1
|
Ramalingam V. NLRP3 inhibitors: Unleashing their therapeutic potential against inflammatory diseases. Biochem Pharmacol 2023; 218:115915. [PMID: 37949323 DOI: 10.1016/j.bcp.2023.115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to the release of pro-inflammatory cytokines and is essential for innate defence against infection and danger signals. These secreted cytokines improve the inflammatory response caused by tissue damage and associated inflammation. Consequently, the development of NLRP3 inflammasome inhibitors are viable option for the treatment of diverse inflammatory disorders. The significant anti-inflammatory effects of the NLRP3 inhibitors have severe side effects. Hence, the application of NLRP3 inhibitors against inflammatory disease has not yet been understood and most of the developed inhibitors are unsuccessful in clinical trials. The processes behind the NLRP3 complex, priming, and activation are the main emphasis of this review, which also covers therapeutical inhibitors of the NLRP3 inflammasome and potential therapeutic strategies for directing the NLRP3 inflammasome towards clinical development.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Di YX, Bao YJ, Zhu ZQ, Sun SL, Tian FX, Wang FR, Yu G, Zhang MF, Han J, Zhou LL. Tomentosin suppressed M1 polarization via increasing MERTK activation mediated by regulation of GAS6. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116429. [PMID: 37011736 DOI: 10.1016/j.jep.2023.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xanthium sibiricum Patrin ex Widder (X. sibiricum) are widely used traditional herbal medicines for arthritis treatment in China. Rheumatoid arthritis (RA) is characterized by progressive destructions of joints, which is accompanied by chronic, progressive inflammatory disorder. According to our previous research, tomentosin was isolated from X. sibiricum and revealed anti-inflammatory activity. However, the potential therapeutic effect of tomentosin on RA and the anti-inflammatory mechanism of tomentosin remain to be clarified. The present study lays theoretical support for X. sibiricum in RA treatment, also provides reference for further development of X. sibiricum in clinic. AIM OF THE STUDY To investigate the effect of tomentosin in collagen-induced arthritis (CIA) mice and reveal its underlying mechanism. MATERIALS AND METHODS In vivo, tomentosin (10, 20 and 40 mg/kg) was given to CIA mice for seven consecutive days, to evaluate its therapeutic effect and anti-inflammatory activity. In vitro, THP-1-derived macrophages were used to verify the effect of tomentosin on inflammation. Then, molecular docking and experiments in vitro was conducted to predict and explore the mechanism of tomentosin inhibiting inflammation. RESULTS Tomentosin attenuated the severity of arthritis in CIA mice, which was evidenced by the swelling of the hind paws, arthritis scores, and pathological changes. Particularly, tomentosin effectively reduced the ratio of M1 macrophage and TNF-α levels in vitro and vivo. Then, molecular docking and experiments in vitro was carried out, indicating that tomentosin inhibited M1 polarization and TNF-α levels accompanied by the increase of MERTK and up-regulated GAS6 levels. Moreover, it has been proved that GAS6 was necessary for MERTK activation and tomentosin could up-regulate GAS6 levels effectively in transwell system. Further mechanistic studies revealed that tomentosin suppressed M1 polarization via increasing MERTK activation mediated by regulation of GAS6 in transwell system. CONCLUSION Tomentosin relieved the severity of CIA mice by inhibiting M1 polarization. Furthermore, tomentosin suppressed M1 polarization via increasing MERTK activation mediated by regulation of GAS6.
