1
|
Wang X, Zeng J, Gan D, Ling K, He M, Li J, Lu Y. Recent Strategies and Advances in Hydrogel-Based Delivery Platforms for Bone Regeneration. NANO-MICRO LETTERS 2024; 17:73. [PMID: 39601916 PMCID: PMC11602938 DOI: 10.1007/s40820-024-01557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024]
Abstract
Bioactive molecules have shown great promise for effectively regulating various bone formation processes, rendering them attractive therapeutics for bone regeneration. However, the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo. Hydrogels have emerged as ideal carriers to address these challenges, offering the potential to prolong retention times at lesion sites, extend half-lives in vivo and mitigate side effects, avoid burst release, and promote adsorption under physiological conditions. This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration, encompassing applications in cranial defect repair, femoral defect repair, periodontal bone regeneration, and bone regeneration with underlying diseases. Additionally, this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery, carrier-assisted delivery, and sequential delivery. Finally, this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration.
Collapse
Affiliation(s)
- Xiao Wang
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Jia Zeng
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Kun Ling
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Mingfang He
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Yongping Lu
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| |
Collapse
|
2
|
Zhu L, Wang Y, Rao L, Yu X. Se-incorporated polycaprolactone spherical polyhedron enhanced vitamin B2 loading and prolonged release for potential application in proliferative skin disorders. Colloids Surf B Biointerfaces 2024; 245:114295. [PMID: 39368421 DOI: 10.1016/j.colsurfb.2024.114295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Development of novel drug vehicles for vitamin B2 (VitB2) delivery is very important for designing controllable release system to improve epidermal growth and bone metabolism. In this work, selenium (Se)-incorporated polycaprolactone (PCL) spherical polyhedrons are successfully synthesized via a single emulsion solvent evaporation method which is utilized to load VitB2 to fabricate cell-responsive Se-PCL@VitB2 delivery systems. Their physicochemical properties are characterized by DLS, SEM, XRD, FTIR, and TGA-DSC. The release kinetics of VitB2 or Se from the samples are investigated in PBS solution (pH = 2.0, 5.0, 7.4, 8.0 and 12.0). The cytocompatibilities are also evaluated with normal BMSC and epidermal HaCat cells. Results exhibit that Se-PCL@VitB2 particles presents spherical polyhedral morphology (approximately (3.25 ± 0.46) μm), negative surface charge (-(54.03 ± 2.94) mV), reduced crystallinity and good degradability. Stability experiments imply that both VitB2 and Se might be uniformly dispersed in PCL matrix. And the incorporation of Se facilely promotes the loading of VitB2. The encapsulation efficiency and loading capacity are (98.42 ± 1.06)% and (76.25 ± 1.27) for Se-PCL@VitB2 sample. Importantly, it exhibits more prolonged release of both VitB2 and Se in neutral PBS solution (pH = 7.4) than other pH conditions. Presumably, the electrostatic interaction between Se, VitB2 and PCL contribute to its release mode. Cell experiments show that Se-PCL@VitB2 presents strong cytotoxicity to HaCat cells mainly due to the cytotoxic effect of Se anions and PCL degradation products. However, it exhibits weak inhibitory effect on BMSC cells. These note that the synthesized Se-PCL@VitB2 particles can be promising drug vehicles for potential application in epidermal proliferative disorders.
Collapse
Affiliation(s)
- Lixian Zhu
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Yanhua Wang
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Department of Morphology, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Luping Rao
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Xin Yu
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Yiling People's Hospital of Yichang City, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
3
|
Rohila A, Shukla R. Recent advancements in microspheres mediated targeted delivery for therapeutic interventions in osteoarthritis. J Microencapsul 2024; 41:434-455. [PMID: 38967562 DOI: 10.1080/02652048.2024.2373723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Osteoarthritis (OA), affecting around 240 million people globally is a major threat. Currently, available drugs only treat the symptoms of OA; they cannot reverse the disease's progression. The delivery of drugs to afflicted joints is challenging because of poor vasculature of articular cartilage results in their less bioavailability and quick elimination from the joints. Recently approved drugs such as KGN and IL-1 receptor antagonists also encounter challenges because of inadequate formulations. Therefore, microspheres could be a potential player for the intervention of OA owing to its excellent physicochemical properties. This review primarily focuses on microspheres of distinct biomaterials acting as cargo for drugs and biologicals via different delivery routes in the effective management of OA. Microspheres can improve the efficacy of therapeutics by targeting strategies at specific body locations. This review also highlights clinical trials conducted in the last few decades.
