1
|
Ahmad B, Saeed A, Al-Amery A, Celik I, Ahmed I, Yaseen M, Khan IA, Al-Fahad D, Bhat MA. Investigating Potential Cancer Therapeutics: Insight into Histone Deacetylases (HDACs) Inhibitions. Pharmaceuticals (Basel) 2024; 17:444. [PMID: 38675404 PMCID: PMC11054547 DOI: 10.3390/ph17040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Histone deacetylases (HDACs) are enzymes that remove acetyl groups from ɛ-amino of histone, and their involvement in the development and progression of cancer disorders makes them an interesting therapeutic target. This study seeks to discover new inhibitors that selectively inhibit HDAC enzymes which are linked to deadly disorders like T-cell lymphoma, childhood neuroblastoma, and colon cancer. MOE was used to dock libraries of ZINC database molecules within the catalytic active pocket of target HDACs. The top three hits were submitted to MD simulations ranked on binding affinities and well-occupied interaction mechanisms determined from molecular docking studies. Inside the catalytic active site of HDACs, the two stable inhibitors LIG1 and LIG2 affect the protein flexibility, as evidenced by RMSD, RMSF, Rg, and PCA. MD simulations of HDACs complexes revealed an alteration from extended to bent motional changes within loop regions. The structural deviation following superimposition shows flexibility via a visual inspection of movable loops at different timeframes. According to PCA, the activity of HDACs inhibitors induces structural dynamics that might potentially be utilized to define the nature of protein inhibition. The findings suggest that this study offers solid proof to investigate LIG1 and LIG2 as potential HDAC inhibitors.
Collapse
Affiliation(s)
- Basharat Ahmad
- School of Life Science and Technology, Center for Informational Biology, University of Electronics Science and Technology of China, Chengdu 610056, China
| | - Aamir Saeed
- Department of Bioinformatics, Hazara University Mansehra, Mansehra 21120, Pakistan
| | - Ahmed Al-Amery
- Department of Physiology and Medical Physics, College of Medicine, University of Thi-Qar, Nasiriyah 64001, Iraq
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38280 Kayseri, Turkey;
| | - Iraj Ahmed
- Atta-Ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad 44000, Pakistan;
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Charbagh 19130, Pakistan;
| | - Imran Ahmad Khan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Dhurgham Al-Fahad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Thi-Qar, Nasiriyah 64001, Iraq;
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11421, Saudi Arabia
| |
Collapse
|
2
|
Damiescu R, Efferth T, Dawood M. Dysregulation of different modes of programmed cell death by epigenetic modifications and their role in cancer. Cancer Lett 2024; 584:216623. [PMID: 38246223 DOI: 10.1016/j.canlet.2024.216623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
Modifications of epigenetic factors affect our lives and can give important information regarding one's state of health. In cancer, epigenetic modifications play a crucial role, as they influence various programmed cell death types. The purpose of this review is to investigate how epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNAs, influence various cell death processes in suppressing or promoting cancer development. Autophagy and apoptosis are the most investigated programmed cell death modes, as based on the tumor stage these cell death types can either promote or prevent cancer evolution. Therefore, our discussion focuses on how epigenetic modifications affect autophagy and apoptosis, as well as their diagnostic and therapeutical potential in combination with available chemotherapeutics. Additionally, we summarize the available data regarding the role of epigenetic modifications on other programmed cell death modes, such as ferroptosis, necroptosis, and parthanatos in cancer and discuss current advancements.
Collapse
Affiliation(s)
- R Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - T Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - M Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany.
