1
|
Xu G, Liu M, Wang Z, Chen S Y. Cytotoxic and Antitumor Agents from Genus Rubia. Chem Biodivers 2024; 21:e202401498. [PMID: 39183172 DOI: 10.1002/cbdv.202401498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Genus Rubia is widely distributed in almost all regions of the world, with 36 species and 2 varieties in China. Rubia species, such as Rubia cordifolia, have been used in traditional Chinese medicine for the treatment of diseases since ancient times. In recent years, the study of anticancer effects in traditional Chinese medicine has become a popular topic, and some studies have shown that several Rubia species extracts have cytotoxic and antitumor effects, and some of them have been shown to contain specific antitumor agents. Therefore, this review focuses on the cytotoxic and antitumor effects of the chemical constituents contained in Genus Rubia. Summarized 71 types of chemical substances in 5 categories with the effect of cytotoxicity and antitumor, as well as their structures, targets and mechanisms of action.
Collapse
Affiliation(s)
- Geng Xu
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China
| | - Meiyu Liu
- International Research Center for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
| | - Zuobin Wang
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China
- International Research Center for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yujuan Chen S
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China
- International Research Center for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
| |
Collapse
|
2
|
Guo J, Yan W, Duan H, Wang D, Zhou Y, Feng D, Zheng Y, Zhou S, Liu G, Qin X. Therapeutic Effects of Natural Products on Liver Cancer and Their Potential Mechanisms. Nutrients 2024; 16:1642. [PMID: 38892575 PMCID: PMC11174683 DOI: 10.3390/nu16111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Liver cancer ranks third globally among causes of cancer-related deaths, posing a significant public health challenge. However, current treatments are inadequate, prompting a growing demand for novel, safe, and effective therapies. Natural products (NPs) have emerged as promising candidates in drug development due to their diverse biological activities, low toxicity, and minimal side effects. This paper begins by reviewing existing treatment methods and drugs for liver cancer. It then summarizes the therapeutic effects of NPs sourced from various origins on liver cancer. Finally, we analyze the potential mechanisms of NPs in treating liver cancer, including inhibition of angiogenesis, migration, and invasion; regulation of the cell cycle; induction of apoptosis, autophagy, pyroptosis, and ferroptosis; influence on tumor metabolism; immune regulation; regulation of intestinal function; and regulation of key signaling pathways. This systematic review aims to provide a comprehensive overview of NPs research in liver cancer treatment, offering a foundation for further development and application in pharmaceuticals and functional foods.
Collapse
Affiliation(s)
- Jinhong Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Wenjie Yan
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Hao Duan
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Diandian Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Yaxi Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Duo Feng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;
| | - Yue Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China;
| | - Shiqi Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Gaigai Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Xia Qin
- Graduate Department, Beijing Union University, Beijing 100101, China
| |
Collapse
|
3
|
Wang B, Liu Y, Liao Z, Wu H, Zhang B, Zhang L. EZH2 in hepatocellular carcinoma: progression, immunity, and potential targeting therapies. Exp Hematol Oncol 2023; 12:52. [PMID: 37268997 PMCID: PMC10236851 DOI: 10.1186/s40164-023-00405-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/15/2023] [Indexed: 06/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death. The accumulation of genetic and epigenetic changes is closely related to the occurrence and development of HCC. Enhancer of zeste homolog 2 (EZH2, a histone methyltransferase) is suggested to be one of the principal factors that mediates oncogenesis by acting as a driver of epigenetic alternation. Recent studies show that EZH2 is widely involved in proliferation and metastasis of HCC cells. In this review, the functions of EZH2 in HCC progression, the role of EZH2 in tumor immunity and the application of EZH2-related inhibitors in HCC therapy are summarized.
