1
|
Moghimipour E, Gorji A, Yaghoobi R, Salimi A, Latifi M, Aghakouchakzadeh M, Handali S. Clinical evaluation of liposome-based gel formulation containing glycolic acid for the treatment of photodamaged skin. J Drug Target 2024; 32:74-79. [PMID: 38009711 DOI: 10.1080/1061186x.2023.2288998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Background: Long contact of UV causes skin damage. Glycolic acid (GA) as an alpha hydroxy acid is used to treat photodamaged skin. However, GA leads to side effects including; burning, erythema and peeling.Purpose: The aim of this study was to develop a controlled delivery systems loading GA in order to increasing its efficacy and lowering its side effects.Methods: Liposomes were evaluated for encapsulation efficiency, size and morphology. Optimized formulation was dispersed in HPMC gel bases and drug release kinetics were also studied. Clinical efficacy and safety of GA-loaded liposomal gel and GA gel formulation were evaluated in patients with photodamaged skin.Results: The EE% and average particle size of liposomes were 64 ±2.1 % and 317±3.6 nm, respectively. SEM image showed that liposomes were spherical in shape. In vitro release kinetics of GA from both formulations followed Weibull model. Clinical evaluation revealed that GA-loaded liposomal gel was more effective than GA gel formulation. Treatment with GA-loaded liposomal gel resulted in a statistically significant reduction in the scores of hyperpigmentation, fine wrinkling and lentigines. Moreover, liposomal gel formulation was able to minimize side effects of GA.Conclusion: According to the obtained results, the liposome-based gel formulation can be used as potential drug delivery system to enhance permeation of GA through skin layers and also reduce its side effects.
Collapse
Affiliation(s)
- Eskandar Moghimipour
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Gorji
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Yaghoobi
- Department of Dermatology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Anayatollah Salimi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Latifi
- Statistics and Epidemiology Department, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Somayeh Handali
- Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Miao L, Deng X, Qin X, Huang Y, Su L, Adyel TM, Wang Z, Lu Z, Luo D, Wu J, Hou J. High-altitude aquatic ecosystems offer faster aging rate of plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175827. [PMID: 39197763 DOI: 10.1016/j.scitotenv.2024.175827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
While research on the aging behavior of plastics in aquatic systems is extensive, studies focusing on high-altitude ecosystems, characterized by higher solar radiation and lower temperatures, remain limited. This study investigated the long-term aging behavior of non-biodegradable plastics (non-BPs), namely polyethylene terephthalate (PET) and polypropylene (PP) and biodegradable plastics (BPs), specifically polylactic acid plus polybutylene adipate-co-terephthalate (PLA + PBAT) and starch-based plastic (SBP), in a tributary of the Yarlung Zangbo River on the high-altitude Tibetan Plateau. Over 84 days of field aging, all four types of plastics exhibited initial rapid aging followed by deceleration. This aging process can be divided into two phases: rapid surface oxidation aging and an aging plateau phase. Notably, PP aged at a rate comparable to BPs, contrary to expectations of faster aging for BPs. Compared to low-altitude aquatic ecosystems, plastics in this study showed a faster aging rate. This was primarily due to intense ultraviolet radiation causing severe photoaging. Furthermore, the lower temperatures contributed to the formation of thinner biofilms. These thinner biofilms exhibited a reduced capacity to block light, further exacerbating the photoaging process of plastics. Statistical analysis results indicated that temperature, total nitrogen TN, and total phosphorus TP were likely the main water quality parameters influencing plastic aging. The varying effects of water properties and nutrients underscore the complex interaction of water quality parameters in high-altitude environments. Given the delicate nature of the high-altitude environment, the environmental impact of plastics, especially BPs, warrants careful consideration.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Xiaoya Deng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Xiangchao Qin
- Eco-environmental Monitoring and Scientific Research Center, Yellow River Basin Ecology and Environment Administration, Zhengzhou 450004, People's Republic of China.
| | - Yi Huang
- Tibet Agriculture and Animal Husbandry University, No.100, Yucai West Road, Bayi District, Nyingchi City 860006, People's Republic of China.
