1
|
Lu G, Du R, Lu L, Wang Q, Zhang M, Gu X, Feng N, Zhang S, Liu Y, Li J, Pei J. Macrophage-specific κ-OR knockout exacerbates inflammation in hypoxic pulmonary hypertension. Eur J Pharmacol 2025; 986:177152. [PMID: 39586395 DOI: 10.1016/j.ejphar.2024.177152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Hypoxic pulmonary hypertension (HPH), a prevalent subtype of pulmonary arterial hypertension, is characterized by pulmonary vasoconstriction (HPV) and vascular remodeling, accompanied by inflammatory responses. Recent in vivo studies have shown a critical role of the κ-opioid receptor (κ-OR) in modulating the aforementioned pathological processes. Specifically, macrophage-specific κ-OR-knockout models have shown inflammatory response exacerbation with pulmonary hypertension and vascular remodeling. Conversely, the novel κ-OR agonist Q-U50, 488H inhibits inflammatory pathways, thereby attenuating pulmonary vasoconstriction and vascular remodeling. The present study revealed that hypoxia promoted macrophage infiltration and pulmonary artery smooth muscle cell proliferation. Moreover, under these conditions, macrophages secreted interleukin (IL)-6, which triggered the signal transducer and activator of transcription 3 (STAT3)/miR-153-3p signaling cascade. Herein, we identified miR-153-3p downregulated κ-OR gene expression, which is a key contributor to HPV and remodeling, it was identified as a pivotal regulator of κ-OR mRNA levels. The pharmacological activation of κ-OR inhibited IL-6 release from macrophages and disrupted the IL-6/STAT3/miR-153-3p pathway. This dual action of κ-OR activation mitigated pulmonary artery contraction and remodeling, thereby offering a protective mechanism against HPH. The present findings have delineated a novel negative feedback loop driving HPH pathogenesis and suggested that targeting the κ-OR-IL-6-STAT3-miR-153-3p axis represented a promising therapeutic strategy against HPH.
Collapse
MESH Headings
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/agonists
- Animals
- Macrophages/metabolism
- MicroRNAs/genetics
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Interleukin-6/metabolism
- Interleukin-6/genetics
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Hypoxia/complications
- Hypoxia/genetics
- Mice
- Mice, Knockout
- Inflammation/genetics
- Inflammation/pathology
- Pulmonary Artery/pathology
- Signal Transduction
- Male
- Mice, Inbred C57BL
- Vascular Remodeling/drug effects
- Vascular Remodeling/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Cell Proliferation/drug effects
- Vasoconstriction/drug effects
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
Collapse
Affiliation(s)
- Guofang Lu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Linhe Lu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Qiaojuan Wang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Min Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoming Gu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Na Feng
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yali Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Jiang Y, Xing W, Li Z, Zhao D, Xiu B, Xi Y, Bai S, Li X, Zhang Z, Zhang W, Li H. The calcium-sensing receptor alleviates endothelial inflammation in atherosclerosis through regulation of integrin β1-NLRP3 inflammasome. FEBS J 2024. [PMID: 39552549 DOI: 10.1111/febs.17308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of arteries. Endothelial inflammation is key to the initiation and development of AS. The calcium-sensing receptor (CaSR) is expressed in endothelial cells (ECs) but its role in endothelial inflammation during AS remains unclear. This study focused on the involvement of CaSR in regulating endothelial inflammation and its underlying mechanisms, providing novel insights for AS therapy. Here, we observed that CaSR agonist NPS-R568 significantly reduced atherosclerotic lesions and aortic inflammation in high-fat diet (HFD)-fed ApoE-/- mice, while enhancing the expression of CaSR in aortic tissues. In vitro, human umbilical vein endothelial cells (HUVECs) exposed to oxidized low-density lipoprotein (oxLDL) at 20 μg·mL-1 triggered inflammation, as indicated by the upregulation of vascular cell adhesion molecule-1 (VCAM-1), interleukin (IL)-6, and IL-1β expression, along with increased adherence of THP-1 or U937 cells to the HUVECs. Additionally, treatment with 20 μg·mL-1 oxLDL led to downregulation of CaSR expression in HUVECs. The administration of CaSR agonist NPS-R568 or overexpression of CaSR in HUVECs resulted in a significant reversal of inflammation induced by oxLDL. Mechanistically, CaSR was found to mitigate NLRP3 inflammasome activation by downregulating the protein level of integrin β1. In conclusion, our study elucidates the beneficial role of CaSR in reducing endothelial inflammation in AS through the regulation of integrin β1 and the subsequent NLRP3 inflammasome. CaSR emerges as a promising target for potential therapeutic interventions in AS.