Collapse
Affiliation(s)
- Bohan Wang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haofeng Wu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lei Zhang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Hepatobiliary Surgery, Shanxi Tongji Hospital, Tongji Medical College, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
- Key Laboratory of Hepatobiliary and Pancreatic Diseases of Shanxi Province (Preparatory), Shanxi Tongji Hospital, Tongji Medical College, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
| |
Collapse
|
4
|
Abstract
The enhancer of zeste homolog 2 (EZH2) and its highly related homolog EZH1 are considered to be epigenetic silencing factors, and they play key roles in the growth and differentiation of cells as the core components of polycomb repressive complex 2 (PRC2). EZH1 and EZH2 are known to have a role in human malignancies, and alterations in these two genes have been implicated in transformation of human malignancies. Inhibition of EZH1/2 has been shown to result in tumor regression in humans and has been studied and evaluated in the preclinical setting and in multiple clinical trials at various levels. Our work thus contributes to the understanding of the relationship between regulatory molecules associated with EZH1/2 proteins and tumor progression, and may provide new insights for mechanism-based EZH1/2-targeted therapy in tumors.
Collapse
|
5
|
Investigation of Anti-Liver Cancer Activity of the Herbal Drug FDY003 Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5765233. [PMID: 36118098 PMCID: PMC9481369 DOI: 10.1155/2022/5765233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Globally, liver cancer (LC) is the sixth-most frequently occurring and the second-most fatal malignancy, responsible for 0.83 million deaths annually. Although the application of herbal drugs in cancer therapies has increased, their anti-LC activity and relevant mechanisms have not been fully studied from a systems perspective. To address these issues, we conducted a system-perspective network pharmacological investigation into the activity and mechanisms underlying the action of the herbal drug. FDY003 reduced the viability of human LC treatment. FDY003 reduced the viability of human LC cells and elevated their chemosensitivity. There were a total of 16 potential bioactive chemical components in FDY003 and they had 91 corresponding targets responsible for the pathological processes in LC. These FDY003 targets were functionally involved in regulating the survival, proliferation, apoptosis, and cell cycle of LC cells. Additionally, we found that FDY003 may target key signaling cascades connected to diverse LC pathological mechanisms, namely, PI3K-Akt, focal adhesion, IL-17, FoxO, MAPK, and TNF pathways. Overall, this study contributed to integrative mechanistic insights into the anti-LC potential of FDY003.
Collapse
|
6
|
Qin B, Zeng Z, Xu J, Shangwen J, Ye ZJ, Wang S, Wu Y, Peng G, Wang Q, Gu W, Tang Y. Emodin inhibits invasion and migration of hepatocellular carcinoma cells via regulating autophagy-mediated degradation of snail and β-catenin. BMC Cancer 2022; 22:671. [PMID: 35715752 PMCID: PMC9206273 DOI: 10.1186/s12885-022-09684-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
Background Previous studies reported that emodin extracted from Rheum palmatum L. exerts antiproliferation and antimetastatic effects in a variety of human cancer types. However, the role of emodin in hepatocellular carcinoma (HCC) remain unknown. Methods EdU and colony formation assays were performed to evaluate the effects of emodin on proliferation. The mobility capacities of HCC treated with emodin were evaluated using wound healing assay. Transwell invasion and migration assays were performed to evaluate anti-migratory and anti-invasive effects of emodin on HCC. Annexin V-FITC/PI was performed to analyze the apoptosis. PI stain was performed to analyze cell cycle. RNA sequencing technology was used to identify the differentially expressed genes (DEGs) induced by emodin in HCC. The impact of emodin on autophagic flux in HepG2 cells was examined by mCherry-GFP-LC3 analysis. Western blot was used to assess the protein expressions of epithelial-mesenchymal transition (EMT), autophagy, PI3K/AKT/mTOR and Wnt/β-catenin signaling pathway. Results We found that emodin inhibited the growth of HepG2 cells in a dose- and time-dependent manner. In addition, emodin inhibited cell proliferation, induced S and G2/M phases arrest, and promoted apoptosis in HepG2 cells. The migration and invasion of HepG2 cells were also suppressed by emodin. Enrichment analysis revealed that DEGs involved in cell adhesion, cancer metastasis and cell cycle arrest. Moreover, western bolt results show that emodin-induced autophagy promotes Snail and β-catenin degradation. We also found that blocking autophagic flux after emodin treatment caused EMT reversal. Furthermore, the PI3K agonist Y-P 740 significantly reversed the phosphorylation levels of GSK3β and mTOR. These results indicated that emodin induced autophagy and inhibited the EMT in part through suppression of the PI3K/AKT/mTOR and Wnt/β-catenin pathways. Conclusion Our study indicated that emodin inhibited cell metastasis in HCC via the crosstalk between autophagy and EMT. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09684-0.