| | - Libin Su
- Tibet Agriculture and Animal Husbandry University, No.100, Yucai West Road, Bayi District, Nyingchi City 860006, People's Republic of China.
| | - Tanveer M Adyel
- STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia; Biosciences and Food Technology Discipline, RMIT University, Melbourne, VIC 3000, Australia
| | - Zhiyuan Wang
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, National Energy Administration, Ministry of Transport, Ministry of Water Resources, Nanjing 210029, People's Republic of China
| | - Zhao Lu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Dan Luo
- Tibet Research Academy of Eco-environmental Sciences, No.26, Jinzhu Middle Road, Chengguan District, Lhasa, Tibet Autonomous Region 850030, People's Republic of China.
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
3
|
Liu X, Hu Q, Shen Y, Wu Y, Gao L, Xu X, Hao G. Research Progress on Antioxidant Peptides from Fish By-Products: Purification, Identification, and Structure-Activity Relationship. Metabolites 2024; 14:561. [PMID: 39452942 PMCID: PMC11510070 DOI: 10.3390/metabo14100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Excessive reactive oxygen species (ROS) can lead to oxidative stress, which has become an urgent problem requiring effective solutions. Due to the drawbacks of chemically synthesized antioxidants, there is a growing interest in natural antioxidants, particularly antioxidant peptides. Methods: By reviewing recent literature on antioxidant peptides, particularly those extracted from various parts of fish, summarize which fish by-products are more conducive to the extraction of antioxidant peptides and elaborate on their characteristics. Results: This article summarizes recent advancements in extracting antioxidant peptides from fish processing by-products, Briefly introduced the purification and identification process of antioxidant peptides, specifically focusing on the extraction of antioxidant peptides from various fish by-products. Additionally, this article comprehensively reviews the relationship between amino acid residues that compose antioxidant peptides and their potential mechanisms of action. It explores the impact of amino acid types, molecular weight, and structure-activity relationships on antioxidant efficacy. Conclusions: Different amino acid residues can contribute to the antioxidant activity of peptides by scavenging free radicals, chelating metal ions, and modulating enzyme activities. The smaller the molecular weight of the antioxidant peptide, the stronger its antioxidant activity. Additionally, the antioxidant activity of peptides is influenced by specific amino acids located at the C-terminus and N-terminus positions. Simultaneously, this review provides a more systematic analysis and a broader perspective based on existing research, concluded that fish viscera are more favorable for the extraction of antioxidant peptides, providing new insights for the practical application of fish by-products. This could increase the utilization of fish viscera and reduce the environmental pollution caused by their waste, offering valuable references for the study and application of antioxidant peptides from fish by-products.
Collapse
Affiliation(s)
- Xinru Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.L.)
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Qiuyue Hu
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Yafang Shen
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Yuxin Wu
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Lu Gao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.L.)
| | - Xuechao Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.L.)
| | - Guijie Hao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| |
Collapse
|
4
|
Li J, Yin S, Wei Z, Xiao Z, Kang Z, Wu Y, Huang Y, Jia Q, Peng Y, Ru Z, Sun X, Yang Y, Yang Q, Wang J, Liu C, Yang M, Wang Y, Yang X. Newly identified peptide Nigrocin-OA27 inhibits UVB induced melanin production via the MITF/TYR pathway. Peptides 2024; 177:171215. [PMID: 38608837 DOI: 10.1016/j.peptides.2024.171215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Melasma is a common skin disease induced by an increase in the content of melanin in the skin, which also causes serious physical and mental harm to patients. In this research, a novel peptide (Nigrocin-OA27) from Odorrana andersonii is shown to exert a whitening effect on C57 mice pigmentation model. The peptide also demonstrated non-toxic and antioxidant capacity, and can significantly reduce melanin content in B16 cells. Topical application effectively delivered Nigrocin-OA27 to skin's epidermal and dermal layers and exhibited significant preventive and whitening effects on the UVB-induced ear pigmentation model in C57 mice. The whitening mechanism of Nigrocin-OA27 may be related to reduced levels of the microphthalmia-associated transcription factor and the key enzyme for melanogenesis-tyrosinase (TYR). Nigrocin-OA27 also inhibited the catalytic activity by adhering to the active core of TYR, thereby reducing melanin formation and deposition. In conclusion, Nigrocin-OA27 may be a potentially effective external agent to treat melasma by inhibiting aberrant skin melanin synthesis.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ziqi Wei
