1
|
Anifowose LO, Paimo OK, Adegboyega FN, Ogunyemi OM, Akano RO, Hammad SF, Ghazy MA. Molecular docking appraisal of Dysphania ambrosioides phytochemicals as potential inhibitor of a key triple-negative breast cancer driver gene. In Silico Pharmacol 2023; 11:15. [PMID: 37323538 PMCID: PMC10267046 DOI: 10.1007/s40203-023-00152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a lethal and aggressive breast cancer subtype. It is characterized by the deficient expression of the three main receptors implicated in breast cancers, making it unresponsive to hormone therapy. Hence, an existing need to develop a targeted molecular therapy for TNBC. The PI3K/AKT/mTOR signaling pathway mediates critical cellular processes, including cell proliferation, survival, and angiogenesis. It is activated in approximately 10-21% of TNBCs, emphasizing the importance of this intracellular target in TNBC treatment. AKT is a prominent driver of the PI3K/AKT/mTOR pathway, validating it as a promising therapeutic target. Dysphania ambrosioides is an important ingredient of Nigeria's traditional herbal recipe for cancer treatment. Thus, our present study explores its anticancer properties through a structure-based virtual screening of 25 biologically active compounds domiciled in the plant. Interestingly, our molecular docking study identified several potent inhibitors of AKT 1 and 2 isoforms from D. ambrosioides. However, cynaroside and epicatechin gallate having a binding energy of - 9.9 and - 10.2 kcal/mol for AKT 1 and 2, respectively, demonstrate considerable drug-likeness than the reference drug (capivasertib), whose respective binding strengths for AKT 1 and 2 are - 9.5 and - 8.4 kcal/mol. Lastly, the molecular dynamics simulation experiment showed that the simulated complex systems of the best hits exhibit structural stability throughout the 50 ns run. Together, our computational modeling analysis suggests that these compounds could emerge as efficacious drug candidates in the treatment of TNBC. Nevertheless, further experimental, translational, and clinical research is required to establish an empirical clinical application. Graphical Abstract A structure-based virtual screening and simulation of Dysphania ambrosioides phytochemicals in the active pocket of AKT 1 and 2 isoforms.
Collapse
Affiliation(s)
- Lateef O. Anifowose
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| | - Oluwatomiwa K. Paimo
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Ogun State Nigeria
| | - Fikayo N. Adegboyega
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| | - Oludare M. Ogunyemi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Rukayat O. Akano
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
| | - Sherif F. Hammad
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| | - Mohamed A. Ghazy
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| |
Collapse
|
2
|
Bakherad H, Ghasemi F, Hosseindokht M, Zare H. Nanobodies; new molecular instruments with special specifications for targeting, diagnosis and treatment of triple-negative breast cancer. Cancer Cell Int 2022; 22:245. [PMID: 35933373 PMCID: PMC9357333 DOI: 10.1186/s12935-022-02665-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Breast cancer is the most common type of cancer in women and the second leading cause of cancer death in female. Triple-negative breast cancer has a more aggressive proliferation and a poorer clinical diagnosis than other breast cancers. The most common treatments for TNBC are chemotherapy, surgical removal, and radiation therapy, which impose many side effects and costs on patients. Nanobodies have superior advantages, which makes them attractive for use in therapeutic agents and diagnostic kits. There are numerous techniques suggested by investigators for early detection of breast cancer. Nevertheless, there are fewer molecular diagnostic methods in the case of TNBC due to the lack of expression of famous breast cancer antigens in TNBC. Although conventional antibodies have a high ability to detect tumor cell markers, their large size, instability, and costly production cause a lot of problems. Since the HER-2 do not express in TNBC diagnosis, the production of nanobodies for the diagnosis and treatment of cancer cells should be performed against other antigens expressed in TNBC. In this review, nanobodies which developed against triple negative breast cancer, were classified based on type of antigen.
Collapse
Affiliation(s)
- Hamid Bakherad
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Ghasemi
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Hosseindokht
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamed Zare
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
A Novel Isaindigotone Derivative Displays Better Anti-Proliferation Activities and Induces Apoptosis in Gastric Cancer Cells. Int J Mol Sci 2022; 23:ijms23148028. [PMID: 35887375 PMCID: PMC9324172 DOI: 10.3390/ijms23148028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 12/15/2022] Open
Abstract
Isaindigotone is an alkaloid containing a pyrrolo-[2,1-b]quinazoline moiety conjugated with a benzylidene group and isolated from the root of Isatis indigotca Fort. However, further anticancer activities of this alkaloid and its derivatives have not been fully explored. In this work, a novel isaindigotone derivative was synthesized and three different gastric cell lines and one human epithelial gastric cell line were used to study the anti-proliferation effects of the novel isaindigotone derivative BLG26. HGC27 cells and AGS cells were used to further explore the potential mechanisms. BLG26 exhibited better anti-proliferation activities in AGS cells with a half-maximal inhibitory concentration (IC50) of 1.45 μM. BLG26 caused mitochondrial membrane potential loss and induced apoptosis in both HGC27 cells and AGS cells by suppressing mitochondrial apoptotic pathway and PI3K/AKT/mTOR axis. Acute toxicity experiment showed that LD50 (median lethal dose) of BLG26 was above 1000.0 mg/kg. This research suggested that BLG26 can be a potential candidate for the treatment of gastric cancer.