Collapse
Affiliation(s)
- Ayush Rohila
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| |
Collapse
|
4
|
Dai M, Lin X, Hua P, Wang S, Sun X, Tang C, Zhang C, Liu L. Antibacterial sequential growth factor delivery from alginate/gelatin methacryloyl microspheres for bone regeneration. Int J Biol Macromol 2024; 275:133557. [PMID: 38955293 DOI: 10.1016/j.ijbiomac.2024.133557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Autologous or allogeneic bone tissue grafts remain the mainstay of treatment for clinical bone defects. However, the risk of infection and donor scarcity in bone grafting pose challenges to the process. Therefore, the development of excellent biomaterial grafts is of great clinical importance for the repair of bone defects. In this study, we used gas-assisted microfluidics to construct double-cross-linked hydrogel microspheres with good biological function based on the ionic cross-linking of Cu2+ with alginate and photo-cross-linking of gelatin methacryloylamide (GelMA) by loading vascular endothelial growth factor (VEGF) and His-tagged bone morphogenetic protein-2 (BMP2) (AGMP@VEGF&BMP2). The Cu2+ component in the microspheres showed good antibacterial and drug-release behavior, whereas VEGF and BMP2 effectively promoted angiogenesis and bone tissue repair. In in vitro and in vivo experiments, the dual cross-linked hydrogel microspheres showed good biological function and biocompatibility. These results demonstrate that AGMP@VEGF&BMP2 microspheres could be used as a bone defect graft substitute to promote effective healing of bone defects and may be applied to other tissue engineering studies.
Collapse
Affiliation(s)
- Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xiufei Lin
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Peng Hua
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Simeng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xiaoliang Sun
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Chi Zhang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
5
|
Mitić D, Čarkić J, Jaćimović J, Lazarević M, Jakšić Karišik M, Toljić B, Milašin J. The Impact of Nano-Hydroxyapatite Scaffold Enrichment on Bone Regeneration In Vivo-A Systematic Review. Biomimetics (Basel) 2024; 9:386. [PMID: 39056827 PMCID: PMC11274561 DOI: 10.3390/biomimetics9070386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVES In order to ensure improved and accelerated bone regeneration, nano-hydroxyapatite scaffolds are often enriched with different bioactive components to further accelerate and improve bone healing. In this review, we critically examined whether the enrichment of nHAp/polymer scaffolds with growth factors, hormones, polypeptides, microRNAs and exosomes improved new bone formation in vivo. MATERIALS AND METHODS Out of 2989 articles obtained from the literature search, 106 papers were read in full, and only 12 articles met the inclusion criteria for this review. RESULTS Several bioactive components were reported to stimulate accelerated bone regeneration in a variety of bone defect models, showing better results than bone grafting with nHAp scaffolds alone. CONCLUSIONS The results indicated that composite materials based on nHAp are excellent candidates as bone substitutes, while nHAp scaffold enrichment further accelerates bone regeneration. The standardization of animal models should be provided in order to clearly define the most significant parameters of in vivo studies. Only in this way can the adequate comparison of findings from different in vivo studies be possible, further advancing our knowledge on bone regeneration and enabling its translation to clinical settings.