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhaoxun Xiao
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zijian Kang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yubing Huang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiuye Jia
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ying Peng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zeqiong Ru
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiaohan Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yuliu Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qian Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Junyuan Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Chengxing Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
5
|
Yang T, Geng F, Tang X, Yu Z, Liu Y, Song B, Tang Z, Wang B, Ye B, Yu D, Zhang S. UV radiation-induced peptides in frog skin confer protection against cutaneous photodamage through suppressing MAPK signaling. MedComm (Beijing) 2024; 5:e625. [PMID: 38919335 PMCID: PMC11196897 DOI: 10.1002/mco2.625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Overexposure to ultraviolet light (UV) has become a major dermatological problem since the intensity of ultraviolet radiation is increasing. As an adaption to outside environments, amphibians gained an excellent peptide-based defense system in their naked skin from secular evolution. Here, we first determined the adaptation and resistance of the dark-spotted frogs (Pelophylax nigromaculatus) to constant ultraviolet B (UVB) exposure. Subsequently, peptidomics of frog skin identified a series of novel peptides in response to UVB. These UV-induced frog skin peptides (UIFSPs) conferred significant protection against UVB-induced death and senescence in skin cells. Moreover, the protective effects of UIFSPs were boosted by coupling with the transcription trans-activating (TAT) protein transduction domain. In vivo, TAT-conjugated UIFSPs mitigated skin photodamage and accelerated wound healing. Transcriptomic profiling revealed that multiple pathways were modulated by TAT-conjugated UIFSPs, including small GTPase/Ras signaling and MAPK signaling. Importantly, pharmacological activation of MAPK kinases counteracted UIFSP-induced decrease in cell death after UVB exposure. Taken together, our findings provide evidence for the potential preventive and therapeutic significance of UIFSPs in UV-induced skin damage by antagonizing MAPK signaling pathways. In addition, these results suggest a practicable alternative in which potential therapeutic agents can be mined from organisms with a fascinating ability to adapt.
Collapse
Affiliation(s)
- Tingyi Yang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Fenghao Geng
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Xiaoyou Tang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
- Medical College of Tibet University, Tibet UniversityLhasaChina
| | - Zuxiang Yu
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Yulan Liu
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
| | - Bin Song
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Zhihui Tang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Baoning Wang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Bengui Ye
- Medical College of Tibet University, Tibet UniversityLhasaChina
| | - Daojiang Yu
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
- Medical College of Tibet University, Tibet UniversityLhasaChina
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital)MianyangChina
| |
Collapse
|
6
|
Promsut K, Sangtanoo P, Srimongkol P, Saisavoey T, Puthong S, Buakeaw A, Reamtong O, Nutho B, Karnchanatat A. A novel peptide derived from Zingiber cassumunar rhizomes exhibits anticancer activity against the colon adenocarcinoma cells (Caco-2) via the induction of intrinsic apoptosis signaling. PLoS One 2024; 19:e0304701. [PMID: 38870120 PMCID: PMC11175412 DOI: 10.1371/journal.pone.0304701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