Collapse
|
4
|
Böldicke T. Therapeutic Potential of Intrabodies for Cancer Immunotherapy: Current Status and Future Directions. Antibodies (Basel) 2022; 11:antib11030049. [PMID: 35892709 PMCID: PMC9326752 DOI: 10.3390/antib11030049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor cells are characterized by overexpressed tumor-associated antigens or mutated neoantigens, which are expressed on the cell surface or intracellularly. One strategy of cancer immunotherapy is to target cell-surface-expressed tumor-associated antigens (TAAs) with therapeutic antibodies. For targeting TAAs or neoantigens, adoptive T-cell therapies with activated autologous T cells from cancer patients transduced with novel recombinant TCRs or chimeric antigen receptors have been successfully applied. Many TAAs and most neoantigens are expressed in the cytoplasm or nucleus of tumor cells. As alternative to adoptive T-cell therapy, the mRNA of intracellular tumor antigens can be depleted by RNAi, the corresponding genes or proteins deleted by CRISPR-Cas or inactivated by kinase inhibitors or by intrabodies, respectively. Intrabodies are suitable to knockdown TAAs and neoantigens without off-target effects. RNA sequencing and proteome analysis of single tumor cells combined with computational methods is bringing forward the identification of new neoantigens for the selection of anti-cancer intrabodies, which can be easily performed using phage display antibody repertoires. For specifically delivering intrabodies into tumor cells, the usage of new capsid-modified adeno-associated viruses and lipid nanoparticles coupled with specific ligands to cell surface receptors can be used and might bring cancer intrabodies into the clinic.
Collapse
Affiliation(s)
- Thomas Böldicke
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
5
|
Sorbara M, Cordelier P, Bery N. Antibody-Based Approaches to Target Pancreatic Tumours. Antibodies (Basel) 2022; 11:antib11030047. [PMID: 35892707 PMCID: PMC9326758 DOI: 10.3390/antib11030047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with a dismal prognosis. This is due to the difficulty to detect the disease at an early and curable stage. In addition, only limited treatment options are available, and they are confronted by mechanisms of resistance. Monoclonal antibody (mAb) molecules are highly specific biologics that can be directly used as a blocking agent or modified to deliver a drug payload depending on the desired outcome. They are widely used to target extracellular proteins, but they can also be employed to inhibit intracellular proteins, such as oncoproteins. While mAbs are a class of therapeutics that have been successfully employed to treat many cancers, they have shown only limited efficacy in pancreatic cancer as a monotherapy so far. In this review, we will discuss the challenges, opportunities and hopes to use mAbs for pancreatic cancer treatment, diagnostics and imagery.
Collapse
|
6
|
Nix C, Cobraiville G, Gou MJ, Fillet M. Potential of Single Pulse and Multiplexed Drift-Tube Ion Mobility Spectrometry Coupled to Micropillar Array Column for Proteomics Studies. Int J Mol Sci 2022; 23:ijms23147497. [PMID: 35886845 PMCID: PMC9319919 DOI: 10.3390/ijms23147497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
Proteomics is one of the most significant methodologies to better understand the molecular pathways involved in diseases and to improve their diagnosis, treatment and follow-up. The investigation of the proteome of complex organisms is challenging from an analytical point of view, because of the large number of proteins present in a wide range of concentrations. In this study, nanofluidic chromatography, using a micropillar array column, was coupled to drift-tube ion mobility and time-of-flight mass spectrometry to identify as many proteins as possible in a protein digest standard of HeLa cells. Several chromatographic parameters were optimized. The high interest of drift-tube ion mobility to increase the number of identifications and to separate isobaric coeluting peptides was demonstrated. Multiplexed drift-tube ion mobility spectrometry was also investigated, to increase the sensitivity in proteomics studies. This innovative proteomics platform will be useful for analyzing patient samples to better understand unresolved disorders.
Collapse
|
7
|
Identification and characterization of inhibitory nanobody against p38δ. Biochem Biophys Res Commun 2022; 600:60-66. [DOI: 10.1016/j.bbrc.2022.01.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 11/21/2022]
|
8
|
Wagner TR, Rothbauer U. Nanobodies - Little helpers unravelling intracellular signaling. Free Radic Biol Med 2021; 176:46-61. [PMID: 34536541 DOI: 10.1016/j.freeradbiomed.2021.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022]
Abstract
The identification of diagnostic and therapeutic targets requires a comprehensive understanding of cellular processes, for which advanced technologies in biomedical research are needed. The emergence of nanobodies (Nbs) derived from antibody fragments of camelid heavy chain-only antibodies as intracellular research tools offers new possibilities to study and modulate target antigens in living cells. Here we summarize this rapidly changing field, beginning with a brief introduction of Nbs, followed by an overview of how target-specific Nbs can be generated, and introduce the selection of intrabodies as research tools. Intrabodies, by definition, are intracellular functional Nbs that target ectopic or endogenous intracellular antigens within living cells. Such binders can be applied in various formats, e.g. as chromobodies for live cell microscopy or as biosensors to decipher complex intracellular signaling pathways. In addition, protein knockouts can be achieved by target-specific Nbs, while modulating Nbs have the potential as future therapeutics. The development of fine-tunable and switchable Nb-based systems that simultaneously provide spatial and temporal control has recently taken the application of these binders to the next level.