Collapse
Affiliation(s)
- Binyu Qin
- Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhili Zeng
- Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianliang Xu
- Hepatobilliary Surgery Department, The Third affiliated Hospital of Su Yat-sen University, Guangzhou, China
| | - Jing Shangwen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeng Jie Ye
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shutang Wang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanheng Wu
- Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, China
| | - Gongfeng Peng
- Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Wenyi Gu
- Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, China. .,Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, QLD, Brisbane, 4072, Australia.
| | - Ying Tang
- Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, China. .,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China. .,Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
7
|
McDonald SJ, VanderVeen BN, Velazquez KT, Enos RT, Fairman CM, Cardaci TD, Fan D, Murphy EA. Therapeutic Potential of Emodin for Gastrointestinal Cancers. Integr Cancer Ther 2022; 21:15347354211067469. [PMID: 34984952 PMCID: PMC8738880 DOI: 10.1177/15347354211067469] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/12/2023] Open
Abstract
Gastrointestinal (GI) cancers cause one-third of all cancer-related deaths worldwide. Natural compounds are emerging as alternative or adjuvant cancer therapies given their distinct advantage of manipulating multiple pathways to both suppress tumor growth and alleviate cancer comorbidities; however, concerns regarding efficacy, bioavailability, and safety are barriers to their development for clinical use. Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a Chinese herb-derived anthraquinone, has been shown to exert anti-tumor effects in colon, liver, and pancreatic cancers. While the mechanisms underlying emodin's tumoricidal effects continue to be unearthed, recent evidence highlights a role for mitochondrial mediated apoptosis, modulated stress and inflammatory signaling pathways, and blunted angiogenesis. The goals of this review are to (1) highlight emodin's anti-cancer properties within GI cancers, (2) discuss the known anti-cancer mechanisms of action of emodin, (3) address emodin's potential as a treatment complementary to standard chemotherapeutics, (4) assess the efficacy and bioavailability of emodin derivatives as they relate to cancer, and (5) evaluate the safety of emodin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daping Fan
- University of South Carolina, Columbia, SC, USA
- AcePre, LLC, Columbia, SC, USA
| | - E. Angela Murphy
- University of South Carolina, Columbia, SC, USA
- AcePre, LLC, Columbia, SC, USA
| |
Collapse
|
8
|
EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects. Biomed Pharmacother 2021; 146:112532. [PMID: 34906772 DOI: 10.1016/j.biopha.2021.112532] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Brain tumors are responsible for high mortality and morbidity worldwide. The brain tumor treatment depends on identification of molecular pathways involved in progression and malignancy. Enhancer of zeste homolog 2 (EZH2) has obtained much attention in recent years in field of cancer therapy due to its aberrant expression and capacity in modulating expression of genes by binding to their promoter and affecting methylation status. The present review focuses on EZH2 signaling in brain tumors including glioma, glioblastoma, astrocytoma, ependymomas, medulloblastoma and brain rhabdoid tumors. EZH2 signaling mainly participates in increasing proliferation and invasion of cancer cells. However, in medulloblastoma, EZH2 demonstrates tumor-suppressor activity. Furthermore, EZH2 can regulate response of brain tumors to chemotherapy and radiotherapy. Various molecular pathways can function as upstream mediators of EZH2 in brain tumors including lncRNAs and miRNAs. Owing to its enzymatic activity, EZH2 can bind to promoter of target genes to induce methylation and affects their expression. EZH2 can be considered as an independent prognostic factor in brain tumors that its upregulation provides undesirable prognosis. Both anti-tumor agents and gene therapies such as siRNA have been developed for targeting EZH2 in cancer therapy.