Collapse
Affiliation(s)
- Yu-Xi Di
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Yu-Jie Bao
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Zhi-Qi Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Shan-Liang Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Feng-Xiang Tian
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Fu-Rong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Ge Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Ming-Fei Zhang
- Department of Pharmacy, Affiliated Hospital of Yangzhou University, Yangzhou University, 45 Taizhou Road, 225003, Yangzhou, PR China.
| | - Jing Han
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Ling-Ling Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
3
|
Tomentosin induces apoptosis in pancreatic cancer cells through increasing reactive oxygen species and decreasing mitochondrial membrane potential. Toxicol In Vitro 2022; 84:105458. [PMID: 35988885 DOI: 10.1016/j.tiv.2022.105458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/23/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022]
Abstract
The aim of this study was to determine possible anticancer effect of tomentosin, a natural sesquiterpene lactone, on pancreatic cancer cells. The cytotoxic effect of tomentosin was determined by XTT analysis. Colony formation and apoptosis analyzes were performed, Reactive oxygen species (ROS) level and change in mitochondrial membrane potential (MMP) were evaluated in control and tomentosin-treated cells. The effect of tomentosin on expression levels of apoptosis-related genes was determined by qRT-PCR and Caspase-3 and Caspase-9 proteins were analyzed by western blot. And, the effect of tomentosin on migration and invasion of cells were evaluated. The IC50 dose of tomentosin was found to be 31.11 μM in PANC-1 cells and 33.93 μM in MIA PaCa-2 cells for 48 h. And, treatment of tomentosin at IC50 dose suppressed the colony forming capacity of cells. While tomentosin increased apoptosis rate and ROS production, an decrease was observed in MMP. Tomentosin affected expression level of apoptosis-related genes and increased Caspase-3 and Caspase-9 protein levels. After tomentosin treatment, cell migration and invasion were suppressed. As a result, this study reveals that tomentosin has anticancer effects on pancreatic cancer cells, and therefore it predicts that tomentosin can be evaluated as an effective agent against pancreatic cancer.
Collapse
|
4
|
Tao YW, Yang L, Chen SY, Zhang Y, Zeng Y, Wu JS, Meng XL. Pivotal regulatory roles of traditional Chinese medicine in ischemic stroke via inhibition of NLRP3 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115316. [PMID: 35513214 DOI: 10.1016/j.jep.2022.115316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many studies have demonstrated the powerful neuroprotection abilities of multiple traditional Chinese medicines (TCMs) against NLRP3 inflammasome-mediated ischemic cerebral injury. These TCMs may be in the form of TCM prescriptions, Chinese herbal medicines and their extracts, and TCM monomers. AIM OF THE STUDY This review aimed to analyze and summarize the existing knowledge on the assembly and activation of the NLRP3 inflammasome and its role in the pathogenesis of ischemic stroke (IS). We also summarized the mechanism of action of the various TCMs on the NLRP3 inflammasome, which may provide new insights for the management of IS. MATERIALS AND METHODS We reviewed recently published articles by setting the keywords "NLRP3 inflammasome" and "traditional Chinese medicines" along with "ischemic stroke"; "NLRP3 inflammasome" and "ischemic stroke" along with "natural products" and so on in Pubmed and GeenMedical. RESULTS According to recent studies, 16 TCM prescriptions (officially authorized products and clinically effective TCM prescriptions), 7 Chinese herbal extracts, and 29 TCM monomers show protective effects against IS through anti-inflammatory, anti-oxidative stress, anti-apoptotic, and anti-mitochondrial autophagy effects. CONCLUSIONS In this review, we analyzed studies on the involvement of NLRP3 in IS therapy. Further, we comprehensively and systematically summarized the current knowledge to provide a reference for the further application of TCMs in the treatment of IS.