Collapse
Affiliation(s)
- Yunge Jiang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Wenjing Xing
- Department of Immunology, Harbin Medical University, China
| | - Zhong Li
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, China
| | - Defeng Zhao
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Bingxu Xiu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Yuhui Xi
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Shuzhi Bai
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Xiaoxue Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Zheqi Zhang
- Department of Immunology, Harbin Medical University, China
| | - Weihua Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Hongxia Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| |
Collapse
|
3
|
Zhang J, Li Q, Liao P, Xiao R, Zhu L, Hu Q. Calcium sensing receptor: A promising therapeutic target in pulmonary hypertension. Life Sci 2024; 340:122472. [PMID: 38290572 DOI: 10.1016/j.lfs.2024.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Pulmonary hypertension (PH) is characterized by elevation of pulmonary arterial pressure and pulmonary vascular resistance. The increased pulmonary arterial pressure and pulmonary vascular resistance due to sustained pulmonary vasoconstriction and pulmonary vascular remodeling can lead to right heart failure and eventual death. A rise in intracellular Ca2+ concentration ([Ca2+]i) and enhanced pulmonary arterial smooth muscle cells (PASMCs) proliferation contribute to pulmonary vasoconstriction and pulmonary vascular remodeling. Recent studies demonstrated that extracellular calcium sensing receptor (CaSR) as a G-protein coupled receptor participates in [Ca2+]i increase induced by hypoxia in the experimental animals of PH and in PH patients. Pharmacological blockade or gene knockout of CaSR significantly attenuates the development of PH. This review will aim to discuss and update the pathogenicity of CaSR attributed to onset and progression in PH.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinli Li
- Department of Clinical Laboratory Medicine, People's Hospital of Dongxihu District Wuhan City and Union Dongxihu Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Pu Liao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xiao
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Zhu
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghua Hu
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Lu G, Du R, Liu Y, Zhang S, Li J, Pei J. RGS5 as a Biomarker of Pericytes, Involvement in Vascular Remodeling and Pulmonary Arterial Hypertension. Vasc Health Risk Manag 2023; 19:673-688. [PMID: 37881333 PMCID: PMC10596204 DOI: 10.2147/vhrm.s429535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Introduction Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by a sustained rise in mean pulmonary artery pressure. Pulmonary vascular remodeling serves an important role in PAH. Identifying a key driver gene to regulate vascular remodeling of the pulmonary microvasculature is critical for PAH management. Methods Differentially expressed genes were identified using the Gene Expression Omnibus (GEO) GSE117261, GSE48149, GSE113439, GSE53408 and GSE16947 datasets. A co-expression network was constructed using weighted gene co-expression network analysis. Novel and key signatures of PAH were screened using four algorithms, including weighted gene co-expression network analysis, GEO2R analysis, support vector machines recursive feature elimination and robust rank aggregation rank analysis. Regulator of G-protein signaling 5 (RGS5), a pro-apoptotic/anti-proliferative protein, which regulate arterial tone and blood pressure in vascular smooth muscle cells. The expression of RGS5 was determined using reverse transcription-quantitative PCR (RT-qPCR) in PAH and normal mice. The location of RGS5 and pericytes was detected using immunofluorescence. Results Compared with that in the normal group, RGS5 expression was upregulated in the PAH group based on GEO and RT-qPCR analyses. RGS5 expression in single cells was enriched in pericytes in single-cell RNA sequencing analysis. RGS5 co-localization with pericytes was detected in the pulmonary microvasculature of PAH. Conclusion RGS5 regulates vascular remodeling of the pulmonary microvasculature and the occurrence of PAH through pericytes, which has provided novel ideas and strategies regarding the occurrence and innovative treatment of PAH.