This paper presents the initial exploration of the free radical scavenging capabilities of peptides derived from protein hydrolysates (PPH) obtained from Zingiber cassumunar rhizomes (Phlai). To replicate the conditions of gastrointestinal digestion, a combination of pepsin and pancreatin proteolysis was employed to generate these hydrolysates. Subsequently, the hydrolysate underwent fractionation using molecular weight cut-off membranes at 10, 5, 3, and 0.65 kDa. The fraction with a molecular weight less than 0.65 kDa exhibited the highest levels ABTS, DPPH, FRAP, and NO radical scavenging activity. Following this, RP-HPLC was used to further separate the fraction with a molecular weight less than 0.65 kDa into three sub-fractions. Among these, the F5 sub-fraction displayed the most prominent radical-scavenging properties. De novo peptide sequencing via quadrupole-time-of-flight-electron spin induction-mass spectrometry identified a pair of novel peptides: Asp-Gly-Ile-Phe-Val-Leu-Asn-Tyr (DGIFVLNY or DY-8) and Ile-Pro-Thr-Asp-Glu-Lys (IPTDEK or IK-6). Database analysis confirmed various properties, including biological activity, toxicity, hydrophilicity, solubility, and potential allergy concerns. Furthermore, when tested on the human adenocarcinoma colon (Caco-2) cell line, two synthetic peptides demonstrated cellular antioxidant activity in a concentration-dependent manner. These peptides were also assessed using the FITC Annexin V apoptosis detection kit with PI, confirming the induction of apoptosis. Notably, the DY-8 peptide induced apoptosis, upregulated mRNA levels of caspase-3, -8, and -9, and downregulated Bcl-2, as confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). Western blot analysis indicated increased pro-apoptotic Bax expression and decreased anti-apoptotic Bcl-2 expression in Caco-2 cells exposed to the DY-8 peptide. Molecular docking analysis revealed that the DY-8 peptide exhibited binding affinity with Bcl-2, Bcl-xL, and Mcl-1, suggesting potential utility in combating colon cancer as functional food ingredients.
Collapse
Affiliation(s)
- Kitjasit Promsut
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Tanatorn Saisavoey
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Songchan Puthong
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Anumart Buakeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
7
|
Zhang Y, Li Y, Quan Z, Xiao P, Duan JA. New Insights into Antioxidant Peptides: An Overview of Efficient Screening, Evaluation Models, Molecular Mechanisms, and Applications. Antioxidants (Basel) 2024; 13:203. [PMID: 38397801 PMCID: PMC10886007 DOI: 10.3390/antiox13020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Antioxidant peptides are currently a hotspot in food science, pharmaceuticals, and cosmetics. In different fields, the screening, activity evaluation, mechanisms, and applications of antioxidant peptides are the pivotal areas of research. Among these topics, the efficient screening of antioxidant peptides stands at the forefront of cutting-edge research. To this end, efficient screening with novel technologies has significantly accelerated the research process, gradually replacing the traditional approach. After the novel antioxidant peptides are screened and identified, a time-consuming activity evaluation is another indispensable procedure, especially in in vivo models. Cellular and rodent models have been widely used for activity evaluation, whilst non-rodent models provide an efficient solution, even with the potential for high-throughput screening. Meanwhile, further research of molecular mechanisms can elucidate the essence underlying the activity, which is related to several signaling pathways, including Keap1-Nrf2/ARE, mitochondria-dependent apoptosis, TGF-β/SMAD, AMPK/SIRT1/PGC-1α, PI3K/Akt/mTOR, and NF-κB. Last but not least, antioxidant peptides have broad applications in food manufacture, therapy, and the cosmetics industry, which requires a systematic review. This review introduces novel technologies for the efficient screening of antioxidant peptides, categorized with a new vision. A wide range of activity evaluation assays, encompassing cellular models, as well as rodent and non-rodent models, are provided in a comprehensive manner. In addition, recent advances in molecular mechanisms are analyzed with specific cases. Finally, the applications of antioxidant peptides in food production, therapy, and cosmetics are systematically reviewed.
Collapse
Affiliation(s)
| | | | | | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Z.); (Y.L.); (Z.Q.)
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Z.); (Y.L.); (Z.Q.)
