting for 22.4% and 57.8%, respectively. Apicidin could form hydrogen bonds with surrounding residues for stable binding. CETSA experiment proved the stable binding ability of Apicidin and HDAC4. CONCLUSION Apicidin inhibited HDAC4 in AAA and exhibited favorable protein-ligand interactions and stability, making it a potential candidate drug for treating AAA.
Collapse
Affiliation(s)
- Fushan Li
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Liqing Zhuo
- Department of Electrocardiography, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Fangtao Xie
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Haiping Luo
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Ying Li
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Huyu Lin
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| | - Xiaoguang Li
- Department of Vascular, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, China
| |
Collapse
|
3
|
Fu G, Wu H, Wu X, Yang Y, Fan C. LncRNA LBX2-AS1 inhibits acute myeloid leukemia progression through miR-455-5p/MYLIP axis. Heliyon 2024; 10:e24812. [PMID: 38312562 PMCID: PMC10835375 DOI: 10.1016/j.heliyon.2024.e24812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a common blood cancer primarily affecting the bone marrow and blood cells, which is prevalent among adults. Long non-coding RNAs (lncRNAs) have been shown to play a crucial role in the development and progression of AML. LBX2-AS1 is a recently discovered lncRNA that has been linked to the pathogenesis and progression of several types of cancer. This study aimed to investigate the role and possible mechanisms of LBX2-AS1 in AML. Expression levels of LBX2-AS1, miR-455-5p, and their target genes were detected in AML samples and cells by RT-qPCR. Cell proliferation and apoptosis were determined by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays, and flow cytometry, respectively. LBX2-AS1 was downregulated in AML specimens and cells, and overexpression of LBX2-AS1 significantly inhibited cell proliferation and enhanced apoptosis in vitro. We also determined the effects of LBX2-AS1 overexpression in an AML mouse model by in vivo bioluminescence imaging. Mechanistically, LBX2-AS1 acts as a competitive endogenous RNA, which promotes myosin regulatory light chain interacting protein (MYLIP) expression by sponging miR-455-5p. Knockdown of MYLIP or upregulation of miR-455-5p antagonized the effect of LBX2-AS1 overexpression on the progression of AML. LBX2-AS1 may thus be a valuable therapeutic target for AML.
Collapse
Affiliation(s)
- Gongli Fu
- Department of Hematology Ward, Shulan (Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| | - Hao Wu
- Department of Hematology Ward, Shulan (Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| | - Xiaomiao Wu
- Department of Hematology Ward, Shulan (Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| | - Yang Yang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Cuihua Fan
- Department of Hematology Ward, Shulan (Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Kucher AN, Koroleva IA, Nazarenko MS. Pathogenetic Significance of Long Non-Coding RNAs in the Development of Thoracic and Abdominal Aortic Aneurysms. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:130-147. [PMID: 38467550 DOI: 10.1134/s0006297924010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 03/13/2024]
Abstract
Aortic aneurysm (AA) is a life-threatening condition with a high prevalence and risk of severe complications. The aim of this review was to summarize the data on the role of long non-coding RNAs (lncRNAs) in the development of AAs of various location. Within less than a decade of studies on the role of lncRNAs in AA, using experimental and bioinformatic approaches, scientists have obtained the data confirming the involvement of these molecules in metabolic pathways and pathogenetic mechanisms critical for the aneurysm development. Regardless of the location of pathological process (thoracic or abdominal aorta), AA was found to be associated with changes in the expression of various lncRNAs in the tissue of the affected vessels. The consistency of changes in the expression level of lncRNA, mRNA and microRNA in aortic tissues during AA development has been recordedand regulatory networks implicated in the AA pathogenesis in which lncRNAs act as competing endogenous RNAs (ceRNA networks) have been identified. It was found that the same lncRNA can be involved in different ceRNA networks and regulate different biochemical and cellular events; on the other hand, the same pathological process can be controlled by different lncRNAs. Despite some similarities in pathogenesis and overlapping of involved lncRNAs, the ceRNA networks described for abdominal and thoracic AA are different. Interactions between lncRNAs and other molecules, including those participating in epigenetic processes, have also been identified as potentially relevant to the AA pathogenesis. The expression levels of some lncRNAs were found to correlate with clinically significant aortic features and biochemical parameters. Identification of regulatory RNAs functionally significant in the aneurysm development is important for clarification of disease pathogenesis and will provide a basis for early diagnostics and development of new preventive and therapeutic drugs.