Collapse
Affiliation(s)
- Yi-Wen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shi-Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yong Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jia-Si Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xian-Li Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Wang K, Wang G, Zhou B. TSPO knockdown attenuates OGD/R-induced neuroinflammation and neural apoptosis by decreasing NLRP3 inflammasome activity through PPARγ pathway. Brain Res Bull 2022; 187:1-10. [PMID: 35738501 DOI: 10.1016/j.brainresbull.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
Ischemic stroke is a cerebrovascular disease which is related to brain function loss induced by cerebral ischemia. Translocator protein (TSPO) is an important regulator in inflammatory diseases, while its role in ischemic stroke remains largely unknown. This research aimed to explore the role and action mechanism of TSPO in oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuron cell damage. The differentially expressed genes in ischemic stroke were predicted using GSE140275 dataset, DisGeNet, and GeneCards databases. Differentiated SH-SY5Y cells and primary neurons were subjected to transfection, and stimulated with OGD/R or MCC950 (NLRP3 inhibitor). Proteins were detected by western blotting and ELISA. Cell apoptosis was evaluated through CCK-8, caspase-3 activity and TUNEL assays. TSPO was upregulated in ischemic stroke and in SH-SY5Y cells and primary neurons after OGD/R treatment. TSPO silencing attenuated OGD/R-induced inflammation and apoptosis by decreasing NLRP3 inflammasome activity. TSPO downregulation increased PPARγ expression and decreased HMGB1 expression in OGD/R-treated cells, which was reversed by silencing PPARγ. PPARγ knockdown abolished the effect of TSPO silence on NLRP3 inflammasome activity, inflammation, and cell apoptosis in OGD/R-treated cells, while PPARγ overexpression alleviated OGD/R-induced injury in SH-SY5Y cells. In conclusion, TSPO knockdown attenuates neuroinflammation and neural apoptosis by decreasing NLRP3 inflammasome activity through PPARγ pathway.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, Jiangsu, China.
| | - Gang Wang
- Department of Neurology, Nanshi Hospital of Nanyang, Nanyang 473065, Henan, China.
| | - Botao Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu, China.
| |
Collapse
|
6
|
The Influence of Mitochondrial-DNA-Driven Inflammation Pathways on Macrophage Polarization: A New Perspective for Targeted Immunometabolic Therapy in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 23:ijms23010135. [PMID: 35008558 PMCID: PMC8745401 DOI: 10.3390/ijms23010135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022] Open
Abstract
Cerebral ischemia-reperfusion injury is related to inflammation driven by free mitochondrial DNA. At the same time, the pro-inflammatory activation of macrophages, that is, polarization in the M1 direction, aggravates the cycle of inflammatory damage. They promote each other and eventually transform macrophages/microglia into neurotoxic macrophages by improving macrophage glycolysis, transforming arginine metabolism, and controlling fatty acid synthesis. Therefore, we propose targeting the mtDNA-driven inflammatory response while controlling the metabolic state of macrophages in brain tissue to reduce the possibility of cerebral ischemia-reperfusion injury.
Collapse
|
7
|
CircDLGAP4 overexpression relieves oxygen-glucose deprivation-induced neuronal injury by elevating NEGR1 through sponging miR-503-3p. J Mol Histol 2021; 53:321-332. [PMID: 34739656 DOI: 10.1007/s10735-021-10036-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/28/2021] [Indexed: 12/08/2022]
Abstract
Circular RNAs (circRNAs) have been reported to play vital regulatory roles in human diseases. However, the functions of circRNAs in ischemic stroke (IS) are limited. In this study, we aimed to explore the functions and mechanisms of circRNA DLG associated protein 4 (circDLGAP4) in IS development. Oxygen-glucose deprivation (OGD)-treated HCN-2 cells were used to mimic IS environment in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was used to detect the levels of circDLGAP4, microRNA-503-3p (miR-503-3p) and neuronal growth regulator 1 (NEGR1) mRNA. RNase R assay was conducted to analyze the stability of circDLGAP4. Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis were adopted for cell viability and death, respectively. Western blot assay was performed for protein levels. Enzyme-linked immunosorbent assay (ELISA) kits were used to examine the concentrations of inflammatory cytokines. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay were employed to analyze the relationships among circDLGAP4, miR-503-3p and NEGR1. CircDLGAP4 level was declined in HCN-2 cells after OGD treatment. CircDLGAP4 overexpression promoted cell viability and suppressed cell death and inflammatory cytokine concentrations in OGD-treated HCN-2 cells. CircDLGAP4 acted as the sponge for miR-503-3p and the impacts of circDLGAP4 overexpression on cell viability, death and inflammation in OGD-treated HCN-2 cells were reversed by miR-503-3p elevation. Furthermore, NEGR1 was the target gene of miR-503-3p. MiR-503-3p inhibition ameliorated OGD-induced HCN-2 cell impairments, but NEGR1 knockdown abolished the effects. CircDLGAP4 alleviated OGD-induced HCN-2 cell damage by regulating miR-503-3p/NEGR1 axis.