Collapse
Affiliation(s)
- Guofang Lu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710038, People’s Republic of China
| | - Yali Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| |
Collapse
|
5
|
Niu J, Wu C, Zhang M, Yang Z, Liu Z, Fu F, Li J, Feng N, Gu X, Zhang S, Liu Y, Fan R, Li J, Pei J. κ-opioid receptor stimulation alleviates rat vascular smooth muscle cell calcification via PFKFB3-lactate signaling. Aging (Albany NY) 2021; 13:14355-14371. [PMID: 34016793 PMCID: PMC8202865 DOI: 10.18632/aging.203050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
In the present study, the effects and mechanism of action of U50,488H (a selective κ-opioid receptor agonist) on calcification of rat vascular smooth muscle cells (VSMCs) induced by β-glycerophosphate (β-GP) were investigated. VSMCs were isolated and cultured in traditional FBS-based media. A calcification model was established in VSMCs under hyperphosphatemia and intracellular calcium contents. Alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and lactate were detected in cell culture supernatants before and after treatment. Alizarin red staining was used to detect the degree of calcification of VSMCs. Expression levels of key molecules of osteogenic markers, fructose-2,6-biphosphatase 3 (PFKFB3), and proline hydroxylase 2 (PHD2), were determined using western blotting. Further, vascular calcification was induced by vitamin D3 plus nicotine in rats and isolated thoracic aortas, calcium concentration was assessed in rat aortic rings in vitro. We demonstrated that U50,488H inhibited VSMC calcification in a concentration-dependent manner. Moreover, U50,488H significantly inhibited osteogenic differentiation and ALP activity in VSMCs pretreated with β-GP. Further studies confirmed that PFKFB3 expression, LDH level, and lactate content significantly increased during calcification of VSMCs; U50,488H reversed these changes. PHD2 expression showed the opposite trend compared to PFKFB3 expression. nor-BNI or 3-PO abolished U50,488H protective effects. Besides, U50,488H inhibited VSMC calcification in rat aortic rings ex vivo. Collectively, our experiments show that κ-opioid receptor activation inhibits VSMC calcification by reducing PFKFB3 expression and lactate content, providing a potential drug target and strategy for the clinical treatment of vascular calcification.
Collapse
Affiliation(s)
- Jin Niu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
- Department of Healthcare of 940 Hospital, Joint Logistics Support Force of PLA, Lanzhou 730000, Gansu Province, China
| | - Chen Wu
- Department of Neurology, Xinjiang Military General Hospital, Urumqi 830000, Xinjiang Province, China
| | - Min Zhang
- Department of College of Life Sciences, Northwest University, Xi'an 710032, Shaanxi Province, China
| | - Zhen Yang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zhenhua Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jun Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Na Feng
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xiaoming Gu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yali Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Rong Fan
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
6
|
Zhou MY, Cheng L, Chen L, Gu YJ, Wang Y. Calcium-sensing receptor in the development and treatment of pulmonary hypertension. Mol Biol Rep 2021; 48:975-981. [PMID: 33394231 DOI: 10.1007/s11033-020-06065-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022]
Abstract
Calcium-sensing receptor (CaSR) is widely involved in the cell proliferation, differentiation, migration, adhesion and apoptosis, which can affect the vascular remodeling in the humanbody. The main ligand of CaSR is extracellular Ca2+. CaSR has the physiological significance in Ca2+ homeostasis. Pulmonary vascular remodeling is one of the main histopathological changes of pulmonary hypertension (PH). The abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) results in the pulmonary vascular remodeling. CaSR is an important regulator of [Ca2+]i. [Ca2+]i is the main cause of the excessive pulmonary vascular remodeling in patients with PH. In this review, it was conclued that the structure of CaSR was prone to explore the devolopment or the treatment of PH. It was found that the regulation of CaSR with some miRNA could inhibit the proliferation of PASMCs, and that CaSR could affect the occurrence of autophagy in PH. Therefore, CaSR would become a new therapeutic target to PH.