| |
Collapse
|
3
|
Uba AI, Hryb M, Singh M, Bui-Linh C, Tran A, Atienza J, Misbah S, Mou X, Wu C. Discovery of novel inhibitors of histone deacetylase 6: Structure-based virtual screening, molecular dynamics simulation, enzyme inhibition and cell viability assays. Life Sci 2024; 338:122395. [PMID: 38181853 DOI: 10.1016/j.lfs.2023.122395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Histone deacetylase 6 (HDAC6) contributes to cancer metastasis in several cancers, including triple-negative breast cancer (TNBC)-the most lethal form that lacks effective therapy. Although several efforts have been invested to develop selective HDAC6 inhibitors, none have been approved by the FDA. Toward this goal, existing computational studies used smaller compound libraries and shorter MD simulations. Here, we conducted a structure-based virtual screening of ZINC "Druglike" library containing 17,900,742 compounds using a Glide virtual screening protocol comprising various filters with increasing accuracy. The top 20 hits were subjected to molecular dynamics simulation, MM-GBSA binding energy calculations, and further ADMET prediction. Furthermore, enzyme inhibition assay and cell viability assay were performed on six available compounds from the identified hits. C4 (ZINC000077541942) with a good profile of predicted drug properties was found to inhibit HDAC6 (IC50: 4.7 ± 11.6 μM) with comparative affinity to that of the known HDAC6 selective inhibitor Tubacin (TA) in our experiments. C4 also demonstrated cytotoxic effects against triple-negative breast cancer (TNBC) cell line MDA-MB-231 with EC50 of 40.6 ± 12.7 μM comparable to that of TA (2-20 μM). Therefore, this compound, with pharmacophore features comprising a non-hydroxamic acid zinc-binding group, heteroaromatic linker, and cap group, is proposed as a novel HDAC6 inhibitor.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China
| | - Mariya Hryb
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Mursalin Singh
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Candice Bui-Linh
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Annie Tran
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Jiancarlo Atienza
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Sarah Misbah
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Xiaoyang Mou
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA.
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
4
|
Zhou M, Boulos JC, Omer EA, Rudbari HA, Schirmeister T, Micale N, Efferth T. Two palladium (II) complexes derived from halogen-substituted Schiff bases and 2-picolylamine induce parthanatos-type cell death in sensitive and multi-drug resistant CCRF-CEM leukemia cells. Eur J Pharmacol 2023; 956:175980. [PMID: 37567459 DOI: 10.1016/j.ejphar.2023.175980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The use of cisplatin and its derivatives in cancer treatment triggered the interest in metal-containing complexes as potential novel anticancer agents. Palladium (II)-based complexes have been synthesized in recent years with promising antitumor activity. Previously, we described the synthesis and cytotoxicity of palladium (II) complexes containing halogen-substituted Schiff bases and 2-picolylamine. Here, we selected two palladium (II) complexes with double chlorine-substitution or double iodine-substitution that displayed the best cytotoxicity in drug-sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells for further biological investigation. Surprisingly, these compounds did not significantly induce apoptotic cell death. This study aims to reveal the major mode of cell death of these two palladium (II) complexes. We performed annexin V-FITC/PI staining and flow cytometric mitochondrial membrane potential measurement followed by western blotting, immunofluorescence microscopy, and alkaline single cell electrophoresis (comet assay). J4 and J6 still induced neither apoptosis nor necrosis in both leukemia cell lines. They also insufficiently induced autophagy as evidenced by Beclin and p62 detection in western blotting. Interestingly, J4 and J6 induced a novel mode of cell death (parthanatos) as mainly demonstrated in CCRF-CEM cells by hyper-activation of poly(ADP-ribose) polymerase 1 (PARP) and poly(ADP-ribose) (PAR) using western blotting, flow cytometric measurement of mitochondrial membrane potential collapse, nuclear translocation of apoptosis-inducing factor (AIF) by immunofluorescence microscopy, and DNA damage by alkaline single cell electrophoresis (comet assay). AIF translocation was also observed in CEM/ADR5000 cells. Thus, parthanatos was the predominant mode of cell death induced by J4 and J6, which explains the high cytotoxicity in CCRF-CEM and CEM/ADR5000 cells. J4 and J6 may be interesting drug candidates and deserve further investigations to overcome resistance of tumors against apoptosis. This study will promote the design of further novel palladium (II)-based complexes as chemotherapeutic agents.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Ejlal A Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Tanja Schirmeister
- Department of Medicinal Chemistry, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 1-98166, Messina, Italy
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
5
|