Collapse
|
8
|
Abstract
Tomentosin is a natural compound known for its presence in some medicinal plants of the Asteraceae family such as Inula viscosa. Recent studies have highlighted its anticancer and anti-inflammatory properties. Its anticancer mechanisms are unique and act at different levels ranging from cellular organization to molecular transcriptional factors and epigenetic modifications. Tomentosin’s possession of the modulatory effect on telomerase expression on tumor cell lines has captured the interest of researchers and spurred a more robust study on its anticancer effect. Since inflammation has a close link with cancer disease, this natural compound appears to be a potential cancer-fighting drug. Indeed, its recently demonstrated anti-inflammatory action can be considered as a starting point for its evaluation as an anticancer chemo-preventive agent
Collapse
|
9
|
Bian HT, Xiao L, Liang L, Xie YP, Wang HL, Wang GH. RGFP966 is protective against lipopolysaccharide-induced depressive-like behaviors in mice by inhibiting neuroinflammation and microglial activation. Int Immunopharmacol 2021; 101:108259. [PMID: 34666303 DOI: 10.1016/j.intimp.2021.108259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Depression is a prevalent mental disorder. However, its pathophysiological mechanism has still remained elusive, and a limited number of effective treatments have been presented. Recent studies have shown that neuroinflammation and microglial activation are involved in the pathogenesis of depression. Histone deacetylase 3 (HDAC3) has neurotoxic effects on several neuropathological conditions. The inhibition of HDAC3 has been reported to induce anti-inflammatory and antioxidant effects. RGFP966 is a highly selective inhibitor of HDAC3. This study aimed to investigate the antidepressant effect of RGFP966 on lipopolysaccharide (LPS)-induced depressive-like behaviors in mice and to explore its possible mechanism. Adult male C57BL/6J mice were utilized in this study. The LPS and RGFP966 were injected intraperitoneally daily for 5 days. The behavior tests were performed to elucidate the depression-like behaviors. Western blot, ELISA and immunofluorescence staining were used to study the HDAC3/TLR4/NLRP3 pathway-related proteins. The results of behavioral tests showed that RGFP966 could improve the LPS-induced depressive-like behaviors in mice. The results of Western blotting showed that RGFP966 treatment downregulated the expression levels of toll-like receptor 4 (TLR4), nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3), caspase-1, and interleukin-1β (IL-1β) (P < 0.05). Furthermore, the results of immunofluorescence staining showed that RGFP966 treatment inhibited microglial activation in the hippocampus of mice (P < 0.01). These findings suggested that RGFP966 could effectively ameliorate LPS-induced depressive-like behaviors in mice by inhibiting neuroinflammation and microglial activation. The anti-inflammatory mechanism of RGFP966 might be related to the inhibition of the HDAC3/TLR4/NLRP3 signaling pathway. Therefore, inhibition of HDAC3 using RGFP966 could serve as a potential treatment strategy for depression.