Collapse
MESH Headings
- Adamantane/analogs & derivatives
- Adamantane/therapeutic use
- Animals
- Autophagy/drug effects
- Autophagy/genetics
- Calcium/metabolism
- Calcium Channel Blockers/therapeutic use
- Cell Differentiation/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Quinoxalines/therapeutic use
- Receptors, Calcium-Sensing/antagonists & inhibitors
- Receptors, Calcium-Sensing/genetics
- Receptors, Calcium-Sensing/metabolism
- Signal Transduction
- Vascular Remodeling/drug effects
- Vascular Remodeling/genetics
Collapse
Affiliation(s)
- Ming-Yuan Zhou
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Lin Cheng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Lei Chen
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Ying-Jian Gu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
7
|
Fan F, He J, Su H, Zhang H, Wang H, Dong Q, Zeng M, Xing W, Sun X. Tribbles Homolog 3-Mediated Vascular Insulin Resistance Contributes to Hypoxic Pulmonary Hypertension in Intermittent Hypoxia Rat Model. Front Physiol 2020; 11:542146. [PMID: 33192545 PMCID: PMC7662151 DOI: 10.3389/fphys.2020.542146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
This study aimed to investigate the role of vascular insulin resistance (VIR) and Tribbles homolog 3 (TRIB3) in the pathogenesis of hypoxia-induced pulmonary hypertension (HPH). Rats were subjected to low air pressure and low oxygen intermittently for 4 weeks to induce HPH. The mean right ventricular pressure (mRVP), mean pulmonary arterial pressure (mPAP), and right ventricular index (RVI) were significantly increased in HPH rats. Pulmonary arteries from HPH rats showed VIR with reduced vasodilating effect of insulin. The protein levels of peroxisome proliferator-activated receptor gamma (PPARγ), phosphoinositide 3-kinase (PI3K), phosphorylations of Akt, and endothelial nitric oxide (NO) synthase (eNOS) were decreased, and TRIB3 and phosphorylated extracellular signal-regulated protein kinases (ERK1/2) were increased in pulmonary arteries of HPH rats. Early treatment of pioglitazone (PIO) partially reversed the development of HPH, improved insulin-induced vasodilation, and alleviated the imbalance of the insulin signaling. The overexpression of TRIB3 in rat pulmonary arterial endothelial cells (PAECs) reduced the levels of PPARγ, PI3K, phosphorylated Akt (p-Akt), and phosphorylated eNOS (p-eNOS) and increased p-ERK1/2 and the synthesis of endothelin-1 (ET-1), which were further intensified under hypoxic conditions. Moreover, TRIB3 knockdown caused significant improvement in Akt and eNOS phosphorylations and, otherwise, a reduction of ERK1/2 activation in PAECs after hypoxia. In conclusion, impaired insulin-induced pulmonary vasodilation and the imbalance of insulin-induced signaling mediated by TRIB3 upregulation in the endothelium contribute to the development of HPH. Early PIO treatment improves vascular insulin sensitivity that may help to limit the progression of hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Fang Fan
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinxiao He
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Su
- Department of Geratology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haifeng Zhang
- Teaching Experiment Center, Fourth Military Medical University, Xi'an, China
| | - Hao Wang
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qianqian Dong
- Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Minghua Zeng
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenjuan Xing
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|