Kaur S, Rajoria P, Chopra M. HDAC6: A unique HDAC family member as a cancer target. Cell Oncol (Dordr) 2022; 45:779-829. [PMID: 36036883 DOI: 10.1007/s13402-022-00704-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HDAC6, a structurally and functionally distinct member of the HDAC family, is an integral part of multiple cellular functions such as cell proliferation, apoptosis, senescence, DNA damage and genomic stability, all of which when deregulated contribute to carcinogenesis. Among several HDAC family members known so far, HDAC6 holds a unique position. It differs from the other HDAC family members not only in terms of its subcellular localization, but also in terms of its substrate repertoire and hence cellular functions. Recent findings have considerably expanded the research related to the substrate pool, biological functions and regulation of HDAC6. Studies in HDAC6 knockout mice highlighted the importance of HDAC6 as a cell survival player in stressful situations, making it an important anticancer target. There is ample evidence stressing the importance of HDAC6 as an anti-cancer synergistic partner of many chemotherapeutic drugs. HDAC6 inhibitors have been found to enhance the effectiveness of conventional chemotherapeutic drugs such as DNA damaging agents, proteasome inhibitors and microtubule inhibitors, thereby highlighting the importance of combination therapies involving HDAC6 inhibitors and other anti-cancer agents. CONCLUSIONS Here, we present a review on HDAC6 with emphasis on its role as a critical regulator of specific physiological cellular pathways which when deregulated contribute to tumorigenesis, thereby highlighting the importance of HDAC6 inhibitors as important anticancer agents alone and in combination with other chemotherapeutic drugs. We also discuss the synergistic anticancer effect of combination therapies of HDAC6 inhibitors with conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Sumeet Kaur
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Prerna Rajoria
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
6
|
Discovery of potent HDAC2 inhibitors based on virtual screening in combination with drug repurposing. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Frühauf A, Meyer-Almes FJ. Non-Hydroxamate Zinc-Binding Groups as Warheads for Histone Deacetylases. Molecules 2021; 26:5151. [PMID: 34500583 PMCID: PMC8434074 DOI: 10.3390/molecules26175151] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylases (HDACs) remove acetyl groups from acetylated lysine residues and have a large variety of substrates and interaction partners. Therefore, it is not surprising that HDACs are involved in many diseases. Most inhibitors of zinc-dependent HDACs (HDACis) including approved drugs contain a hydroxamate as a zinc-binding group (ZBG), which is by far the biggest contributor to affinity, while chemical variation of the residual molecule is exploited to create more or less selectivity against HDAC isozymes or other metalloproteins. Hydroxamates have a propensity for nonspecificity and have recently come under considerable suspicion because of potential mutagenicity. Therefore, there are significant concerns when applying hydroxamate-containing compounds as therapeutics in chronic diseases beyond oncology due to unwanted toxic side effects. In the last years, several alternative ZBGs have been developed, which can replace the critical hydroxamate group in HDACis, while preserving high potency. Moreover, these compounds can be developed into highly selective inhibitors. This review aims at providing an overview of the progress in the field of non-hydroxamic HDACis in the time period from 2015 to present. Formally, ZBGs are clustered according to their binding mode and structural similarity to provide qualitative assessments and predictions based on available structural information.
Collapse
Affiliation(s)
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany;
| |
Collapse
|
8
|
Lu X, Yan G, Dawood M, Klauck SM, Sugimoto Y, Klinger A, Fleischer E, Shan L, Efferth T. A novel moniliformin derivative as pan-inhibitor of histone deacetylases triggering apoptosis of leukemia cells. Biochem Pharmacol 2021; 194:114677. [PMID: 34265280 DOI: 10.1016/j.bcp.2021.114677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022]
Abstract
New and potent agents that evade multidrug resistance (MDR) and inhibit epigenetic modifications are of great interest in cancer drug development. Here, we describe that a moniliformin derivative (IUPAC name: 3-(naphthalen-2-ylsulfanyl)-4-{[(2Z)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]methyl}cyclobut-3-ene-1,2-dione; code: MCC1381) bypasses P-gp-mediated MDR. Using transcriptomics, we identified a large number of genes significantly regulated in response to MCC1381, which affected the cell cycle and disturbed cellular death and survival. The potential targets of MCC1381 might be histone deacetylases (HDACs) as predicted by SwissTargetPrediction. In silico studies confirmed that MCC1381 presented comparable affinity with HDAC1, 2, 3, 6, 8 and 11. Besides, the inhibition activity of HDACs was dose-dependently inhibited by MCC1381. Particularly, a strong binding affinity was observed between MCC1381 and HDAC6 by microscale thermophoresis analysis. MCC1381 decreased the expression of HDAC6, inversely correlated with the increase of acetylated HDAC6 substrates, acetylation p53 and α-tubulin. Furthermore, MCC1381 arrested the cell cycle at the G2/M phase, induced the generation of reactive oxygen species and collapse of the mitochondrial membrane potential. MCC1381 exhibited in vivo anti-cancer activity in xenografted zebrafish. Collectively, MCC1381 extended cytotoxicity towards P-gp-resistant leukemia cancer cells and may act as a pan-HDACs inhibitor, indicating that MCC1381 is a novel candidate for cancer therapy.
Collapse
Affiliation(s)
- Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ge Yan
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; Department of Molecular Biology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | | | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|