Collapse
Affiliation(s)
- He-Tao Bian
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Liang Liang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Yin-Ping Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Hui-Ling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Gao-Hua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
10
|
Wang Y, Liu F, Liu P. 23-Hydroxytormentic acid reduces cerebral ischemia/reperfusion damage in rats through anti-apoptotic, antioxidant, and anti-inflammatory mechanisms. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1045-1054. [PMID: 33394135 DOI: 10.1007/s00210-020-02038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022]
Abstract
23-Hydroxytormentic acid (23-HTA) is an important herbal medicine purified from immature fruits of African Rubus aceae (Rosaceae). This study was carried out to examine the protection properties and potential mechanisms of 23-HTA against cerebral ischemia/reperfusion (I/R) damage. Rats underwent middle cerebral artery occlusion/reperfusion (MCAO/R) 2/24 h. All animals were euthanized 24 h after reperfusion. Rats were injected with various concentrations of 23-HTA intraperitoneally. Evaluations of infarct volumes, neurological deficit, and brain water contents were carried out to assess the outcome of 23-HTA treatment. The results showed that 23-HTA reduced infarct volumes, brain water content, and neurological deficit in a dosage-dependent manner. 23-HTA can also significantly reduce the numbers of TUNEL-positive cells, the expression levels of Bax, caspase-3, lipid peroxidation, Sod 1, Sod 2, catalase, and pro-inflammatory cytokines TNF and IL-1β and increase the expression levels of Bcl-2 and p-Akt. 23-HTA has a neuroprotective effect due to its anti-apoptotic, antioxidant, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Yamin Wang
- Department of Neurology, The 80th Army Hospital of the Chinese People's Liberation Army, No.256 Beigong West Street, Weicheng District, Weifang, 261041, Shandong, China
| | - Fengrong Liu
- Department of Neurology, The 80th Army Hospital of the Chinese People's Liberation Army, No.256 Beigong West Street, Weicheng District, Weifang, 261041, Shandong, China
| | - Peng Liu
- Department of Neurology, The 80th Army Hospital of the Chinese People's Liberation Army, No.256 Beigong West Street, Weicheng District, Weifang, 261041, Shandong, China.
| |
Collapse
|
11
|
Wang T, Chen H, Xia S, Chen X, Sun H, Xu Z. Ameliorative Effect of Parishin C Against Cerebral Ischemia-Induced Brain Tissue Injury by Reducing Oxidative Stress and Inflammatory Responses in Rat Model. Neuropsychiatr Dis Treat 2021; 17:1811-1823. [PMID: 34113111 PMCID: PMC8187103 DOI: 10.2147/ndt.s309065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/11/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Gastrodia elata Blume (Orchidaceae) is a widely used traditional Chinese herbal medicine in the clinical practice of China, to treat nervous headache, convulsions, dizziness, neurasthenia, and so on. Parishin C (Par C), one of the major bioactive components of Gastrodia elata Blume, is known to exert many different biological activities, including antipsychotic and neuroprotective effects. However, there is little research about its neuroprotective effect in an ischemic stroke model. The objective of the present study is thus to investigate the neuroprotective effects of Par C against cerebral ischemia damage. METHODS Rats were pretreated with Par C (25, 50, or 100 mg/kg/day, i.p.) for 21 days, then subjected to 2 h of middle cerebral artery occlusion (MCAO) and 22 h of reperfusion. Neurological deficient scores, brain water content, histopathology, TCC staining were performed to assess the neuroprotective effects of Par C. Meanwhile, the oxidative stress, inflammation and apoptosis-related markers of brain tissue were evaluated by corresponding assay kits. Besides, the antioxidant and pro-inflammatory expression was measured by real-time quantification PCR (RT-qPCR). RESULTS Our findings indicated that the pre-treatment with Par C improved nerve function, suppressed oxidative stress, and pro-inflammatory factors release in rats with cerebral ischemia damage. Besides, Par C significantly increased antioxidant expression and declined pro-inflammatory cytokines expression. CONCLUSION Par C is shown to exert neuroprotective effects partly via inhibiting oxidative stress and inflammation in a rat model of MCAO.
Collapse
Affiliation(s)
- Tao Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Haibo Chen
- Department of Blood Transfusion, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Shuyun Xia
- Department of Respiratory Medicine, Pingdu People's Hospital, Pingdu, Shandong, 266700, People's Republic of China
| | - Xiaofang Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Hu Sun
- Department of Anesthesiology, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Zhixin Xu
- Department of Anesthesiology, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| |
Collapse
|