Collapse
Affiliation(s)
- Dijana Mitić
- School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.Č.); (J.J.); (M.L.); (M.J.K.); (B.T.); (J.M.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Weng Y, Yuan X, Fan S, Duan W, Tan Y, Zhou R, Wu J, Shen Y, Zhang Z, Xu H. 3D-Printed Biomimetic Hydroxyapatite Composite Scaffold Loaded with Curculigoside for Rat Cranial Defect Repair. ACS OMEGA 2024; 9:26097-26111. [PMID: 38911726 PMCID: PMC11190930 DOI: 10.1021/acsomega.4c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024]
Abstract
The treatment of various large bone defects has remained a challenge for orthopedic surgeons for a long time. Recent research indicates that curculigoside (CUR) extracted from the curculigo plant exerts a positive influence on bone formation, contributing to fracture healing. In this study, we employed emulsification/solvent evaporation techniques to successfully fabricate poly(ε-caprolactone) nanoparticles loaded with curculigoside (CUR@PM). Subsequently, using three-dimensional (3D) printing technology, we successfully developed a bioinspired composite scaffold named HA/GEL/SA/CUR@PM (HGSC), chemically cross-linked with calcium chloride, to ensure scaffold stability. Further characterization of the scaffold's physical and chemical properties revealed uniform pore size, good hydrophilicity, and appropriate mechanical properties while achieving sustained drug release for up to 12 days. In vitro experiments demonstrated the nontoxicity, good biocompatibility, and cell proliferative properties of HGSC. Through alkaline phosphatase (ALP) staining, Alizarin Red S (ARS) staining, cell migration assays, tube formation assays, and detection of angiogenic and osteogenic gene proteins, we confirmed the HGSC composite scaffold's significant angiogenic and osteoinductive capabilities. Eight weeks postimplantation in rat cranial defects, Micro-computed tomography (CT) and histological observations revealed pronounced angiogenesis and new bone growth in areas treated with the HGSC composite scaffold. These findings underscore the scaffold's exceptional angiogenic and osteogenic properties, providing a solid theoretical basis for clinical bone repair and demonstrating its potential in promoting vascularization and bone regeneration.
Collapse
Affiliation(s)
- Yiping Weng
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, China
- Graduate
School of Bengbu Medical College, Bengbu 233030, China
| | - Xiuchen Yuan
- Graduate
School of Bengbu Medical College, Bengbu 233030, China
| | - Shijie Fan
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Weihao Duan
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Yadong Tan
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Ruikai Zhou
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Jingbin Wu
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Yifei Shen
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Zhonghua Zhang
- Changzhou
Economic Development District Hengshanqiao People’s Hospital, Changzhou 213003, China
| | - Hua Xu
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
7
|
Chen T, Jiang Y, Huang JP, Wang J, Wang ZK, Ding PH. Essential elements for spatiotemporal delivery of growth factors within bio-scaffolds: A comprehensive strategy for enhanced tissue regeneration. J Control Release 2024; 368:97-114. [PMID: 38355052 DOI: 10.1016/j.jconrel.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The precise delivery of growth factors (GFs) in regenerative medicine is crucial for effective tissue regeneration and wound repair. However, challenges in achieving controlled release, such as limited half-life, potential overdosing risks, and delivery control complexities, currently hinder their clinical implementation. Despite the plethora of studies endeavoring to accomplish effective loading and gradual release of GFs through diverse delivery methods, the nuanced control of spatial and temporal delivery still needs to be elucidated. In response to this pressing clinical imperative, our review predominantly focuses on explaining the prevalent strategies employed for spatiotemporal delivery of GFs over the past five years. This review will systematically summarize critical aspects of spatiotemporal GFs delivery, including judicious bio-scaffold selection, innovative loading techniques, optimization of GFs activity retention, and stimulating responsive release mechanisms. It aims to identify the persisting challenges in spatiotemporal GFs delivery strategies and offer an insightful outlook on their future development. The ultimate objective is to provide an invaluable reference for advancing regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Tan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yao Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jia-Ping Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jing Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Zheng-Ke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Pei-Hui Ding