| |
Collapse
|
8
|
Zhu Y, Wang K, Jia X, Fu C, Yu H, Wang Y. Antioxidant peptides, the guardian of life from oxidative stress. Med Res Rev 2024; 44:275-364. [PMID: 37621230 DOI: 10.1002/med.21986] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Kang Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Jia
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
- Department of Food Science and Technology, Food Science and Technology Center, National University of Singapore, Singapore, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Wang J, Li Y, Feng C, Wang H, Li J, Liu N, Fu Z, Wang Y, Wu Y, Liu Y, Zhang Y, Yin S, He L, Wang Y, Yang X. Peptide OA-VI12 restrains melanogenesis in B16 cells and C57B/6 mouse ear skin via the miR-122-5p/Mitf/Tyr axis. Amino Acids 2023; 55:1687-1699. [PMID: 37794194 DOI: 10.1007/s00726-023-03341-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Excessive melanogenesis leads to hyperpigmentation, which is one of the common skin conditions in humans. Existing whitening cosmetics cannot meet market needs due to their inherent limitations. Thus, the development of novel skin-whitening agents continues to be a challenge. The peptide OA-VI12 from the skin of amphibians at high altitude has attracted attention due to its remarkable anti light damage activity. However, whether OA-VI12 has the skin-whitening effect of inhibiting melanogenesis is still. Mouse melanoma cells (B16) were used to study the effect of OA-VI12 on cell viability and melanin content. The pigmentation model of C57B/6 mouse ear skin was induced by UVB and treated with OA-VI12. Melanin staining was used to observe the degree of pigmentation. MicroRNA sequencing, quantitative real-time PCR (qRT-PCR), immunofluorescence analysis and Western blot were used to detect the change of factor expression. Double luciferase gene report experiment was used to prove the regulatory relationship between miRNA and target genes. OA-VI12 has no effect on the viability of B16 cells in the concentration range of 1-100 μM and significantly inhibits the melanin content of B16 cells. Topical application of OA-VI12, which exerted transdermal potency, prevented UVB-induced pigmentation of ear skin. MicroRNA sequencing and double luciferase reporter analysis results showed that miR-122-5p, which directly regulated microphthalmia-associated transcription factor (Mitf), had significantly different expression before and after treatment with OA-VI12. Mitf is a simple helix loop and leucine zipper transcription factor that regulates tyrosinase (Tyr) expression by binding to the M-box promoter element of Tyr. qRT-PCR, immunofluorescence analysis and Western blot showed that OA-VI12 up-regulated the expression of miR-122-5p and inhibited the expression of Mitf and Tyr. The effects of OA-VI12 on melanogenesis inhibition in vitro and in vivo may involve the miR-122-5p/Mitf/tyr axis. OA-VI12 represents the first report on a natural amphibian-derived peptide with skin-whitening capacity and the first report of miR-122-5p as a target for regulating melanogenesis, thereby demonstrating its potential as a novel skin-whitening agent and highlighting amphibian-derived peptides as an underdeveloped resource.
Collapse
Affiliation(s)
- Junsong Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yilin Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Chengan Feng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Haoyu Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jiayi Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yixiang Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yingxuan Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, Yunnan, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
10
|
Lu W, Kong C, Cheng S, Xu X, Zhang J. Succinoglycan riclin relieves UVB-induced skin injury with anti-oxidant and anti-inflammatory properties. Int J Biol Macromol 2023; 235:123717. [PMID: 36806772 DOI: 10.1016/j.ijbiomac.2023.123717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/19/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Excessive UVB exposure increases the production of reactive oxygen species (ROS), which causes oxidative damage and epidermal inflammation. Previous studies have identified that the succinoglycan riclin has potent anti-inflammatory properties. The current study aims to investigate whether riclin protects against UVB-induced photodamage. In vitro, riclin demonstrated excellent moisture-preserving properties, along with antioxidant potential by scavenging superoxide anions, hydroxyl and DPPH radicals. Riclin increased Col1α1 and Col3α1 expression in NIH3T3 cells, inhibited oxidation and melanin synthesis by B16F10 cells upon UVB irradiation. In vivo, topical application of riclin effectively attenuated UVB-induced skin damage in C57BL6 mice, which was characterized by erythema, epidermal hyperplasia, hydroxyproline loss and ROS production in skin tissue. Riclin suppressed skin inflammation by the elevation of TNF-α, IL-6, IL-β, and alleviated UVB-induced immune cell up-regulation. Moreover, treatment with a Dectin-1 inhibitor reversed the protective effect of riclin in THP-1 cells.