Collapse
Affiliation(s)
- Aksana N Kucher
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Iuliia A Koroleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Maria S Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
| |
Collapse
|
5
|
Xun M, Zhang J, Wu M, Chen Y. Long non-coding RNAs: The growth controller of vascular smooth muscle cells in cardiovascular diseases. Int J Biochem Cell Biol 2023; 157:106392. [PMID: 36828237 DOI: 10.1016/j.biocel.2023.106392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
The active proliferation and migration of vascular smooth muscle cells supports the healing of vessel damage while their abnormal aggression or destitution contribute to the aberrant intima-medial structure and function in various cardiovascular diseases, so the understanding of the proliferation disorders of vascular smooth muscle cell and the related mechanism is the basis of effective intervention and control for cardiovascular diseases. Recently, long non-coding RNAs have stood out as upstream switchers for multiple proliferative signaling pathways and molecules, and many of them have been shown to conduce to the dysregulated proliferation and apoptosis of vascular smooth muscle cells under various pathogenic stimuli. This article discusses the long non-coding RNAs disclosed and linked to atherosclerosis, pulmonary hypertension, and aneurysms, and focuses upon their modulation of vascular smooth muscle cell population affecting three deadly cardiovascular diseases.
Collapse
Affiliation(s)
- Min Xun
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Jie Zhang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Meichun Wu
- Hengyang Medical School, University of South China, Hengyang 421001, China; School of Nursing, University of South China, Hengyang 421001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China; Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
6
|
Su Y, Li C, Fang Y, Gu X, Zheng Q, Lu J, Li L. The role of LncRNA LBX2-AS1 in cancers: functions, mechanisms and potential clinical utility. Clin Transl Oncol 2023; 25:293-305. [PMID: 36131071 PMCID: PMC9873731 DOI: 10.1007/s12094-022-02944-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 01/29/2023]
Abstract
Increasingly advanced biology technique has revealed that long non-coding RNAs (lncRNA) as critical factors that exert significant regulatory effects on biological functions by modulating gene transcription, epigenetic modifications and protein translation. A newly emerging lncRNA, ladybird homeobox 2 (LBX2)-antisense RNA 1 (LBX2-AS1), was found to be highly expressed in various tumors. Moreover, it is functionally linked to the regulation of essential tumor-related biological processes, such as cell proliferation and apoptosis, through interactions with multiple signaling molecules/pathways. The important roles played by LBX2-AS1 in cancer initiation and progression suggest that this lncRNA has enormous clinical potential for use as a novel biomarker or therapeutic target. In this article, we retrospectively review the latest advances in research exploring the roles of the lncRNA LBX2-AS1 in oncology field, highlighting its involvement in a comprehensive network of molecular mechanisms underlying diverse cancers and examining its potential applications in clinical practice.