Collapse
|
9
|
Roles of Therapeutic Bioactive Compounds in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9068850. [PMID: 34754365 PMCID: PMC8572616 DOI: 10.1155/2021/9068850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is due to poor prognosis and lack of availability of effective treatment. Novel therapeutic strategies will be the fine tuning of intracellular ROS signaling to effectively deprive cells of ROS-induced tumor-promoting events. This review discusses the generation of ROS, the major signaling their modulation in therapeutics. We explore some of the major pathways involved in HCC, which include the VEGF, MAPK/ERK, mTOR, FGF, and Ser/Thr kinase pathways. In this review, we study cornerstone on natural bioactive compounds with their effect on hepatocarcinomas. Furthermore, we focus on oxidative stress and FDA-approved signaling pathway inhibitors, along with chemotherapy and radiotherapy enhancers which with early evidence of success. While more in vivo testing is required to confirm the findings presented here, our findings will aid future nonclinical, preclinical, and clinical studies with these compounds, as well as inspire medicinal chemistry scientists to conduct appropriate research on this promising natural compound and their derivatives.
Collapse
|
10
|
Zheng Q, Li S, Li X, Liu R. Advances in the study of emodin: an update on pharmacological properties and mechanistic basis. Chin Med 2021; 16:102. [PMID: 34629100 PMCID: PMC8504117 DOI: 10.1186/s13020-021-00509-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Rhei Radix et Rhizoma, also known as rhubarb or Da Huang, has been widely used as a spice and as traditional herbal medicine for centuries, and is currently marketed in China as the principal herbs in various prescriptions, such as Da-Huang-Zhe-Chong pills and Da-Huang-Qing-Wei pills. Emodin, a major bioactive anthraquinone derivative extracted from rhubarb, represents multiple health benefits in the treatment of a host of diseases, such as immune-inflammatory abnormality, tumor progression, bacterial or viral infections, and metabolic syndrome. Emerging evidence has made great strides in clarifying the multi-targeting therapeutic mechanisms underlying the efficacious therapeutic potential of emodin, including anti-inflammatory, immunomodulatory, anti-fibrosis, anti-tumor, anti-viral, anti-bacterial, and anti-diabetic properties. This comprehensive review aims to provide an updated summary of recent developments on these pharmacological efficacies and molecular mechanisms of emodin, with a focus on the underlying molecular targets and signaling networks. We also reviewed recent attempts to improve the pharmacokinetic properties and biological activities of emodin by structural modification and novel material-based targeted delivery. In conclusion, emodin still has great potential to become promising therapeutic options to immune and inflammation abnormality, organ fibrosis, common malignancy, pathogenic bacteria or virus infections, and endocrine disease or disorder. Scientifically addressing concerns regarding the poor bioavailability and vague molecular targets would significantly contribute to the widespread acceptance of rhubarb not only as a dietary supplement in food flavorings and colorings but also as a health-promoting TCM in the coming years.
Collapse
Affiliation(s)
- Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
11
|
Khan H, Ni Z, Feng H, Xing Y, Wu X, Huang D, Chen L, Niu Y, Shi G. Combination of curcumin with N-n-butyl haloperidol iodide inhibits hepatocellular carcinoma malignant proliferation by downregulating enhancer of zeste homolog 2 (EZH2) - lncRNA H19 to silence Wnt/β-catenin signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153706. [PMID: 34517264 DOI: 10.1016/j.phymed.2021.153706] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common cause of cancer-related death worldwide. Curcumin (C) has been extensively investigated in different types of malignancies, including hepatocellular carcinoma, but its physicochemical properties have significantly influenced its clinical use. Several approaches are being explored to enhance curcumin's therapeutic response, including its combination with various drugs. PURPOSE This study aimed to evaluate the anti-tumor effect of curcumin (C) in combination with F2 (N-n-butyl haloperidol iodide) on hepatocellular carcinoma and its potential underlying mechanism in vitro and in vivo. METHODS Cell proliferation was evaluated by CCK-8 and colony formation assays, and apoptosis was measured by flow cytometry. The migratory and invasive abilities of Hep3B and SMMC-7721 cells were measured by wound-healing and matrigel transwell assays. In order to investigate the molecular pathways, various experiments such as western blotting, qPCR, RNA-seq, immunostaining and transfection were performed. To evaluate the anti-HCC effects in vivo, a xenograft tumor model was used. RESULTS Our findings showed that the combination of curcumin (C) & F2 (F2C) strongly inhibited malignant proliferation and migration in SMMC-7721 and Hep3B cells. The F2C treatment downregulates enhancer of zeste homolog 2 (EZH2) transcription and protein expression, which is key epigenetic regulator responsible for HCC development. Moreover, the inhibition of EZH2 by F2C led to Wnt/β-catenin signaling inhibition by decreasing tri-methylation of histone H3 at lysine 27 (H3K27me3) and long non-coding RNA H19 expression. The inhibition of F2C was associated with the suppression of tumorigenicity in xenograft HCC models. CONCLUSION These findings suggested that, F2C inhibited HCC formation, migration and its modulatory mechanism seemed to be associated with downregulation of EZH2, silencing Wnt/β-catenin signaling by interacting with H19, suggesting that F2C may be a promising drug in the clinical treatment of HCC.