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
8
|
Chantiri M, Nammour S, El Toum S, Zeinoun T. Histological and Immunohistochemical Evaluation of Rh-BMP2: Effect on Gingival Healing Acceleration and Proliferation of Human Epithelial Cells. Life (Basel) 2024; 14:459. [PMID: 38672730 PMCID: PMC11051349 DOI: 10.3390/life14040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
This study aims to histologically and immunohistochemically evaluate the effect recombinant human bone morphogenetic protein (rh-BMP2) injected in gingival tissue has on the acceleration of the epithelial migration from the wound edges and epithelial cell proliferation after implant surgery. MATERIAL AND METHODS The study includes 20 patients who underwent bilateral implant surgeries in the premolar-molar region of the mandible, followed by guided bone regeneration. Each patient received an implant in both locations, but rh-BMP2 was only on the right side. At 9 days from the surgery, a gingival biopsy was performed 3 mm distally to the last implant. In total, 20 samples were collected from the left side (control group #1) and 20 from right (test group #1). This was repeated at a 4-month interval during healing abutment placements. Tissues were processed and stained with hematoxylin-eosin and then immunohistochemically for the expression of Ki-67 and further histological examination. RESULT Complete closure of the epithelium with new cell formation was observed in the 55% test group and 20% control group after 9 days. At 4 months, although 100% samples of all groups had complete epithelial closure, the test group showed that the epithelial cells were more organized and mature due to the increased number of blood vessels. The average number of new epithelial cells was 17.15 ± 7.545 and 16.12 ± 7.683 cells per mm in test group, respectively, at 9 days and 4 months and 10.99 ± 5.660 and 10.95 ± 5.768 in control groups. CONCLUSION Evident from histological observations, rh-BMP-2 can accelerate the closure of gingival wounds, the healing process of epithelial gingival tissue, and the formation of epithelial cells in patients undergoing dental implant treatment.
Collapse
Affiliation(s)
- Mansour Chantiri
- Department of Periodontology, Faculty of Dental Medicine, Lebanese University, Beirut 27798, Lebanon;
| | - Samir Nammour
- Department of Dental Sciences, Faculty of Medicine, University of Liege, 4000 Liege, Belgium;
| | - Sami El Toum
- Department of Oral Medicine and Maxillofacial Radiology, Faculty of Dental Medicine, Lebanese University, Beirut 27798, Lebanon;
| | - Toni Zeinoun
- Department of Oral and Maxillo-Facial Surgery, Faculty of Dental Medicine, Lebanese University, Beirut 27798, Lebanon
| |
Collapse
|
9
|
Guo X, Song P, Li F, Yan Q, Bai Y, He J, Che Q, Cao H, Guo J, Su Z. Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering. Int J Nanomedicine 2023; 18:3595-3622. [PMID: 37416848 PMCID: PMC10321437 DOI: 10.2147/ijn.s415666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Bone, like most organs, has the ability to heal naturally and can be repaired slowly when it is slightly injured. However, in the case of bone defects caused by diseases or large shocks, surgical intervention and treatment of bone substitutes are needed, and drugs are actively matched to promote osteogenesis or prevent infection. Oral administration or injection for systemic therapy is a common way of administration in clinic, although it is not suitable for the long treatment cycle of bone tissue, and the drugs cannot exert the greatest effect or even produce toxic and side effects. In order to solve this problem, the structure or carrier simulating natural bone tissue is constructed to control the loading or release of the preparation with osteogenic potential, thus accelerating the repair of bone defect. Bioactive materials provide potential advantages for bone tissue regeneration, such as physical support, cell coverage and growth factors. In this review, we discuss the application of bone scaffolds with different structural characteristics made of polymers, ceramics and other composite materials in bone regeneration engineering and drug release, and look forward to its prospect.