Collapse
Affiliation(s)
- Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Shijunyin Cheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
11
|
An J, Tsopmejio ISN, Wang Z, Li W. Review on Extraction, Modification, and Synthesis of Natural Peptides and Their Beneficial Effects on Skin. Molecules 2023; 28:molecules28020908. [PMID: 36677965 PMCID: PMC9863410 DOI: 10.3390/molecules28020908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Peptides, functional nutrients with a size between those of large proteins and small amino acids, are easily absorbed by the human body. Therefore, they are seeing increasing use in clinical medicine and have revealed immunomodulatory and anti-inflammatory properties which could make them effective in healing skin wounds. This review sorted and summarized the relevant literature about peptides during the past decade. Recent works on the extraction, modification and synthesis of peptides were reviewed. Importantly, the unique beneficial effects of peptides on the skin were extensively explored, providing ideas for the development and innovation of peptides and laying a knowledge foundation for the clinical application of peptides.
Collapse
Affiliation(s)
- Jiabing An
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | | | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Z.W.); (W.L.); Tel./Fax: +86-431-84533304 (W.L.)
| | - Wei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Z.W.); (W.L.); Tel./Fax: +86-431-84533304 (W.L.)
| |
Collapse
|
12
|
Chen B, Yu L, Wu J, Qiao K, Cui L, Qu H, Su Y, Cai S, Liu Z, Wang Q. Effects of Collagen Hydrolysate From Large Hybrid Sturgeon on Mitigating Ultraviolet B-Induced Photodamage. Front Bioeng Biotechnol 2022; 10:908033. [PMID: 35832410 PMCID: PMC9271680 DOI: 10.3389/fbioe.2022.908033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Ultraviolet B (UVB) radiation leads to the excessive accumulation of reactive oxygen species (ROS), which subsequently promote inflammation, degradation of the extracellular matrix, and photoaging in skin. Thus antioxidant activity is particularly important when screening for active substances to prevent or repair photodamage. Marine fish-derived bioactive peptides have become a trend in cosmetics and functional food industries owing to their potential dermatological benefits. In this study, 1-diphenyl- 2-pycryl-hydrazyl (DPPH) scavenging activity was selected to optimize the hydrolysis conditions of sturgeon skin collagen peptides with antioxidant activity. The optimal hydrolysis conditions for sturgeon skin collagen hydrolysate (SSCH) were determined by response surface methodology, which comprised an enzyme dosage of flavorzyme at 6,068.4 U/g, temperature of 35.5°C, pH of 7, and hydrolysis time of 6 h. SSCH showed good radical-scavenging capacities with a DPPH scavenging efficiency of 95%. Then, the effect of low-molecular-weight SSCH fraction (SSCH-L) on UVB irradiation-induced photodamage was evaluated in mouse fibroblast L929 cells and zebrafish. SSCH-L reduced intracellular ROS levels and the malondialdehyde content, thereby alleviating the oxidative damage caused by UVB radiation. Moreover SSCH-L inhibited the mRNA expression of genes encoding the pro-inflammatory cytokines IL-1β, IL-6, TNF-α, and Cox-2. SSCH-L treatment further increased the collagen Ⅰα1 content and had a significant inhibitory effect on matrix metalloproteinase expression. The phosphorylation level of JNK and the expression of c-Jun protein were significantly reduced by SSCH-L. Additionally, SSCH-L increased the tail fin area at 0.125 and 0.25 mg/ml in a zebrafish UVB radiation model, which highlighted the potential of SSCH-L to repair UVB-irradiated zebrafish skin damage. Peptide sequences of SSCH-L were identified by liquid chromatography-tandem mass spectrometry. Based on the 3D-QSAR modeling prediction, six total peptides were selected to test the UVB-protective activity. Among these peptides, DPFRHY showed good UVB-repair activity, ROS-scavenging activity, DNA damage-protective activity and apoptosis inhibition activity. These results suggested that DPFRHY has potential applications as a natural anti-photodamage material in cosmetic and functional food industries.