Collapse
Affiliation(s)
- Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Chengzhi Li
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Yu Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
7
|
Li J, Yuan X, Ma C, Li J, Qu G, Yu B, Cai F, Peng Y, Liu L, Zeng D, Jiao Q, Zhang J, Luo X, Liao Q, Lv XB. LncRNA LBX2-AS1 impacts osteosarcoma sensitivity to JQ-1 by sequestering miR-597-3p away from BRD4. Front Oncol 2023; 13:1139588. [PMID: 37035213 PMCID: PMC10079882 DOI: 10.3389/fonc.2023.1139588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Objective Recent knowledge concerning the significance of long non-coding RNA (lncRNA)-mediated ceRNA networks provides new insight into their possible roles as specific biomarkers for the treatment of osteosarcoma (OS). Thus, this study aims to clarify the functional relevance and mechanistic actions of lncRNA LBX2-AS1 in OS. Methods Differential analysis was performed by integrating the TCGA and GTEx databases. Cox regression analysis was then employed to assess the prognostic value of the model. The expression of lncRNA LBX2-AS1 and miR-597-3p was quantified in OS cell lines by qRT-PCR. The proliferation, migration, invasion, and apoptosis of OS cell lines in response to manipulated lncRNA LBX2-AS1 were evaluated by MTT, colony formation, transwell, Western blot, and flow cytometry assays. Luciferase activity was assayed to validate the reciprocal regulation between lncRNA LBX2-AS1 and miR-597-3p. The protein levels of BRD4 and EMT-related factors were examined by Western blot assay. Finally, tumor growth in response to LBX2-AS1 knockdown was evaluated in xenograft-bearing nude mice. Results By integrating the GTEx and TCGA databases, we identified 153 differentially expressed lncRNAs. Among them, 5 lncRNAs, RP11-535M15.1, AC002398.12, RP3-355L5.4, LBX2-AS1, and RP11.47A8.5, were selected to establish a model, which predicted the prognosis of OS. Higher lncRNA LBX2-AS1 expression was noted in OS tissues relative to that in normal tissues. Silencing lncRNA LBX2-AS1 facilitated apoptosis and curtailed proliferative, migratory, and invasive capacities of OS cells. Mechanistically, lncRNA LBX2-AS1 could elevate the expression of BRD4, an oncogene, by competitively binding to miR-597-3p. More importantly, knockdown of lncRNA LBX2-AS1 increased the sensitivity of OS cells to the BRD4 inhibitor JQ-1. Finally, the tumor growth of OS cell xenografts was constrained in vivo in the presence of lncRNA LBX2-AS1 knockdown. Conclusion In conclusion, lncRNA LBX2-AS1 promotes the growth of OS and represses the sensitivity to JQ-1 by sponging miR-597-3p to elevate the expression of BRD4.
Collapse
Affiliation(s)
- Jiayu Li
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xuhui Yuan
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Cong Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junhong Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaoyang Qu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bo Yu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Cai
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuanxiang Peng
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lang Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Duo Zeng
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - QuanHui Jiao
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiongfeng Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaohui Luo
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Liao
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Xiao-Bin Lv, ; Qi Liao,
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Xiao-Bin Lv, ; Qi Liao,
| |
Collapse
|
8
|
Li L, Han J, Zhang S, Dong C, Xiao X. KIF26B-AS1 Regulates TLR4 and Activates the TLR4 Signaling Pathway to Promote Malignant Progression of Laryngeal Cancer. J Microbiol Biotechnol 2022; 32:1344-1354. [PMID: 36224753 PMCID: PMC9668086 DOI: 10.4014/jmb.2203.03037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Laryngeal cancer is one of the highest incidence, most prevalently diagnosed head and neck cancers, making it critically necessary to probe effective targets for laryngeal cancer treatment. Here, real-time quantitative reverse transcription PCR (qRT-PCR) and western blot analysis were used to detect gene expression levels in laryngeal cancer cell lines. Fluorescence in situ hybridization (FISH) and subcellular fractionation assays were used to detect the subcellular location. Functional assays encompassing Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), transwell and wound healing assays were performed to examine the effects of target genes on cell proliferation and migration in laryngeal cancer. The in vivo effects were proved by animal experiments. RNA-binding protein immunoprecipitation (RIP), RNA pulldown and luciferase reporter assays were used to investigate the underlying regulatory mechanisms. The results showed that KIF26B antisense RNA 1 (KIF26B-AS1) propels cell proliferation and migration in laryngeal cancer and regulates the toll-like receptor 4 (TLR4) signaling pathway. KIF26B-AS1 also recruits FUS to stabilize TLR4 mRNA, consequently activating the TLR4 signaling pathway. Furthermore, KIF26B-AS1 plays an oncogenic role in laryngeal cancer via upregulating TLR4 expression as well as the FUS/TLR4 pathway axis, findings which offer novel insight for targeted therapies in the treatment of laryngeal cancer patients.