Collapse
Affiliation(s)
- Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Pan Song
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Feng Li
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, People’s Republic of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, People’s Republic of China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
10
|
Sun S, Cui Y, Yuan B, Dou M, Wang G, Xu H, Wang J, Yin W, Wu D, Peng C. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front Bioeng Biotechnol 2023; 11:1117647. [PMID: 36793443 PMCID: PMC9923112 DOI: 10.3389/fbioe.2023.1117647] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Drug delivery systems composed of osteogenic substances and biological materials are of great significance in enhancing bone regeneration, and appropriate biological carriers are the cornerstone for their construction. Polyethylene glycol (PEG) is favored in bone tissue engineering due to its good biocompatibility and hydrophilicity. When combined with other substances, the physicochemical properties of PEG-based hydrogels fully meet the requirements of drug delivery carriers. Therefore, this paper reviews the application of PEG-based hydrogels in the treatment of bone defects. The advantages and disadvantages of PEG as a carrier are analyzed, and various modification methods of PEG hydrogels are summarized. On this basis, the application of PEG-based hydrogel drug delivery systems in promoting bone regeneration in recent years is summarized. Finally, the shortcomings and future developments of PEG-based hydrogel drug delivery systems are discussed. This review provides a theoretical basis and fabrication strategy for the application of PEG-based composite drug delivery systems in local bone defects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dankai Wu
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| | - Chuangang Peng
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Kaptan Y, Güvenilir Y. Enzymatic PCL-grafting to NH 2-end grouped silica and development of microspheres for pH-stimulated release of a hydrophobic model drug. Eur J Pharm Biopharm 2022; 181:60-78. [PMID: 36347484 DOI: 10.1016/j.ejpb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
This study set out to evaluate novel PCL-based silica containing nanohybrids as the polymer matrix in a hydrophobic drug-loaded microsphere system. Nanohybrids were synthesized by PCL-grafting to NH2-end grouped silica by in situ enzymatic ring opening polymerization of ε-caprolactone. Molecular weight and monomer conversion, PCL grafting percentage, thermal properties and crystallinity of the nanohybrids were determined by 1H NMR, TGA, DSC and XRD. Synthesized nanohybrids had low crystallinity percentage (32 and 39 %) and molecular weight (4800 and 8700 g/mol), promising for controlled drug release applications. The nanohybrids were used for fabrication of trans-chalcone-loaded microspheres by O/W single emulsion solvent evaporation. Mean particle diameter of the microspheres were between 15 and 30 µm. The result of release studies showed that optimum microsphere formulations (AP4 and A2, respectively) had 61 and 64 % encapsulation efficiency. One of the more significant findings to emerge from this investigation is that TC release was extended to 16 and 37 days, in a controlled manner. TC release was significantly enhanced in acidic pH media (pH 3.6 and 5.6) indicating pH-dependent release from nanohybrid microspheres; releasing 80-100 % of the loaded drug in 4-14 days. Drug/polymer interactions and molecular structures were investigated by FT-IR spectroscopy and DSC analysis. According to the results obtained, enzymatically synthesized nanohybrids have potential for pH-dependent release of the model drug, trans-chalcone.
Collapse
Affiliation(s)
- Yasemin Kaptan
- Istanbul Technical University, Department of Chemical Engineering, Istanbul Technical University, 34469 Maslak-Istanbul, Turkey.
| | - Yüksel Güvenilir
- Istanbul Technical University, Department of Chemical Engineering, Istanbul Technical University, 34469 Maslak-Istanbul, Turkey
| |
Collapse
|
12
|