Collapse
Affiliation(s)
- Teresa R Wagner
- Pharmaceutical Biotechnology, Eberhard Karls University, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
9
|
Targeting small GTPases and their downstream pathways with intracellular macromolecule binders to define alternative therapeutic strategies in cancer. Biochem Soc Trans 2021; 49:2021-2035. [PMID: 34623375 DOI: 10.1042/bst20201059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
The RAS superfamily of small GTPases regulates major physiological cellular processes. Mutation or deregulation of these small GTPases, their regulators and/or their effectors are associated with many diseases including cancer. Hence, targeting these classes of proteins is an important therapeutic strategy in cancer. This has been recently achieved with the approval of the first KRASG12C covalent inhibitors for the clinic. However, many other mutants and small GTPases are still considered as 'undruggable' with small molecule inhibitors because of a lack of well-defined pocket(s) at their surface. Therefore, alternative therapeutic strategies have been developed to target these proteins. In this review, we discuss the use of intracellular antibodies and derivatives - reagents that bind their antigen inside the cells - for the discovery of novel inhibitory mechanisms, targetable features and therapeutic strategies to inhibit small GTPases and their downstream pathways. These reagents are also versatile tools used to better understand the biological mechanisms regulated by small GTPases and to accelerate the drug discovery process.
Collapse
|
10
|
Hua H, Zhang H, Chen J, Wang J, Liu J, Jiang Y. Targeting Akt in cancer for precision therapy. J Hematol Oncol 2021; 14:128. [PMID: 34419139 PMCID: PMC8379749 DOI: 10.1186/s13045-021-01137-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Biomarkers-guided precision therapeutics has revolutionized the clinical development and administration of molecular-targeted anticancer agents. Tailored precision cancer therapy exhibits better response rate compared to unselective treatment. Protein kinases have critical roles in cell signaling, metabolism, proliferation, survival and migration. Aberrant activation of protein kinases is critical for tumor growth and progression. Hence, protein kinases are key targets for molecular targeted cancer therapy. The serine/threonine kinase Akt is frequently activated in various types of cancer. Activation of Akt promotes tumor progression and drug resistance. Since the first Akt inhibitor was reported in 2000, many Akt inhibitors have been developed and evaluated in either early or late stage of clinical trials, which take advantage of liquid biopsy and genomic or molecular profiling to realize personalized cancer therapy. Two inhibitors, capivasertib and ipatasertib, are being tested in phase III clinical trials for cancer therapy. Here, we highlight recent progress of Akt signaling pathway, review the up-to-date data from clinical studies of Akt inhibitors and discuss the potential biomarkers that may help personalized treatment of cancer with Akt inhibitors. In addition, we also discuss how Akt may confer the vulnerability of cancer cells to some kinds of anticancer agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingzhu Chen
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jieya Liu
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Akt Isoforms: A Family Affair in Breast Cancer. Cancers (Basel) 2021; 13:cancers13143445. [PMID: 34298660 PMCID: PMC8306188 DOI: 10.3390/cancers13143445] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Breast cancer is the second leading cause of cancer-related death in women in the United States. The Akt signaling pathway is deregulated in approximately 70% of patients with breast cancer. While targeting Akt is an effective therapeutic strategy for the treatment of breast cancer, there are several members in the Akt family that play distinct roles in breast cancer. However, the function of Akt isoforms depends on many factors. This review analyzes current progress on the isoform-specific functions of Akt isoforms in breast cancer. Abstract Akt, also known as protein kinase B (PKB), belongs to the AGC family of protein kinases. It acts downstream of the phosphatidylinositol 3-kinase (PI3K) and regulates diverse cellular processes, including cell proliferation, cell survival, metabolism, tumor growth and metastasis. The PI3K/Akt signaling pathway is frequently deregulated in breast cancer and plays an important role in the development and progression of breast cancer. There are three closely related members in the Akt family, namely Akt1(PKBα), Akt2(PKBβ) and Akt3(PKBγ). Although Akt isoforms share similar structures, they exhibit redundant, distinct as well as opposite functions. While the Akt signaling pathway is an important target for cancer therapy, an understanding of the isoform-specific function of Akt is critical to effectively target this pathway. However, our perception regarding how Akt isoforms contribute to the genesis and progression of breast cancer changes as we gain new knowledge. The purpose of this review article is to analyze current literatures on distinct functions of Akt isoforms in breast cancer.
Collapse
|