Collapse
Affiliation(s)
- Li Li
- Department of Otolaryngology, Head and Neck Surgery, The First People’s Hospital of Lianyungang City, No.182, Tongguan Road, Haizhou District, Lianyungang City, Jiangsu Province 222100, P.R. China
| | - Jiahui Han
- Department of Otolaryngology, Head and Neck Surgery, The First People’s Hospital of Lianyungang City, No.182, Tongguan Road, Haizhou District, Lianyungang City, Jiangsu Province 222100, P.R. China
| | - Shujia Zhang
- Department of Otolaryngology, Head and Neck Surgery, The First People’s Hospital of Lianyungang City, No.182, Tongguan Road, Haizhou District, Lianyungang City, Jiangsu Province 222100, P.R. China
| | - Chunguang Dong
- Department of Otolaryngology, Head and Neck Surgery, The First People’s Hospital of Lianyungang City, No.182, Tongguan Road, Haizhou District, Lianyungang City, Jiangsu Province 222100, P.R. China
| | - Xiang Xiao
- Department of Otolaryngology, Head and Neck Surgery, The First People’s Hospital of Lianyungang City, No.182, Tongguan Road, Haizhou District, Lianyungang City, Jiangsu Province 222100, P.R. China,Corresponding author Phone: +0518-85607019 Fax: +0518-85607019 E-mail:
| |
Collapse
|
9
|
Zhang D, Lu D, Xu R, Zhai S, Zhang K. Inhibition of XIST attenuates abdominal aortic aneurysm in mice by regulating apoptosis of vascular smooth muscle cells through miR-762/MAP2K4 axis. Microvasc Res 2022; 140:104299. [PMID: 34942175 DOI: 10.1016/j.mvr.2021.104299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common chronic aortic degenerative disease. Long non-coding RNA X-inactive specific transcript (XIST) is associated with the progression of AAA, while the underlying mechanism is still unclear. We investigated the functional role of XIST in AAA. AAA mouse model was established by administration of Angiotensin II (Ang II). Primary mouse vascular smooth muscle cells (VSMCs) were separated from the abdominal aorta of Ang II-induced AAA mice, and then treated with Ang II. XIST was highly expressed in Ang II-treated VSMCs. Cell proliferation ability was decreased and apoptosis was increased in VSMCs following Ang II treatment. XIST knockdown reversed the impact of Ang II on cell proliferation and apoptosis in VSMCs. XIST promoted mitogen-activated protein kinase kinase 4 (MAP2K4) expression by sponging miR-762. XIST overexpression suppressed cell proliferation and apoptosis of Ang II-treated VSMCs by regulating miR-762/MAP2K4 axis. Finally, Ang II-induced AAA mouse model was established to verify the function of XIST in AAA. Inhibition of XIST significantly attenuated the pathological changes of abdominal aorta tissues in Ang II-induced mice. The expression of miR-762 was inhibited, and MAP2K4 expression was enhanced by XIST knockdown in the abdominal aorta tissues of AAA mice. In conclusion, these data demonstrate that inhibition of XIST attenuates AAA in mice, which attributes to inhibit apoptosis of VSMCs by regulating miR-762/MAP2K4 axis. Thus, this study highlights a novel ceRNA circuitry involving key regulators in the pathogenesis of AAA.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Apoptosis
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Regulation, Enzymologic
- MAP Kinase Kinase 4/genetics
- MAP Kinase Kinase 4/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Dongbin Zhang
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Danghui Lu
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Rutao Xu
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Shuiting Zhai
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Kewei Zhang
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China.