Li G, Shang C, Li Q, Chen L, Yue Z, Ren L, Yang J, Zhang J, Wang W. Combined Shikonin-Loaded MPEG-PCL Micelles Inhibits Effective Transition of Endothelial-to-Mesenchymal Cells. Int J Nanomedicine 2022; 17:4497-4508. [PMID: 36186533 PMCID: PMC9519018 DOI: 10.2147/ijn.s374895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Shikonin is well known for its anti-inflammatory activity in cardiovascular diseases. However, the application of shikonin is limited by its low water solubility and poor bioavailability. Methoxy poly (ethylene glycol)-b-poly (ε-caprolactone) (MPEG-PCL) is considered a promising delivery system for hydrophobic drugs. Therefore, in this study, we prepared shikonin-loaded MPEG-PCL micelles and investigated their effect on endothelial-to-mesenchymal transition (EndMT) induced by inflammatory cytokines. Methods Shikonin was encapsulated in MPEG-PCL micelles using an anti-solvent method and the physiochemical characteristics of the micelles (particle size, zeta potential, morphology, critical micelle concentration (CMC), drug loading and encapsulation efficiency) were investigated. Cellular uptake of micelles in human umbilical vein endothelial cells (HUVECs) was evaluated using fluorescence microscopy. In vitro EndMT inhibition was explored in HUVECs by quantitative real-time PCR analysis. Results The average particle size of shikonin-loaded MPEG-PCL micelles was 54.57±0.13 nm and 60 nm determined by dynamic light scattering and transmission electron microscopy, respectively. The zeta potential was -6.23±0.02 mV. The CMC of the micelles was 6.31×10-7mol/L. The drug loading and encapsulation efficiency were 0.88±0.08% and 43.08±3.77%, respectively. The MPEG-PCL micelles significantly improved the cellular uptake of cargo with low water solubility. Real-time PCR analysis showed that co-treatment with TNF-α and IL-1β successfully induced EndMT in HUVECs, whereas this process was significantly inhibited by shikonin and shikonin-loaded MPEG-PCL micelles, with greater inhibition mediated by the shikonin-loaded MPEG-PCL micelles. Conclusion Shikonin-loaded MPEG-PCL micelles significantly improved the EndMT-inhibiting effect of the free shikonin. MPEG-PCL is suitable for use more generally as a lipophilic drug carrier.
Collapse
Affiliation(s)
- Guanglin Li
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China
| | - Chenxu Shang
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China
| | - Qingqing Li
- School of Pharmacy, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China
| | - Lifang Chen
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China
| | - Zejun Yue
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China
| | - Lingxuan Ren
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China
| | - Jianjun Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China
| | - Jiye Zhang
- School of Pharmacy, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China
| | - Weirong Wang
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, People’s Republic of China
| |
Collapse
|
13
|
Leung KS, Shirazi S, Cooper LF, Ravindran S. Biomaterials and Extracellular Vesicle Delivery: Current Status, Applications and Challenges. Cells 2022; 11:cells11182851. [PMID: 36139426 PMCID: PMC9497093 DOI: 10.3390/cells11182851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
In this review, we will discuss the current status of extracellular vesicle (EV) delivery via biopolymeric scaffolds for therapeutic applications and the challenges associated with the development of these functionalized scaffolds. EVs are cell-derived membranous structures and are involved in many physiological processes. Naïve and engineered EVs have much therapeutic potential, but proper delivery systems are required to prevent non-specific and off-target effects. Targeted and site-specific delivery using polymeric scaffolds can address these limitations. EV delivery with scaffolds has shown improvements in tissue remodeling, wound healing, bone healing, immunomodulation, and vascular performance. Thus, EV delivery via biopolymeric scaffolds is becoming an increasingly popular approach to tissue engineering. Although there are many types of natural and synthetic biopolymers, the overarching goal for many tissue engineers is to utilize biopolymers to restore defects and function as well as support host regeneration. Functionalizing biopolymers by incorporating EVs works toward this goal. Throughout this review, we will characterize extracellular vesicles, examine various biopolymers as a vehicle for EV delivery for therapeutic purposes, potential mechanisms by which EVs exert their effects, EV delivery for tissue repair and immunomodulation, and the challenges associated with the use of EVs in scaffolds.