Collapse
Affiliation(s)
- Hanif Khan
- Department of Pharmacology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Zhengzhong Ni
- Department of Pharmacology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Hai Feng
- Shanghai Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaqi Xing
- Department of Pharmacology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Xuejun Wu
- Department of Pharmacology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Ling Chen
- Department of Pharmacology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, Guangdong, China.
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, Guangdong, China.
| |
Collapse
|
12
|
Ruan N, Jiao Z, Tang L. Response surface methodology to optimize supercritical carbon dioxide extraction of Polygonum cuspidatum. J AOAC Int 2021; 105:272-281. [PMID: 34410415 DOI: 10.1093/jaoacint/qsab108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Resveratrol and emodin are abundant polyhydroxy compounds that are found in the Chinese traditional medicinal herb Polygonum cuspidatum and widely used due to their excellent antioxidant properties. OBJECTIVE This study aimed to obtain the maximum extraction yields of resveratrol and emodin from the P. cuspidatum via green extraction. METHODS The extracts were acquired through supercritical carbon dioxide (SC-CO2) extraction with ethanol as cosolvent. The independent variables of the extraction process, namely, temperature (45-55 °C), the pressure (20-30 MPa), and the ethanol content (80 -120 mL/L), were optimized by response surface methodology (RSM). RESULTS These variables extremely affected the yields of resveratrol and emodin. Second-order polynomial mathematical models were developed and applied to predict the optimal extraction conditions (i.e., temperature of 51.8 °C, pressure of 25.34 MPa, and ethanol content of 110.83 mL/L). Under these conditions, confirmatory experiment displayed that the yields of resveratrol and emodin were 2.564 ± 0.121 and 2.804 ± 0.108 mg/g, respectively. High antioxidant properties, strong free radical scavenging ability, and good reducing ability were observed for the extracts. CONCLUSION Resveratrol and emodin could be successfully extracted from P. cuspidatum by SC-CO2, and RSM can effective optimize the process. HIGHLIGHTS The SC-CO2 extraction of resveratrol and emodin from P. cuspidatum was developed, and RSM was successfully used to optimize the extraction parameters and predict the optimal conditions.
Collapse
Affiliation(s)
- Ningjie Ruan
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Zhen Jiao
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China.,Joint Research Institute of Southeast University and Monash University, Suzhou, Jiangsu, 215123, PR China.,Joint Graduate School of Southeast University and Monash University, Suzhou, Jiangsu, 215123, PR China
| | - Linglong Tang
- Joint Graduate School of Southeast University and Monash University, Suzhou, Jiangsu, 215123, PR China.,School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, PR China
| |
Collapse
|
13
|
Li X, Liu D, Fan K, Qian M. Cisplatin and si-Notch 1-Folic Acid-Conjugated Mesoporous Silica Nanoparticles Prevent Hepatocellular Carcinoma. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is still a severe disorder with a high mortality and new effective therapies are urgently required. Our study aimed to explore the effect of combined cisplatin with conjugated mesoporous silica nanoparticles (MSN) on HCC. We prepared copolymer PCL-b-PPEEA
and PEG-b-PCL-Pt(IV) to load drugs, while Pt(IV) MNP/siRNA nanoparticles were synthesized. The nanoparticles were characterized by transmission electron microscopy and Western blot analysis. Flow cytometry was determined to detect apoptosis of CD133 + SMMC7721 cells. Then cells were treated
with Pt(IV) MNP/siRNA, MNP/siRNA or PBS, where the Notch1 and related gene expression were determined by RT-qPCR with clone formation detected by agarose assay. The synthesized nanoparticles were about 90 nm and absorbed by cancer cells with a high stability. Compared with the cisplatin, Pt(IV)
MNP/siNotch1 nanoparticles exhibited enhanced cytotoxicity and downregu-lated expression of cisplatin-induced Notch1 and cancer stem cells. Moreover, the MNP/siNotch1 nanoparticles significantly suppressed the proliferation and clonal formation of CD133 + SMMC7721 cells. Co-delivery of cisplatin,
si-Notch1 and folic acid conjugated MSN can inhibit the development of HCC, indicating that it might be a novel treatment approach for HCC in the future.