Collapse
Affiliation(s)
- Bei Chen
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Lei Yu
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jingna Wu
- Xiamen Medical College, Xiamen, China
| | - Kun Qiao
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Lulu Cui
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Haidong Qu
- College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yongchang Su
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Shuilin Cai
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
- *Correspondence: Zhiyu Liu, ; Qin Wang,
| | - Qin Wang
- School of Life Sciences, Xiamen University, Xiamen, China
- *Correspondence: Zhiyu Liu, ; Qin Wang,
| |
Collapse
|
13
|
Wang S, Yang M, Yin S, Zhang Y, Zhang Y, Sun H, Shu L, Liu Y, Kang Z, Liu N, Li J, Wang Y, He L, Luo M, Yang X. A new peptide originated from amphibian skin alleviates the ultraviolet B-induced skin photodamage. Biomed Pharmacother 2022; 150:112987. [PMID: 35462334 DOI: 10.1016/j.biopha.2022.112987] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022] Open
Abstract
Although amphibian-derived bioactive peptides have attracted increasing attention for their potential use in the treatment of photodamage, research is still in its infancy. In this study, we obtained a new antioxidant peptide, named OA-GI13 (GIWAPWPPRAGLC), from the skin of the odorous frog Odorrana andersonii and determined its effects on ultraviolet B (UVB)-induced skin photodamage as well as its possible molecular mechanisms. Results showed that OA-GI13 directly scavenged free radicals, maintained the viability of hydrogen peroxide-challenged keratinocytes, promoted the release of superoxide dismutase, catalase, and glutathione, and reduced the level of lactate dehydrogenase. Furthermore, topical application of OA-GI13 in mice alleviated dorsal skin erythema and edema and protected the skin against UVB irradiation by increasing antioxidant levels and decreasing peroxide, malondialdehyde, and 8-hydroxydeoxyguanosine levels. OA-GI13 also alleviated oxidative stress injury in vivo and in vitro, possibly by inhibiting p38 protein phosphorylation. Our study confirmed the anti-photodamage effects of this novel amphibian-derived peptide, thus providing a new molecule for the development of drugs and topical agents for the treatment of skin photodamage.
Collapse
Affiliation(s)
- Siyu Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yingxuan Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yue Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Huiling Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Zijian Kang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jiayi Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China.
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Mingying Luo
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
14
|
The beneficial roles of poisonous skin secretions in survival strategies of the odorous frog Odorrana andersonii. Naturwissenschaften 2021; 109:4. [PMID: 34874458 DOI: 10.1007/s00114-021-01776-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
The evolution of predatory, anti-predatory, and defensive strategies regarding environmental adaptation in animals is of significant research interest. In particular, amphibians, who represent a transition between aquatic and terrestrial vertebrates, play an important role in animal evolution. The bioactive skin secretions of amphibians are of specific interest due to their involvement in the crucial physiological functions of amphibian skin. We previously isolated and identified several bioactive peptides, including those showing antioxidant, antimicrobial, and wound-healing properties, from the skin secretions of the odorous frog species Odorrana andersonii. Currently, however, the biological significance of skin secretions in O. andersonii survival remains unclear. Here, we studied the biological significance of skin glands and secretions in regard to environmental adaptations of O. andersonii. Our research found that O. andersonii may secrete and excrete bioactive secretions through many glands (peptides and proteins as the main components in glands) distributed in the skin. The skin secretions not only displayed toxicity but also showed antioxidant, antibacterial, and repair promoting activities, suggesting that they play a protective role in O. andersonii when facing environmental threats. These bioactive skin secretions appear to act as a chemical survival strategy in O. andersonii, allowing the species to gain advantages in survival behavior.
Collapse
|
15
|
Heptapeptide Isolated from Isochrysis zhanjiangensis Exhibited Anti-Photoaging Potential via MAPK/AP-1/MMP Pathway and Anti-Apoptosis in UVB-Irradiated HaCaT Cells. Mar Drugs 2021; 19:md19110626. [PMID: 34822497 PMCID: PMC8625372 DOI: 10.3390/md19110626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/07/2021] [Accepted: 11/07/2021] [Indexed: 01/14/2023] Open
Abstract
Marine microalgae can be used as sustainable protein sources in many fields with positive effects on human and animal health. DAPTMGY is a heptapeptide isolated from Isochrysis zhanjiangensis which is a microalga. In this study, we evaluated its anti-photoaging properties and mechanism of action in human immortalized keratinocytes cells (HaCaT). The results showed that DAPTMGY scavenged reactive oxygen species (ROS) and increase the level of endogenous antioxidants. In addition, through the exploration of its mechanism, it was determined that DAPIMGY exerted anti-photoaging effects. Specifically, the heptapeptide inhibits UVB-induced apoptosis through down-regulation of p53, caspase-8, caspase-3 and Bax and up-regulation of Bcl-2. Thus, DAPTMGY, isolated from I. zhanjiangensis, exhibits protective effects against UVB-induced damage.