Collapse
Affiliation(s)
- Kasey S. Leung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lyndon F. Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
14
|
Qin S, Lu Z, Gan K, Qiao C, Li B, Chen T, Gao Y, Jiang L, Liu H. Construction of a
BMP
‐2 gene delivery system for polyetheretherketone bone implant material and its effect on bone formation in vitro. J Biomed Mater Res B Appl Biomater 2022; 110:2075-2088. [PMID: 35398972 DOI: 10.1002/jbm.b.35062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shuang Qin
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Zhengkuan Lu
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Kang Gan
- Department of Stomatology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Chunyan Qiao
- Department of Oral Pathology, Hospital of Stomatology Jilin University Changchun China
| | - Baosheng Li
- Department of Dental Implantology, Hospital of Stomatology Jilin University Changchun China
| | - Tianjie Chen
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Yunbo Gao
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Lingling Jiang
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Hong Liu
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| |
Collapse
|
15
|
Zhu L, Liu Y, Wang A, Zhu Z, Li Y, Zhu C, Che Z, Liu T, Liu H, Huang L. Application of BMP in Bone Tissue Engineering. Front Bioeng Biotechnol 2022; 10:810880. [PMID: 35433652 PMCID: PMC9008764 DOI: 10.3389/fbioe.2022.810880] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/01/2022] [Indexed: 01/15/2023] Open
Abstract
At present, bone nonunion and delayed union are still difficult problems in orthopaedics. Since the discovery of bone morphogenetic protein (BMP), it has been widely used in various studies due to its powerful role in promoting osteogenesis and chondrogenesis. Current results show that BMPs can promote healing of bone defects and reduce the occurrence of complications. However, the mechanism of BMP in vivo still needs to be explored, and application of BMP alone to a bone defect site cannot achieve good therapeutic effects. It is particularly important to modify implants to carry BMP to achieve slow and sustained release effects by taking advantage of the nature of the implant. This review aims to explain the mechanism of BMP action in vivo, its biological function, and how BMP can be applied to orthopaedic implants to effectively stimulate bone healing in the long term. Notably, implantation of a system that allows sustained release of BMP can provide an effective method to treat bone nonunion and delayed bone healing in the clinic.
Collapse
Affiliation(s)
- Liwei Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhengqing Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Youbin Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Chenyi Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhenjia Che
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Tengyue Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
- *Correspondence: He Liu, ; Lanfeng Huang,
| | - Lanfeng Huang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: He Liu, ; Lanfeng Huang,
| |
Collapse
|
16
|
Mashhadian A, Afjoul H, Shamloo A. An integrative method to increase the reliability of conventional double emulsion method. Anal Chim Acta 2022; 1197:339523. [DOI: 10.1016/j.aca.2022.339523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
|
17
|
Shen W, Ning Y, Ge X, Fan G, Ao F, Wu S, Mao Y. Phosphoglyceride‐coated polylactic acid porous microspheres and its regulation of curcumin release behavior. J Appl Polym Sci 2022. [DOI: 10.1002/app.52118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wen Shen
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an PR China
| | - Yuanlan Ning
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an PR China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering Nanjing Forestry University Nanjing PR China
| | - Guodong Fan
- College of Chemistry and Chemical Engineering Shaanxi University of Science & Technology Xi'an PR China
| | - Fen Ao
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an PR China
| | - Shang Wu
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an PR China
| | - Yueyang Mao
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an PR China
| |
Collapse
|
18
|
Xu H, Liu Y, Li Y, Luo W, Liu Z, Jian Y. Therapeutic Mechanism of Chinese Medicine on the Healing of Early and Middle Fractures in Rabbits Under the Expression Level of Bone Morphogenetic Protein-2 (BMP-2) in Bone Tissue. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to explore the therapeutic mechanism of Chinese medicine on the healing of rabbits early and middle fractures, a rabbit fracture model was established in this study. The study was divided into several groups, i.e., treatment group (TG) (fed with Chinese medicine Capsule) and
control group (CG) (fed with normal saline (NS)). The materials were collected at 1, 3, and 5 weeks after the start of the experiment for analysis. The experiment content included: callus Hematoxylin-Eosin staining (HE staining); Bone Morphogenetic protein-2 (BMP-2) protein level detection;
Type I and type II bone collagen (BC) detection; and serum biochemical factors detection. The experimental results showed that the formation of callus in the TG was better than in the CG; the BMP-2 protein expression level in the TG was higher than in the CG, and there were statistically significant
differences (SSDs); the type I and type II BC levels in the TG were higher than the CG, there were SSDs; the levels of serum calcium (SC), phosphorus ion (PI), and alkaline phosphatase (ALP) in the TG were also higher than in the CG, and there were SSDs.