Collapse
Affiliation(s)
- Xiaoping Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Donghong Liu
- Department of Laboratory Medicine, Hangyan Hospital of Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, 318020, China
| | - Kai Fan
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Miaomiao Qian
- Affiliated Hospital, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
14
|
Li B, Zhao X, Zhang L, Cheng W. Emodin Interferes With AKT1-Mediated DNA Damage and Decreases Resistance of Breast Cancer Cells to Doxorubicin. Front Oncol 2021; 10:588533. [PMID: 33634018 PMCID: PMC7900193 DOI: 10.3389/fonc.2020.588533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin (DOX) is a cytotoxic drug used for the treatment of breast cancer (BC). However, the rapid emergence of resistance toward doxorubicin threatens its clinical application, thus the need for combination therapy. Here, we interrogate the role of Emodin, a chemical compound with tumor inhibitory properties, in the resistance of BC to Doxorubicin. We first evaluated the efficacy of Emodin in the treatment of BC cells. We then used γH2A to examine doxorubicin-induced DNA damage in BC cells, with or without Emodin. Data from CCK-8, flow cytometry, and tumor xenograft assays showed that Emodin suppresses the growth of BC cells. Further, we demonstrated that Emodin enhances γH2A levels in BC cells. Moreover, bioinformatics analysis and western blot assays indicated that Emodin down-regulates the AKT1 expression, and marginally decreases the levels of DNA damage proteins (XRCC1, PARP1, and RAD51) as well as increased p53 expression in BC cells. Taken together, our data demonstrates that Emodin affects cell proliferation, and DNA damage pathways in BC cells, thus increasing the sensitivity of BC cells to doxorubicin. Besides, we confirmed that Emodin confers sensitization of BC to doxorubicin through AKT1-mediated DNA.
Collapse
Affiliation(s)
- Bo Li
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
15
|
An Integrative Analysis Reveals the Potential Mechanism between Herbal Medicine Yinchen and Immunoregulation in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2020:8886914. [PMID: 33457419 PMCID: PMC7785361 DOI: 10.1155/2020/8886914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Aims. Abundant evidences in traditional Chinese medicine (TCM) supported the therapeutic value of herbal medicine Yinchen in hepatocellular carcinoma (HCC), but the underlying mechanism remains to be investigated. Main Methods. The intersection of immune gene set, module genes, HCC-associated genes, and target genes of Yinchen was employed for further analyses. The module genes were identified by weighted gene coexpression network analysis, and the other three gene sets were obtained from public databases. Subsequently, we further explored the clinical value and immunoregulation of the hub gene of intersection. The relevant pathways related to hub gene expression were investigated by gene set enrichment analysis. Finally, the interaction of active compounds and target genes was validated by molecular docking. Key Findings. Thirteen active compounds and 90 target genes of Yinchen were included. After constructing the network among Yinchen, target genes, and HCC, BIRC5 was identified as the hub gene. Significant difference was found between the high-expressed group and the low-expressed group in survival and stage. Different immune subtypes also presented significant difference in BIRC5 expression. Moreover, NK cell and T cell (CD4+ effector memory and CD4+ memory resting) were negatively correlated with BIRC5 expression, while CTLA4 and LAG3 were positively correlated. The results of molecular docking further validated a good binding activity of quercetin-BIRC5 interaction. Significance. In summary, our research identified for the first time a novel underlying association among herbal medicine Yinchen, BIRC5, immunotherapy, and HCC. We speculated that Yinchen may target the immune checkpoints (CTLA4 and LAG3) and activate the immune cells by suppressing BIRC5.
Collapse
|