| |
Collapse
|
10
|
Huang Y, Ren L, Li J, Zou H. Long non-coding RNA PVT1/microRNA miR-3127-5p/NCK-associated protein 1-like axis participates in the pathogenesis of abdominal aortic aneurysm by regulating vascular smooth muscle cells. Bioengineered 2021; 12:12583-12596. [PMID: 34898354 PMCID: PMC8810122 DOI: 10.1080/21655979.2021.2010384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The long non-coding RNA plasmacytoma variant translocation 1 (lncRNA PVT1) has been implicated in the progression of abdominal aortic aneurysms (AAA). However, the detailed mechanism requires further analysis. Our study was aimed at interrogating the mechanism of PVT1 in an H2O2-induced AAA model in vitro. The expression of lncRNA PVT1, microRNA miR-3127-5p, and NCK-associated protein 1-like (NCKAP1L) was examined in AAA tissues and H2O2-treated vascular smooth muscle cells (VSMCs). Cell proliferation was assayed using Cell Counting Kit-8 (CCK8) and 5-Bromodeoxyuridine (BrdU) assays. Meanwhile, 5-Ethynyl-2'-deoxyuridine (EdU) staining was performed to assess cell apoptosis and caspase-3 activity. IL-1β and caspase-1 expression was also assessed using Western blotting to determine inflammasome activation in H2O2-treated VSMCs. Luciferase reporter assays addressed the possible interaction between miR-3127-5p and PVT1 or NCKAP1L, which was predicted by starBase analysis. PVT1 and NCKAP1L expression was elevated in AAA tissues and induced the AAA model in vitro, whereas miR-3127-5p showed the opposite trend. Functionally, PVT1 silencing promoted cell proliferation and reduced the apoptotic rate and inflammasome activation in H2O2-treated VSMCs. Mechanical investigation demonstrated that PVT1 acted as a sponge of miR-3127-5p to modulate NCKAP1L expression, resulting in suppression of VSMC proliferation, induction of apoptosis, and activation of inflammation. In conclusion, PVT1 participates in AAA progression through the miR-3127-5p/NCKAP1L axis and may be a promising biosignature and therapeutic target for AAA.
Collapse
Affiliation(s)
- Youjin Huang
- Department of Vascular Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Li Ren
- Department of Vascular Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Jiajia Li
- Intensive Care Unit, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Haibo Zou
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Cui XY, Zhan JK, Liu YS. Roles and functions of antisense lncRNA in vascular aging. Ageing Res Rev 2021; 72:101480. [PMID: 34601136 DOI: 10.1016/j.arr.2021.101480] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Vascular aging is a major cause of morbidity and mortality in the elderly population. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), forming the intima and media layers of the vessel wall respectively, are closely associated with the process of vascular aging and vascular aging-related diseases. Numerous studies have revealed the pathophysiologic mechanism through which lncRNA contributes to vascular aging, hence more attention is now paid to the role played by antisense long non-coding RNA (AS-lncRNA) in the pathogenesis of vascular aging. Nonetheless, only a small number of studies focus on the specific mechanism through which AS-lncRNA mediates vascular aging. In this review, we summarize the roles and functions of AS-lncRNA with regards to the development of vascular aging and vascular aging-related disease. We also aim to deepen our understanding of this process and provide alternative therapeutic modalities for vascular aging-related diseases.
Collapse
Affiliation(s)
- Xing-Yu Cui
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - Jun-Kun Zhan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China.
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
12
|
Song X, Guo Y, Song P, Duan D, Guo W. Non-coding RNAs in Regulating Tumor Angiogenesis. Front Cell Dev Biol 2021; 9:751578. [PMID: 34616746 PMCID: PMC8488154 DOI: 10.3389/fcell.2021.751578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are RNAs that do not encode proteins, but perform biological functions in various physiological and pathological processes, including cancer formation, inflammation, and neurological diseases. Tumor blood vessels are a key target for cancer management. A number of factors regulate the angiogenesis of malignant tumors. NcRNAs participate in the regulation of tumor angiogenesis. Abnormal expression of ncRNAs act as tumor suppressors or oncogenes to affect the development of tumors. In this review we summarized the biological functions of ncRNAs, and discussed its regulatory mechanisms in tumor angiogenesis. This article will provide new insights for the research of ncRNAs in tumor angiogenesis.
Collapse
Affiliation(s)
- Xin Song
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yanan Guo
- School of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Peng Song
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Prevention and Treatment for Chronic Diseases by TCM, Lanzhou, China
| | - Dongzhu Duan
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, China
| | - Wenjing Guo
- School of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|