Collapse
Affiliation(s)
- Hegui Xu
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002, Guiyang, Guizhou, China
| | - Yang Liu
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002, Guiyang, Guizhou, China
| | - Yuxiong Li
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002, Guiyang, Guizhou, China
| | - Wenbing Luo
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002, Guiyang, Guizhou, China
| | - Zhenyang Liu
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002, Guiyang, Guizhou, China
| | - Yuekui Jian
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002, Guiyang, Guizhou, China
| |
Collapse
|
19
|
Briquez PS, Tsai HM, Watkins EA, Hubbell JA. Engineered bridge protein with dual affinity for bone morphogenetic protein-2 and collagen enhances bone regeneration for spinal fusion. SCIENCE ADVANCES 2021; 7:7/24/eabh4302. [PMID: 34117071 PMCID: PMC8195475 DOI: 10.1126/sciadv.abh4302] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/28/2021] [Indexed: 05/27/2023]
Abstract
The revolutionizing efficacy of recombinant human bone morphogenetic protein (rhBMP-2) for clinical spinal fusion is hindered by safety issues associated with the high dose required. However, it continues to be widely used, for example, in InFUSE Bone Graft (Medtronic). Here, we developed a translational protein engineering-based approach to reduce the dose and thereby improve the safety of rhBMP-2 delivered in a collagen sponge, as in InFUSE Bone Graft. We engineered a bridge protein with high affinity for rhBMP-2 and collagen that can be simply added to the product's formulation, demonstrating improved efficacy at low dose of rhBMP-2 in two mouse models of bone regeneration, including a newly developed spinal fusion model. Moreover, the bridge protein can control the retention of rhBMP-2 from endogenous collagenous extracellular matrix of tissue. Our approach may be generalizable to other growth factors and collagen-based materials, for use in many other applications in regenerative medicine.
Collapse
Affiliation(s)
- Priscilla S Briquez
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| | - Hsiu-Ming Tsai
- Integrated Small Animal Imaging Research Resources (iSAIRR), Department of Radiology, University of Chicago, Chicago, IL 60637, USA
| | - Elyse A Watkins
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
20
|
Zhao XH, Peng XL, Gong HL, Wei DX. Osteogenic differentiation system based on biopolymer nanoparticles for stem cells in simulated microgravity. Biomed Mater 2021; 16. [PMID: 33631731 DOI: 10.1088/1748-605x/abe9d1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
An efficient long-term intracellular growth factor release system in simulated microgravity for osteogenic differentiation was prepared based on polylactic acid (PLA) and polyhydroxyalkanoate (PHA) nanoparticles for loading of bone morphogenetic protein 2 (BMP2) and bone morphogenetic protein 7 (BMP7) (defined as sB2-PLA-NP and sB7-PHA-NP), respectively, associated with osteogenic differentiation of human adipose derived stem cells (hADSCs). On account of soybean lecithin (SL) as biosurfactants, sB2-PLA-NPs and sB7-PHA-NPs had a high encapsulation efficiency (>80%) of BMPs and uniform small size (<100 nm), and showed different slow-release to provide BMP2 in early stage and BMP7 in late stages of osteogenic differentiation within 20 days, due to degradation rate of PLA and PHA in cells. After uptake into hADSCs, by comparison with single sB2-PLA-NP or sB7-PHA-NP, the Mixture NPs, compound of sB2-PLA-NP and sB7-PHA-NP with a mass ratio of 1:1, can well-promote ALP activity, expression of OPN and upregulated related osteo-genes. Directed osteo-differentiation of Mixture NPs was similar to result of sustained free-BMP2 and BMP7-supplying (sFree-B2&B7) in simulated microgravity, which demonstrated the reliability and stability of Mixture NPs as a long-term osteogenic differentiation system in space medicine and biology in future.
Collapse
Affiliation(s)
- Xiao-Hong Zhao
- Northwest University, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Xi'an, Shaanxi, 710069, CHINA
| | - Xue-Liang Peng
- Northwest University, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Xi'an, Shaanxi, 710069, CHINA
| | - Hai-Lun Gong
- Northwest University, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Xi'an, Shaanxi, 710069, CHINA
| | - Dai-Xu Wei
- Northwest University, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Xi'an, Shaanxi, 710069, CHINA
| |
Collapse
|