Collapse
|
16
|
Xie C, Fan Y, Yin S, Li Y, Liu N, Liu Y, Shu L, Fu Z, Wang Y, Zhang Y, Li X, Wang Y, Sun J, Yang X. Novel amphibian-derived antioxidant peptide protects skin against ultraviolet irradiation damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112327. [PMID: 34628205 DOI: 10.1016/j.jphotobiol.2021.112327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Given the adverse impact of ultraviolet irradiation on human skin, as well as currently limited interventions, the discovery of new molecules with anti-photodamage potency remains critical. In this research, we obtained a new bioactive peptide (named OS-LL11, amino acid sequence 'LLPPWLCPRNK') from Odorrana schmackeri. Results showed that OS-LL11 could directly scavenge free radicals and sustain the viability of mouse keratinocytes challenged by ultraviolet B (UVB) irradiation or hydrogen peroxide (H2O2) by decreasing the levels of lipid peroxidation, malondialdehyde, and reactive oxygen species while increasing the level of catalase, Keap-1, HO-1, GCLM, and NQO1. Interestingly, topical application of OS-LL11 protected mouse skin against UVB irradiation damage by up-regulating the levels of superoxide dismutase, glutathione, and nitric oxide, but down-regulating the levels of H2O2, IL-1α, IL-1β, IL-6, TNF-α, 8-OHdG, Bcl-2, and Bax, as well as the number of apoptotic bodies. Our research demonstrated the anti-photodamage activity of a novel amphibian-derived peptide and the potential underlying mechanisms related to its free radical scavenging ability and antioxidant, anti-inflammatory, and anti-apoptotic activities. This study provides a new molecule for the development of anti-skin photodamage drugs or cosmetics and highlights the prospects of amphibian-derived peptides in photodamaged skin intervention.
Collapse
Affiliation(s)
- Chun Xie
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yan Fan
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yilin Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yue Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xiaojie Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China..
| | - Jun Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China..
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China..
| |
Collapse
|
17
|
Feng G, Wu J, Yang HL, Mu L. Discovery of Antioxidant Peptides from Amphibians: A Review. Protein Pept Lett 2021; 28:1220-1229. [PMID: 34493183 DOI: 10.2174/0929866528666210907145634] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/08/2021] [Accepted: 07/08/2021] [Indexed: 01/19/2023]
Abstract
In recent years, bioactive peptide drugs have attracted growing attention due to the increasing difficulty in developing new drugs with novel chemical structures. In addition, many diseases are linked to excessive oxidation in the human body. Therefore, the role of peptides with antioxidant activity in counteracting diseases related to oxidative stress is worth exploring. Amphibians are a major repository for bioactive peptides that protect the skin from biotic and abiotic stresses, such as microbial infection and radiation injury. We characterized the first amphibian- derived gene-encoded antioxidant peptides in 2008. Since then, a variety of antioxidant peptides have been detected in different amphibian species. In this work, the physicochemical properties of antioxidant peptides identified from amphibians are reviewed for the first time, particularly acquisition methods, amino acid characteristics, antioxidant mechanisms, and application prospects. This review should provide a reference for advancing the identification, structural analysis, and potential therapeutic value of natural antioxidant peptides.
Collapse
Affiliation(s)
- Guizhu Feng
- School of Basic Medical Sciences, Kunming Medical University, Kunming Yunnan 650500,China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming Yunnan 650500,China
| | - Hai-Long Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming Yunnan 650500,China
| | - Lixian Mu
- School of Basic Medical Sciences, Kunming Medical University, Kunming Yunnan 650500,China
| |
Collapse
|